示例#1
0
def main(params):
    train_set, valid_set, test_set = df.datasets.mnist.data()
    train_set_x, train_set_y = train_set
    test_set_x, test_set_y = test_set

    model = lenet()
    criterion = df.ClassNLLCriterion()
    optimiser = df.SGD(lr=params['lr'])

    for epoch in range(100):
        model.training()
        train(train_set_x, train_set_y, model, optimiser, criterion, epoch,
              params['batch_size'], 'train')

        train(train_set_x, train_set_y, model, optimiser, criterion, epoch,
              params['batch_size'], 'stats')
        model.evaluate()
        validate(test_set_x, test_set_y, model, epoch, params['batch_size'])
示例#2
0
    (Xtrain, ytrain), (Xval, yval), (Xtest, ytest) = load_mnist()

    criterion = df.ClassNLLCriterion()

    def run(optim):
        progress = make_progressbar('Training with ' + str(optim), 5)
        progress.start()

        model = net()
        model.training()
        for epoch in range(5):
            train(Xtrain, ytrain, model, optim, criterion, batch_size, 'train')
            train(Xtrain, ytrain, model, optim, criterion, batch_size, 'stats')
            progress.update(epoch + 1)

        progress.finish()

        model.evaluate()
        nll, _ = test(Xtrain, ytrain, model, batch_size)
        _, nerr = test(Xval, yval, model, batch_size)

        print("Trainset NLL: {:.2f}".format(nll))
        print("Testset errors: {}".format(nerr))

    run(df.SGD(lr=1e-1))
    run(df.Momentum(lr=1e-2, momentum=0.95))
    run(df.Nesterov(lr=1e-2, momentum=0.90))
    run(df.AdaGrad(lr=1e-2, eps=1e-4))
    run(df.RMSProp(lr=1e-3, rho=0.90, eps=1e-5))
    run(df.AdaDelta(rho=0.99, lr=5e-1, eps=1e-4))