示例#1
0
def random_tree(labels):
    """
    Given a list of labels, create a list of leaf nodes, and then one
    by one pop them off, randomly grafting them on to the growing tree.

    Return the root node.
    """
    assert len(labels) > 2
    import RandomArray; RandomArray.seed()
    leaves = []
    for label in labels:
        leaves.append(Fnode(istip=1, label=label))

    leaf_indices = list(RandomArray.permutation(len(leaves)))

    joined = [leaves[leaf_indices.pop()]]
    remaining = leaf_indices
    while remaining:
        i = RandomArray.randint(0, len(joined)-1)
        c1 = joined[i]
        if c1.back:
            n = c1.bisect()
        else:
            n = InternalNode()
            n.add_child(c1)
        c = leaves[remaining.pop()]
        n.add_child(c)
        joined.append(c)
        joined.append(n)

    for node in joined:
        if not node.back:
            node.isroot = 1
            return node
示例#2
0
文件: imv.py 项目: sldion/DNACC
def main():
    
    """ A simple example.  Note that the Tkinter lines are there only
    because this code will be run standalone.  On the interpreter,
    simply invoking surf and view would do the job."""
    
    import Tkinter
    r = Tkinter.Tk()
    r.withdraw()

    def f(x, y):
        return Numeric.sin(x*y)/(x*y)

    x = Numeric.arange(-7., 7.05, 0.1)
    y = Numeric.arange(-5., 5.05, 0.05)
    v = surf(x, y, f)

    import RandomArray
    z = RandomArray.random((50, 25))
    v1 = view(z)
    v2 = view(z, warp=1)
    z_large = RandomArray.random((1024, 512))
    v3 = viewi(z_large)

    # A hack for stopping Python when all windows are closed.
    v.master = r 
    v1.master = r
    v2.master = r
    #v3.master = r
    
    r.mainloop()
示例#3
0
def randomArray(shape, seed=None, range=(0, 1), type=Float):
    """Utility to generate a Numeric array full of pseudorandom numbers in the given range.
       This will attempt to use the RandomArray module, but fall back on using the standard
       random module in a loop.
       """
    global globalSeed
    if not seed:
        if not globalSeed:
            globalSeed = int(time.time())
        seed = globalSeed
        # Keep our global seed mixed up enough that many requests for
        # random arrays consecutively still gives random-looking output.
        globalSeed = (globalSeed + random.randint(1, 0xFFFFF)) & 0x7FFFFFF

    try:
        import RandomArray

        RandomArray.seed(seed + 1, seed + 1)
        return (RandomArray.random(shape) * (range[1] - range[0]) + range[0]).astype(type)
    except ImportError:
        random.seed(seed)
        a = zeros(multiply.reduce(shape), Float)
        for i in xrange(a.shape[0]):
            a[i] = random.random() * (range[1] - range[0]) + range[0]
        return reshape(a, shape).astype(type)
示例#4
0
 def setUp(self):
     self.number = 50
     X = RandomArray.random(self.number)
     Y = RandomArray.random(self.number)
     Z = RandomArray.random(self.number)
     co = Numeric.array([X, Y, Z])
     self.points = []
     for i in range(len(co[0])):
         self.points.append(tuple(co[:,i].tolist()))
示例#5
0
 def setUp(self):
     self.number = 50
     X = RandomArray.random(self.number)
     Y = RandomArray.random(self.number)
     Z = RandomArray.random(self.number)
     co = Numeric.array([X, Y, Z])
     self.points = []
     for i in range(len(co[0])):
         self.points.append(tuple(co[:, i].tolist()))
示例#6
0
def MakeRandomPartitionProblem(N, M):
    """
    Returns a random series of N integers in the range 1 < p < 2**M, guaranteed
    to sum to an even number. Use RandomArray.randint to generate a length N
    vector S of the appropriate range. While sum(S) mod 2 is not zero,
    re-generate S.
    """
    intSize = 2**M
    S = RandomArray.randint(1, intSize + 1, N)
    while sum(S) % 2 != 0:
        S = RandomArray.randint(1, intSize + 1, N)
    return S
示例#7
0
文件: vq.py 项目: yikuide/weave
def compare(m, Nobs, Ncodes, Nfeatures):
    obs = RandomArray.normal(0., 1., (Nobs, Nfeatures))
    codes = RandomArray.normal(0., 1., (Ncodes, Nfeatures))
    import scipy.cluster.vq
    scipy.cluster.vq
    print(
        'vq with %d observation, %d features and %d codes for %d iterations' %
        (Nobs, Nfeatures, Ncodes, m))
    t1 = time.time()
    for i in range(m):
        code, dist = scipy.cluster.vq.py_vq(obs, codes)
    t2 = time.time()
    py = (t2 - t1)
    print(' speed in python:', (t2 - t1) / m)
    print(code[:2], dist[:2])

    t1 = time.time()
    for i in range(m):
        code, dist = scipy.cluster.vq.vq(obs, codes)
    t2 = time.time()
    print(' speed in standard c:', (t2 - t1) / m)
    print(code[:2], dist[:2])
    print(' speed up: %3.2f' % (py / (t2 - t1)))

    # load into cache
    b = vq(obs, codes)
    t1 = time.time()
    for i in range(m):
        code, dist = vq(obs, codes)
    t2 = time.time()
    print(' speed inline/blitz:', (t2 - t1) / m)
    print(code[:2], dist[:2])
    print(' speed up: %3.2f' % (py / (t2 - t1)))

    # load into cache
    b = vq2(obs, codes)
    t1 = time.time()
    for i in range(m):
        code, dist = vq2(obs, codes)
    t2 = time.time()
    print(' speed inline/blitz2:', (t2 - t1) / m)
    print(code[:2], dist[:2])
    print(' speed up: %3.2f' % (py / (t2 - t1)))

    # load into cache
    b = vq3(obs, codes)
    t1 = time.time()
    for i in range(m):
        code, dist = vq3(obs, codes)
    t2 = time.time()
    print(' speed using C arrays:', (t2 - t1) / m)
    print(code[:2], dist[:2])
    print(' speed up: %3.2f' % (py / (t2 - t1)))
 def RunMovie(self,event = None):
     import RandomArray
     start = clock()
     shift = RandomArray.randint(0,0,(2,))
     NumFrames = 50
     for i in range(NumFrames):
         points = self.LEs.Points
         shift = RandomArray.randint(-5,5,(2,))
         points += shift
         self.LEs.SetPoints(points)
         self.Canvas.Draw()
     print "running the movie took %f seconds to disply %i frames"%((clock() - start),NumFrames)
示例#9
0
文件: vq.py 项目: kamirow/Slicer4
def compare(m, Nobs, Ncodes, Nfeatures):
    obs = RandomArray.normal(0., 1., (Nobs, Nfeatures))
    codes = RandomArray.normal(0., 1., (Ncodes, Nfeatures))
    import scipy.cluster.vq
    scipy.cluster.vq
    print 'vq with %d observation, %d features and %d codes for %d iterations' % \
           (Nobs,Nfeatures,Ncodes,m)
    t1 = time.time()
    for i in range(m):
        code, dist = scipy.cluster.vq.py_vq(obs, codes)
    t2 = time.time()
    py = (t2 - t1)
    print ' speed in python:', (t2 - t1) / m
    print code[:2], dist[:2]

    t1 = time.time()
    for i in range(m):
        code, dist = scipy.cluster.vq.vq(obs, codes)
    t2 = time.time()
    print ' speed in standard c:', (t2 - t1) / m
    print code[:2], dist[:2]
    print ' speed up: %3.2f' % (py / (t2 - t1))

    # load into cache
    b = vq(obs, codes)
    t1 = time.time()
    for i in range(m):
        code, dist = vq(obs, codes)
    t2 = time.time()
    print ' speed inline/blitz:', (t2 - t1) / m
    print code[:2], dist[:2]
    print ' speed up: %3.2f' % (py / (t2 - t1))

    # load into cache
    b = vq2(obs, codes)
    t1 = time.time()
    for i in range(m):
        code, dist = vq2(obs, codes)
    t2 = time.time()
    print ' speed inline/blitz2:', (t2 - t1) / m
    print code[:2], dist[:2]
    print ' speed up: %3.2f' % (py / (t2 - t1))

    # load into cache
    b = vq3(obs, codes)
    t1 = time.time()
    for i in range(m):
        code, dist = vq3(obs, codes)
    t2 = time.time()
    print ' speed using C arrays:', (t2 - t1) / m
    print code[:2], dist[:2]
    print ' speed up: %3.2f' % (py / (t2 - t1))
示例#10
0
 def RunMovie(self, event=None):
     import RandomArray
     start = clock()
     shift = RandomArray.randint(0, 0, (2, ))
     NumFrames = 50
     for i in range(NumFrames):
         points = self.LEs.Points
         shift = RandomArray.randint(-5, 5, (2, ))
         points += shift
         self.LEs.SetPoints(points)
         self.Canvas.Draw()
     print "running the movie took %f seconds to disply %i frames" % (
         (clock() - start), NumFrames)
示例#11
0
    def test_sparse_vs_dense(self):
        RandomArray.seed(0)             # For reproducability
        for s, l in (100, 100000), (10000, 100000), (100000, 100000):
            small = Numeric.sort(RandomArray.randint(0, 100000, (s,)))
            large = Numeric.sort(RandomArray.randint(0, 100000, (l,)))

            sparse1 = soomfunc.sparse_intersect(small, large)
            sparse2 = soomfunc.sparse_intersect(large, small)
            dense1 = soomfunc.dense_intersect(small, large)
            dense2 = soomfunc.dense_intersect(large, small)

            self.assertEqual(sparse1, sparse2)
            self.assertEqual(dense1, dense2)
            self.assertEqual(sparse1, dense1)
示例#12
0
文件: beep.py 项目: abigelow1/pype2
    def _synth(self, freq, msdur, vol, risefall):
        t = arange(0, msdur / 1000.0, 1.0 / _Beeper._dafreq)
        s = zeros((t.shape[0], 2))
        # use trapezoidal envelope with risefall (below) time
        if msdur < 40:
            risefall = msdur / 2.0
        env = -abs((t - (t[-1] / 2)) / (risefall / 1000.0))
        env = env - min(env)
        env = where(less(env, 1.0), env, 1.0)

        bits = _Beeper._bits
        if bits < 0:
            bits = -bits
            signed = 1
        else:
            signed = 0

        fullrange = power(2, bits - 1)

        if freq is None:
            y = (env * vol * fullrange * \
              RandomArray.random(t.shape)).astype(Int16)
        else:
            y = (env * vol * fullrange * \
              sin(2.0 * pi * t * freq)).astype(Int16)

        if _Beeper._chans == 2:
            y = transpose(array([y, y]))
        s = pygame.sndarray.make_sound(y)
        return s
示例#13
0
    def readfiles(self):
        ncopy = 2
        for j in range(ncopy):
            infile = open('/Users/rfinn/SDSS/fieldDR4/myclusters.cat', 'r')
            for line in infile:
                if line.find('#') > -1:
                    continue
                t = line.split()
                self.id.append(float(t[0]))  #C4 id name
                self.r200.append(float(t[3]))  #R200 in Mpc
                self.sigma.append(float(t[4]))  #sigma in km/s
                self.z.append(float(t[1]))
                c1 = Rand.randint(0, len(
                    g.x1all))  #center on random galaxy in gal catalog
                #c2=Rand.randint(0,len(g.x1))#center on random galaxy in gal catalog
                #c3=Rand.randint(0,len(g.x1))#center on random galaxy in gal catalog
                self.x1.append(g.x1all[c1])
                self.x2.append(g.x2all[c1])
                self.x3.append(g.x3all[c1])

                #c1=Rand.random()#center on random position in simulation
                #c2=Rand.random()#center on random position in simulation
                #c3=Rand.random()#center on random
                #self.x1.append(c1*simL)
                #self.x2.append(c2*simL)
                #self.x3.append(c3*simL)
            infile.close()

        self.r200 = N.array(self.r200, 'd')
        self.sigma = N.array(self.sigma, 'd')
        self.z = N.array(self.z, 'd')
        self.x1 = N.array(self.x1, 'd')
        self.x2 = N.array(self.x2, 'd')
        self.x3 = N.array(self.x3, 'd')
示例#14
0
文件: beep.py 项目: mazerj/pype2
	def _synth(self, freq, msdur, vol, risefall):
		t = arange(0, msdur / 1000.0, 1.0 / _Beeper._dafreq)
		s = zeros((t.shape[0], 2))
		# use trapezoidal envelope with risefall (below) time
		if msdur < 40:
			risefall = msdur / 2.0
		env = -abs((t - (t[-1] / 2)) / (risefall/1000.0))
		env = env - min(env)
		env = where(less(env, 1.0), env, 1.0)

		bits = _Beeper._bits
		if bits < 0:
			bits = -bits
			signed = 1
		else:
			signed = 0

		fullrange = power(2, bits-1)

		if freq is None:
			y = (env * vol * fullrange * \
				 RandomArray.random(t.shape)).astype(Int16)
		else:
			y = (env * vol * fullrange * \
				 sin(2.0 * pi * t * freq)).astype(Int16)

		if _Beeper._chans == 2:
			y = transpose(array([y,y]))
		s = pygame.sndarray.make_sound(y)
		return s
示例#15
0
def test2(shape=(100,100)):
    dl = DynamicLattice.DynamicLattice(shape)
    a = RandomArray.randint(0, 2, shape)
    dl.display(a)
    for i in range(shape[0]/2):
        for j in range(shape[0]/2):
            a[i,j] = 0
            dl.display(a, (i,j))
示例#16
0
def ThermalizingTransformer(atoms, T):
    """
    Thermalizes velocities to m v^2 / 2 = kB T/2, with kB = 1
    """
    #
    vRMS = numpy.sqrt(T / atoms.mass)
    atoms.velocities = RandomArray.normal(0, vRMS,
                                          numpy.shape(atoms.velocities))
示例#17
0
 def __init__(self, rows, cols, size):
     self.rows = rows
     self.cols = cols
     self.vectorLen = size
     self.weight = RandomArray.random((rows, cols, size))
     self.input = []
     self.loadOrder = []
     self.step = 0
     self.maxStep = 1000.0
示例#18
0
def sampled_ds(parent_dataset, sample, name=None, filter_label=None, **kwargs):
    parent_len = len(parent_dataset)
    samp_len = int(parent_len * sample)
    record_ids = Numeric.sort(RandomArray.randint(0, parent_len, samp_len))
    if name is None:
        name = 'samp%02d_%s' % (sample * 100, parent_dataset.name)
    if filter_label is None:
        filter_label = '%.3g%% sample' % (sample * 100)
    return FilteredDataset(parent_dataset, record_ids, name=name, 
                           filter_label=filter_label, **kwargs)
示例#19
0
文件: SciPy.py 项目: eddienko/SamPy
def statistics():
    pd = stats.norm(loc=1, scale=0.5)  # normal distribution N(1,0.5)
    n=10000
    r = pd.rvs(n) # random variates
    import RandomArray
    r = RandomArray.normal(1, 0.1, n)
    s = stats.stats
    print pd.stats()
    print 'mean=%g stdev=%g skewness=%g kurtosis=%g' % \
          (s.mean(r), s.variation(r), s.skew(r), s.kurtosis(r))
    bin_counts, bin_min, min_width, noutside = s.histogram(r, numbins=50)
示例#20
0
文件: SciPy.py 项目: RainW7/SamPy
def statistics():
    pd = stats.norm(loc=1, scale=0.5)  # normal distribution N(1,0.5)
    n = 10000
    r = pd.rvs(n)  # random variates
    import RandomArray
    r = RandomArray.normal(1, 0.1, n)
    s = stats.stats
    print pd.stats()
    print 'mean=%g stdev=%g skewness=%g kurtosis=%g' % \
          (s.mean(r), s.variation(r), s.skew(r), s.kurtosis(r))
    bin_counts, bin_min, min_width, noutside = s.histogram(r, numbins=50)
示例#21
0
def sampled_ds(parent_dataset, sample, name=None, filter_label=None, **kwargs):
    parent_len = len(parent_dataset)
    samp_len = int(parent_len * sample)
    record_ids = Numeric.sort(RandomArray.randint(0, parent_len, samp_len))
    if name is None:
        name = 'samp%02d_%s' % (sample * 100, parent_dataset.name)
    if filter_label is None:
        filter_label = '%.3g%% sample' % (sample * 100)
    return FilteredDataset(parent_dataset,
                           record_ids,
                           name=name,
                           filter_label=filter_label,
                           **kwargs)
示例#22
0
def RandomNonoverlappingListOfAtoms(L,
                                    neighborLocator,
                                    minDist=1.0,
                                    nAtoms=10,
                                    temperature=1.0,
                                    maxTriesQuiet=1000,
                                    mass=1.0,
                                    radius=0.5,
                                    color=vi.color.green):
    """
    Put atoms of given radius in box (0,L)^dim, at random except without
    overlaps less than minDist.
    """
    pos = RandomArray.uniform(radius, L - radius, (nAtoms, dim))
    vel = numpy.zeros((nAtoms, dim))
    atoms = ListOfAtoms(mass, radius, color, pos, vel)
    # Enforce no overlaps
    # neighborLocator.HalfNeighbors returns (n1, n2, r, dr)
    # with n1 > n2: remove n1 atoms
    overlappingAtoms = neighborLocator.HalfNeighbors(atoms, minDist)[0]
    nPairOverlap = len(overlappingAtoms)
    tries = 0
    while nPairOverlap > 0:
        tries += 1
        if tries % maxTriesQuiet == 0:
            print "After ", tries, "attempts, still have ", nPairOverlap, \
             "overlapping pairs of atoms: may need fewer atoms or larger box"
        posNew = [pos for n, pos in enumerate(atoms.positions) \
           if n not in overlappingAtoms]
        nOverlap = nAtoms - len(posNew)
        newAtomPositions = RandomArray.uniform(radius, L - radius,
                                               (nOverlap, dim))
        posNew.extend(newAtomPositions)
        atoms.positions = numpy.array(posNew)
        overlappingAtoms = neighborLocator.HalfNeighbors(atoms, minDist)[0]
        nPairOverlap = len(overlappingAtoms)
    ThermalizingTransformer(atoms, temperature)
    return atoms
示例#23
0
def RandomListOfAtoms(L,
                      nAtoms=1000,
                      temperature=1.0,
                      mass=1.0,
                      radius=0.5,
                      color=vi.color.green):
    """
    Put atoms of radius r in box (0,L)^dim
    """
    positions = RandomArray.uniform(radius, L - radius, (nAtoms, dim))
    velocities = numpy.zeros((nAtoms, dim))
    atoms = ListOfAtoms(mass, radius, color, positions, velocities)
    ThermalizingTransformer(atoms, temperature)
    return atoms
示例#24
0
def init_velocities(T, ma, ndf=None):

    # Simple equipartition, no Maxwell-Boltzmann
    # For Maxwell-Boltzmann, use RandomArray.standard_normal()
    import RandomArray
    v = RandomArray.random((len(ma), 3)) - 0.5

    # Make the C.M. static
    vcm = v_cm(v, ma)
    for xyz in range(3):
        v[:, xyz] = v[:, xyz] - vcm[xyz]

    # Re-scale for correct kinetic energy
    kin = ekin(v, ma)
    # This will take into account the reduced no of degrees of freedom
    if ndf is None:
        ndf = 3 * len(ma) - 3
    temp = temp_from_ekin(kin, ndf)
    v = v * math.sqrt(T / temp)

    return v
示例#25
0
    def __init__(self, *args):
        apply(QWidget.__init__, (self,) + args)

	# make a QwtPlot widget
	self.plot = QwtPlot('A PyQwt and MinPack Demonstration', self)

	# initialize the noisy data
        scatter = 0.05
        x = arrayrange(-5.0, 5.0, 0.1)
        y = RandomArray.uniform(1.0-scatter, 1.0+scatter, shape(x)) * \
            function([1.0, 1.0, -2.0, 2.0], x)

        # fit from a reasonable initial guess
        guess = asarray([0.5, 1.5, -1.0, 3.0])
        yGuess = function(guess, x)
        solution = leastsq(function, guess, args=(x, y))
        yFit = function(solution[0], x)
        print solution

	# insert a few curves
	c1 = self.plot.insertCurve('data')
	c2 = self.plot.insertCurve('guess')
        c3 = self.plot.insertCurve('fit')
        
	# set curve styles
	self.plot.setCurvePen(c1, QPen(Qt.black))
        self.plot.setCurvePen(c2, QPen(Qt.red))
	self.plot.setCurvePen(c3, QPen(Qt.green))

	# copy the data
	self.plot.setCurveData(c1, x, y)
        self.plot.setCurveData(c2, x, yGuess)
        self.plot.setCurveData(c3, x, yFit)
	
	# set axis titles
	self.plot.setAxisTitle(QwtPlot.xBottom, 'x -->')
	self.plot.setAxisTitle(QwtPlot.yLeft, 'y -->')

        self.plot.enableLegend(1)
        self.plot.replot()
示例#26
0
def PlotFit(traj=SandPConstantDollar,
            times=SandPTime,
            nRandomTrajs=0,
            a=0.04,
            output=False):

    plotEm = []
    eta, trajFlattened = RemoveMeanGrowth(traj, times)
    plotEm.append(times)
    plotEm.append(trajFlattened)

    randomTimes = scipy.arange(times[0], times[-1] + 1.e-10,
                               (times[-1] - times[0]) / (len(times) - 1))
    randomTrajs = []
    for i in range(nRandomTrajs):
        randomTrajs.append(
            scipy.exp(scipy.cumsum(a *
                                   (RandomArray.random(len(times)) - 0.5))))
    randomTrajsFlattened = randomTrajs[:]
    for rF in randomTrajsFlattened:
        eta, rF = RemoveMeanGrowth(rF, randomTimes)
        plotEm.append(randomTimes)
        plotEm.append(rF)

    pylab.plot(*plotEm)
    pylab.show()

    if output:
        outputSandP = file("SandPFlattened.dat", "w")
        for t, data in zip(times, trajFlattened):
            outputSandP.write("%s %s\n" % (t, data))
        outputSandP.close()
        outputRandom = file("OneDRandomFlattened.dat", "w")
        for rF in randomTrajs:
            eta, rF = RemoveMeanGrowth(rF, randomTimes)
            for t, data in zip(randomTimes, rF):
                outputRandom.write("%s %s\n" % (t, data))
            outputRandom.write("\n")
        outputRandom.close()
示例#27
0
import RandomArray, time, sys
from tables import Filters
import tables.netcdf3 as NetCDF
import Scientific.IO.NetCDF
# create an n1dim by n2dim random array.
n1dim = 1000
n2dim = 10000
print 'reading and writing a %s by %s random array ..'%(n1dim,n2dim)
array = RandomArray.random((n1dim,n2dim))
filters = Filters(complevel=0,complib='zlib',shuffle=0)
# create a file, put a random array in it.
# no compression is used.
# first, use Scientific.IO.NetCDF
t1 = time.time()
file = Scientific.IO.NetCDF.NetCDFFile('test.nc','w')
file.createDimension('n1', None)
file.createDimension('n2', n2dim)
foo = file.createVariable('data', 'd', ('n1','n2',))
for n in range(n1dim):
    foo[n] = array[n]
file.close()
print 'Scientific.IO.NetCDF took',time.time()-t1,'seconds'
# now use pytables NetCDF emulation layer.
t1 = time.time()
file = NetCDF.NetCDFFile('test.h5','w')
file.createDimension('n1', None)
file.createDimension('n2', n2dim)
# no compression (override default filters instance).
foo = file.createVariable('data', 'd', ('n1','n2',),filters=filters)
# this is faster
foo.append(array)
示例#28
0
    sigma_A = sigma_y * Numeric.sqrt(Numeric.sum(x**2) / DELTA)

    sigma_B = sigma_y * Numeric.sqrt(N / DELTA)

    return A, B, sigma_y, sigma_A, sigma_B


# Test program
if __name__ == '__main__':

    # Use latex text formatting
    matplotlib.rc('text', usetex=True)

    # Create a test data set
    x = Numeric.arange(20)
    dy = RandomArray.standard_normal(20)
    y = 0.5 * x + 3 + dy

    A, B, dy, dA, dB = lregress(x, y)
    y2 = A + B * x
    print A, B, dy, dA, dB

#    pylab.plot(x,y,'o')
#    pylab.plot(x,y2,linewidth=3)
#    pylab.xlabel('x',fontsize='large')
#    pylab.ylabel('y',fontsize='large')

#    pylab.text(2, 13, 'A = %.1f $\pm$ %.1f (true: 3.0)' % (A,dA) )
#    pylab.text(2, 12, 'B = %.2f $\pm$ %.2f (true: 0.5)' % (B,dB) )
#    pylab.text(2, 11, 'dy = %.1f (true: 1.0)' % (dy) )
示例#29
0
 def OnTimerFraction( self, event ):
     """Perform the particle-system simulation calculations"""
     points = self.points.coord.point
     colors = self.points.color.color
     '''Our calculations are going to need to know how much time 
     has passed since our last event.  This is complicated by the 
     fact that a "fraction" event is cyclic, returning to 0.0 after 
     1.0.'''
     f = event.fraction()
     if f < self.lastFraction:
         f += 1.0
     deltaFraction = (f-self.lastFraction)
     self.lastFraction = event.fraction()
     '''If we have received an event which is so soon after a 
     previous event as to have a 0.0s delta (this does happen 
     on some platforms), then we need to ignore this simulation 
     tick.'''
     if not deltaFraction:
         return
     '''Each droplet has been moving at their current velocity 
     for deltaFraction seconds, update their position with the 
     results of this speed * time.  You'll note that this is not 
     precisely accurate for a body under acceleration, but it 
     makes for easy calculations.  Two machines running 
     the same simulation will get *different* results here, as 
     a faster machine will apply acceleration more frequently,
     resulting in a faster total velocity.'''
     points = points + (self.velocities*deltaFraction)
     '''We also cycle the droplet's colour value, though with 
     the applied texture it's somewhat hard to see.'''
     colors = colors + (self.colorVelocities*deltaFraction)
     '''Now, apply acceleration to the current velocities such 
     that the droplets have a new velocity for the next simulation 
     tick.'''
     self.velocities[:,1] = self.velocities[:,1] + (gravity * deltaFraction)
     '''Find all droplets which have "retired" by falling below the 
     y==0.0 plane.'''
     below = less_equal( points[:,1], 0.0)
     dead = nonzero(below)
     if isinstance( dead, tuple ):
         # weird numpy change here...
         dead = dead[0]
     if len(dead):
         '''Move all dead droplets back to the emitter.'''
         def put( a, ind, b ):
             for i in ind:
                 a[i] = b
         put( points, dead, emitter)
         '''Re-spawn up to half of the droplets...'''
         dead = dead[:(len(dead)//2)+1]
         if len(dead):
             '''Reset color to initialColor, as we are sending out 
             these droplets right now.'''
             put( colors, dead, initialColor)
             '''Assign slightly randomized versions of our initial 
             velocity for each of the re-spawned droplets.  Replace 
             the current velocities with the new velocities.'''
             if RandomArray:
                 velocities = (RandomArray.random( (len(dead),3) ) + [-.5, 0.0, -.5 ]) * initialVelocityVector
             else:
                 velocities = [
                     array( (random.random()-.5, random.random(), random.random()-.5), 'f')* initialVelocityVector
                     for x in xrange(len(dead))
                 ]
             def copy( a, ind, b ):
                 for x in xrange(len(ind)):
                     i = ind[x]
                     a[i] = b[x]
             copy( self.velocities, dead, velocities)
     '''Now re-set the point/color fields so that the nodes notice 
     the array has changed and they update the GL with the changed 
     values.'''
     self.points.coord.point = points
     self.points.color.color = colors
import BSTIterative
import AVLIterative
import RandomArray

bt = BSTIterative.BST()
at = AVLIterative.AVL()

arraylength = 10000

l = RandomArray.getRandomArray(arraylength)

print("Processing random case")

for i in range(len(l)):
    bt.insertIter(l[i])
    at.insertIter(l[i])

print("BST level traversals: ", bt.traversecount)
print("AVL level traversals: ", at.traversecount)
print("Done")

bt = BSTIterative.BST()
at = AVLIterative.AVL()

print("Processing worst case")

for i in range(arraylength):
    bt.insertIter(i)
    at.insertIter(i)

print("BST level traversals: ", bt.traversecount)
示例#31
0
def rand(*args):
    """rand(d1,...,dn) returns a matrix of the given dimensions
    which is initialized to random numbers from a uniform distribution
    in the range [0,1).
    """
    return RandomArray.random(args)
示例#32
0
文件: test_flow.py 项目: cliburn/flow
import RandomArray
import numpy
from numpy.random import normal
import sys
import fcs
import pylab
sys.path.append('../')
import flow

if __name__ == '__main__':
    data = numpy.concatenate((RandomArray.normal(5, 1, (2000, 2)),
                              RandomArray.normal(7, 1, (2000, 2)),
                              RandomArray.normal(9, 1, (3000, 2)),
                              RandomArray.normal(11, 1, (2000, 2)),
                              RandomArray.normal(13, 1, (1000, 2))), axis=0)

    #     f = fcs.FCSReader("../data/3FITC-4PE.004.fcs")
    #     print f.data.keys()
    #     m = 10000
    #     x1 = numpy.array((f.data['FSC-H'])[:m], 'd')
    #     x2 = numpy.array((f.data['SSC-H'])[:m], 'd')
    #     x3 = numpy.array((f.data['FL1-H'])[:m], 'd')
    #     x4 = numpy.array((f.data['FL2-H'])[:m], 'd')
    
    #     print min(x1), max(x1)
    #     print min(x2), max(x2)
    #     print min(x3), max(x3)
    #     print min(x4), max(x4)

    #     data_unscaled = numpy.transpose([x1, x2, x3, x4])
    #     #data = numpy.transpose([(x1-min(x1))/max(x1), (x2-min(x2))/max(x2), (x3-min(x3))/max(x3), (x4-min(x4))/max(x4)])
示例#33
0
def _maxwellboltzmanndistribution(masses, temp):
    xi = RandomArray.standard_normal(shape=(len(masses),3))
    momenta = xi * Numeric.sqrt(masses * temp)[:,Numeric.NewAxis]
    return momenta
示例#34
0
def test(shape=(100,100)):
    dl = DynamicLattice.DynamicLattice(shape)
    for n in range(20):
        a = RandomArray.randint(0, 2, shape)
        dl.display(a)
示例#35
0
import sys, cPickle, time, commands, os, re
import RandomArray
from Numeric import *
from Asap.testtools import ReportTest

# cpu time:  time.clock().   Wall clock time: time.time()

host = commands.getoutput("hostname")
timesteps = 20
dbfilename = "bigtiming.dat"
selfcheckfilename = "bigtiming-selfcheck.dat"
logfilename = "bigtiming.log"
asapversion = GetVersion()
when = time.strftime("%a %d %b %Y %H:%M", time.localtime(time.time()))

RandomArray.seed(42, 12345)

PrintVersion(1)
print "Running ASAP timing on "+host+"."
if re.match("^n\d\d\d.dcsc.fysik.dtu.dk$", host):
    print "    This is a d512 node on Niflheim."
    fullhost = "niflheim-d512/%s" % (host.split(".")[0])
    host = "niflheim-d512"
elif re.match("^[stu]\d\d\d.dcsc.fysik.dtu.dk$", host):
    print "    This is an s50 node on Niflheim."
    fullhost = "niflheim-s50/%s" % (host.split(".")[0])
    host = "niflheim-s50"
else:
    fullhost = host
print "Current time is "+when
print ""
示例#36
0
def randomBits(length):
    address = RandomArray.randint(0, 2, length)
    return address
示例#37
0
sampleRate = 44100.

c = 300. # meters per second
spectralRange = sampleRate / 2

import numpy
import math
import RandomArray
import stats


T=r/c


spectrum = numpy.zeros( nBins-1, numpy.complex)
for x in RandomArray.normal(0,standardMicrophoneDeviation,(nSpeakers,)) :
	t1root = 1+x
	t2root = 1-x
	print t1root, t2root
	spectrum += numpy.array([
		complex(1, t1root*w*T) * math.e**complex(math.cos(w*T*t1root), math.sin(w*T*t1root)) /x / w / w / T / T -
		complex(1, t2root*w*T) * math.e**complex(math.cos(w*T*t2root), math.sin(w*T*t2root)) /x / w / w / T / T 
		for w in [ math.pi*2*normfreq*spectralRange/nBins 
			for normfreq in xrange(1,nBins) ] ])


import Gnuplot
gp=Gnuplot.Gnuplot(persist=1)
gp('set data style lines')
gp.plot(abs(spectrum), [bin.real for bin in spectrum], [bin.imag for bin in spectrum], numpy.zeros(nBins))
gp.hardcopy(filename="IncoherenceSimulation.png",terminal="png") 
示例#38
0
from Numeric import dot,sum 
import sys,numeric_version 
import RandomArray 
import LinearAlgebra 

print sys.version 
print "Numeric version:",numeric_version.version 

RandomArray.seed(123,456) 
a = RandomArray.normal(0,1,(100,10)) 
f = RandomArray.normal(0,1,(10,30)) 
e = RandomArray.normal(0,0.1,(100,30)) 
print "Got to seed:",RandomArray.get_seed() 

b = dot(a,f)+e 

(x,res,rank,s)=LinearAlgebra.linear_least_squares(a,b) 

f_res = sum((b-dot(a,f))**2) 
x_res = sum((b-dot(a,x))**2) 

print "'Planted' residues, upper bound for optimal residues:" 
print f_res 
print "Claimed residues:" 
print res 
print "Actual residues:" 
print x_res 
print "Ratio between actual and claimed (shoudl be 1):" 
print x_res/res 
print "Ratio between actual and planted (should be <1):" 
print x_res/f_res 
示例#39
0
        data = N.floor((data - self.min)/self.bin_width).astype(N.Int)
        nbins = self.array.shape[0]
        histo = N.add.reduce(weights*N.equal(N.arange(nbins)[:,N.NewAxis],
                                             data), -1)
        histo[-1] = histo[-1] + N.add.reduce(N.repeat(weights,
                                                      N.equal(nbins, data)))
        self.array[:, 1] =  self.array[:, 1] + histo


if __name__ == '__main__':
    if N.package == 'Numeric':
        import RandomArray as random
    elif N.package == 'NumPy':
        from numpy import random
    nsamples = 1000
    random.seed(12,13)
    data = random.normal(1.0, 0.5, nsamples)
    h = Histogram(data, 50)  # use 50 bins between min & max samples
    h.normalizeArea()        # make probabilities in histogram
    x = h.getBinIndices()
    y = h.getBinCounts()

    # add many more samples:
    nsamples2 = nsamples*100
    data = random.normal(1.0, 0.5, nsamples2)
    h.addData(data)
    h.normalizeArea()
    x2 = h.getBinIndices()
    y2 = h.getBinCounts()

    # and more:
示例#40
0
import RandomArray, time, sys
from tables import Filters
import tables.netcdf3 as NetCDF
import Scientific.IO.NetCDF
# create an n1dim by n2dim random array.
n1dim = 1000
n2dim = 10000
print 'reading and writing a %s by %s random array ..' % (n1dim, n2dim)
array = RandomArray.random((n1dim, n2dim))
filters = Filters(complevel=0, complib='zlib', shuffle=0)
# create a file, put a random array in it.
# no compression is used.
# first, use Scientific.IO.NetCDF
t1 = time.time()
file = Scientific.IO.NetCDF.NetCDFFile('test.nc', 'w')
file.createDimension('n1', None)
file.createDimension('n2', n2dim)
foo = file.createVariable('data', 'd', (
    'n1',
    'n2',
))
for n in range(n1dim):
    foo[n] = array[n]
file.close()
print 'Scientific.IO.NetCDF took', time.time() - t1, 'seconds'
# now use pytables NetCDF emulation layer.
t1 = time.time()
file = NetCDF.NetCDFFile('test.h5', 'w')
file.createDimension('n1', None)
file.createDimension('n2', n2dim)
# no compression (override default filters instance).
def _random_norm(shape):
    matrix = asarray(RandomArray.random(shape), MATCODE)
    return _normalize(matrix)
示例#42
0
import RandomArray
import random


def SortedArray(n):
    A = n
    for i in range(len(A) - 1):
        for z in range(len(A) - i - 1):
            print(A)
            if A[z] > A[z + 1]:
                A[z], A[z + 1] = A[z + 1], A[z]


#n = input('Input the number:')
#Ar = [5,6,7,9,0,1]

n = random.randint(2, 20)

SortedArray(RandomArray.RandomArray(n))
Classes:
MarkovModel     Holds the description of a markov model
"""
import math

from Numeric import *
import RandomArray

import StringIO     # StringIO is in Numeric's namespace, so import this after.

from Bio import listfns


#RandomArray.seed(0, 0)   # use 0 for debugging
RandomArray.seed()

VERY_SMALL_NUMBER = 1E-300
LOG0 = log(VERY_SMALL_NUMBER)

MATCODE = Float64

class MarkovModel:
    def __init__(self, states, alphabet,
                 p_initial=None, p_transition=None, p_emission=None):
        self.states = states
        self.alphabet = alphabet
        self.p_initial = p_initial
        self.p_transition = p_transition
        self.p_emission = p_emission
    def __str__(self):
示例#44
0
    sigma_A = sigma_y * Numeric.sqrt( Numeric.sum(x**2)/DELTA )

    sigma_B = sigma_y * Numeric.sqrt( N/DELTA )

    return A,B,sigma_y,sigma_A,sigma_B


# Test program
if __name__== '__main__':

    # Use latex text formatting
    matplotlib.rc('text', usetex=True)

    # Create a test data set
    x = Numeric.arange(20)
    dy = RandomArray.standard_normal(20)
    y = 0.5*x+3 + dy
 
    A,B,dy,dA,dB = lregress(x,y)
    y2 = A + B*x
    print A, B, dy ,dA,dB

#    pylab.plot(x,y,'o')
#    pylab.plot(x,y2,linewidth=3)
#    pylab.xlabel('x',fontsize='large')
#    pylab.ylabel('y',fontsize='large')

#    pylab.text(2, 13, 'A = %.1f $\pm$ %.1f (true: 3.0)' % (A,dA) )
#    pylab.text(2, 12, 'B = %.2f $\pm$ %.2f (true: 0.5)' % (B,dB) )
#    pylab.text(2, 11, 'dy = %.1f (true: 1.0)' % (dy) )
示例#45
0
    B.append(max_value)
    i, j = 0, 0
    C = [None]*size
    for k in range(0,size):
        if A[i] <= B[j]:
            C[k] = A[i]
            i += 1
        else:
            C[k] = B[j]
            j += 1
    #print "merged %s and %s and got %s"%(A,B,C)
    return C

times = []
for i in range(0,10):
    A = RandomArray.getRandomArray(10000)
    start = time.clock()
    print (Mergesort(A))
    stop = time.clock()
    print ("Process Finished in %s seconds"%(stop-start))
    times.append(stop-start)

for i in range(0,10):
    print ("%s"%(times[i]))






示例#46
0
文件: MLab.py 项目: KarolNi/VROOM-
def rand(*args):
    """rand(d1,...,dn) returns a matrix of the given dimensions
    which is initialized to random numbers from a uniform distribution
    in the range [0,1).
    """
    return RandomArray.random(args)
示例#47
0
assert allclose(computeResiduals(As, None, lmbd, Q), zeros(kconv), 0.0, tol)
assert allclose(lmbd, lmbd_exact, tol*tol, 0.0)

print 'OK'

#-------------------------------------------------------------------------------
# Test 2: K = None

print 'Test 2',

lmbd_exact = zeros(ncv, 'd')
for k in xrange(ncv):
    lmbd_exact[k] =  A[k,k]/M[k,k]


X0 = RandomArray.random((n,ncv))

kconv, lmbd, Q, it, it_inner = jdsym.jdsym(As, Ms, None, ncv, 0.0, tol, 150, itsolvers.qmrs,
                                           jmin=5, jmax=10, eps_tr=1e-4, clvl=1)
    
assert ncv == kconv
assert allclose(computeResiduals(As, Ms, lmbd, Q), zeros(kconv), 0.0, normM*tol)
assert allclose(lmbd, lmbd_exact, normM*tol*tol, 0.0)

print 'OK'

#-------------------------------------------------------------------------------
# Test 3: general case

print 'Test 3',
示例#48
0
文件: MLab.py 项目: KarolNi/VROOM-
def randn(*args):
    """u = randn(d0,d1,...,dn) returns zero-mean, unit-variance Gaussian
    random numbers in an array of size (d0,d1,...,dn)."""
    x1 = RandomArray.random(args)
    x2 = RandomArray.random(args)
    return sqrt(-2*log(x1))*cos(2*pi*x2)
示例#49
0
        data = N.floor((data - self.min)/self.bin_width).astype(N.Int)
        nbins = self.array.shape[0]
        histo = N.add.reduce(weights*N.equal(N.arange(nbins)[:,N.NewAxis],
                                             data), -1)
        histo[-1] = histo[-1] + N.add.reduce(N.repeat(weights,
                                                      N.equal(nbins, data)))
        self.array[:, 1] =  self.array[:, 1] + histo


if __name__ == '__main__':
    if N.package == 'Numeric':
        import RandomArray as random
    elif N.package == 'NumPy':
        from numpy import random
    nsamples = 1000
    random.seed(12,13)
    data = random.normal(1.0, 0.5, nsamples)
    h = Histogram(data, 50)  # use 50 bins between min & max samples
    h.normalizeArea()        # make probabilities in histogram
    x = h.getBinIndices()
    y = h.getBinCounts()

    # add many more samples:
    nsamples2 = nsamples*100
    data = random.normal(1.0, 0.5, nsamples2)
    h.addData(data)
    h.normalizeArea()
    x2 = h.getBinIndices()
    y2 = h.getBinCounts()

    # and more:
        x = []
        y = []
        for l in yprof.readlines():
            l = l.split()
            x.append(float(l[0]))
            y.append(float(l[1]))
        i = 0
        while i * delta[1] <= x[0]:
            vartopg[0, i, :] = y[0]
            i = i + 1
            if i == numx:
                break
        for d in range(0, len(x) - 1):
            slope = (y[d + 1] - y[d]) / (x[d + 1] - x[d])
            if i == numx:
                break
            while i * delta[1] <= x[d + 1]:
                vartopg[0, i, :] = y[d] + (i * delta[1] - x[d]) * slope
                i = i + 1
                if i == numx:
                    break
        for i in range(i, numx):
            vartopg[0, i, :] = y[d]

    else:
        vartopg[0, :, :] = 0.0

    vartopg[0, :, :] = vartopg[0, :, :] + RandomArray.uniform(0.0, amplitude, (numy, numx)).astype(Numeric.Float32)

    cffile.close()
示例#51
0
def randn(*args):
    """u = randn(d0,d1,...,dn) returns zero-mean, unit-variance Gaussian
    random numbers in an array of size (d0,d1,...,dn)."""
    x1 = RandomArray.random(args)
    x2 = RandomArray.random(args)
    return sqrt(-2*log(x1))*cos(2*pi*x2)
示例#52
0
            print "Error =", error

    def trainPattern(self, pattern):
        # will depend on self.step
        x, y, d = self.winner(pattern)
        error += self.updateMap(pattern, x, y)
        print "Winner is weight at (", x, y, ") (diff was", d,  ") error = ", \
              error

    def test(self):
        import numpy.oldnumeric as Numeric
        self.loadOrder = range(len(self.input))
        histogram = Numeric.zeros((self.cols, self.rows), 'i')
        for p in self.loadOrder:
            x, y, d = self.winner(self.input[p])
        #    print "Input[%d] =" % p, self.input[p],"(%d, %d)" % (x, y)
            histogram[x][y] += 1
        for r in range(self.rows):
            for c in range(self.cols):
                print "%5d" % histogram[c][r],
            print ""
        print ""

if __name__ == '__main__':
    import numpy.oldnumeric as Numeric
    s = SOM(5, 7, 5) # rows, cols; length of high-dimensional input
    s.setInputs( RandomArray.random((100, 5))) 
    s.maxStep = 100
    s.train()
    s.test()
示例#53
0
from pysparse.spmatrix import *
import RandomArray
import time

n = 1000
nnz = 50000
A = ll_mat(n, n, nnz)

R = RandomArray.randint(0, n, (nnz,2))

t1 = time.clock()

for k in xrange(nnz):
    A[R[k,0],R[k,1]] = k
    
print 'Time for populating matrix: %8.2f sec' % (time.clock() - t1, )

print A.nnz

B = A[:,:]
A.shift(-1.0, B)
print A

示例#54
0
文件: mplot.py 项目: mazerj/pype2
    if show:
        p.show()
    LAST = p
    return p

def psprint(dest="-"):
    if TABLE:
        TABLE.write_eps(dest)

if __name__=='__main__' :
    import sys, Numeric, RandomArray
    x = Numeric.arrayrange(-10,10);
    y = x**2;
    e = y/4

    a = RandomArray.random([20,20,3])
    imagesc(a, x=range(-10,10), y=range(-10,10))
    drawnow()
    sys.stdin.readline()
    

    a = Numeric.array([[[1, 0, 0],
                [0, 1, 0],
                [0, 0, 1],
                [0, 0, 0]],
               [[0, 0, 0],
                [0, 0, 0],
                [0, 0, 0],
                [0, 0, 0]],
               [[0, 0, 0],
                [0, 0, 0],