示例#1
0
def run(args):
    """
    Alternative module: Use the strategy in Bis-SNP to trim 5' bisulfite conversion failures
    """
    options = args.parse_args()

    if len(options.sam_file) == 0:
        error("Missing the SAM file, use -s or --sam option.")
    else:
        options.sam_file = options.sam_file.split(',')
    for s in options.sam_file:
        if not os.path.isfile(s):
            error("Can't open the SAM file: " + s)
            sys.exit(1)

    if len(options.ref_file) == 0:
        error(
            "Missing the reference genome fasta file, use -r or --ref option.")
    else:
        if not os.path.isfile(options.ref_file):
            error("Can't open the ref file: " + options.ref_file)

    if len(options.samtools) != 0:
        if options.samtools[-1] != '/':
            options.samtools += '/'

    if len(options.name) == 0:
        error("Missing the output file name, use -n or --name options.")

    sam_inf = options.sam_file
    ref_file = options.ref_file
    bsm = options.bsm
    s_path = options.samtools
    name = options.name
    remove_overlap = options.remove_overlap
    filter_dup = options.filter_dup
    p_poisson = options.p_poisson
    gsize = options.gsize
    not_mapping = options.not_mapping

    info("Get the all parameter!!")

    #check the input mapping files
    sam_format, read_inf = check.check_mapping_file_flag(sam_inf[0], s_path)
    pre_flag = read_inf.readline().split('\t')[1]
    if 'p' in pre_flag:
        single_on = False
        info("The input mapping files are paired-end sequencing!")
    else:
        single_on = True
        info("The input mapping files are single-end sequencing!")

    loc_dict = {}
    if filter_dup:
        ## if filter_up is TRUE, the duplicate reads will be assessed and shown in Dup_dis.pdf
        info("The filter_dup has been set True.")
        info("Assess the duplicate reads...")
        for sam in sam_inf:
            #check the input mapping files
            sam_format, read_inf = check.check_mapping_file(sam, s_path)
            if single_on:
                for read in read_inf:
                    loc_dict = LI.Loc_single(read, loc_dict, bsm)
            else:
                for read in read_inf:
                    loc_dict = LI.Loc_paired(read, loc_dict, bsm)
        max_cov = DR.duplicate_report(loc_dict, gsize, p_poisson, name)
        info('Get the duplicate reads distribution!')

    #get reference information
    ref = GR.get_ref(ref_file)
    trim_position = []

    filter_duplicate_reads = 0
    filter_nonuniform_trim_bp = 0
    filter_nonuniform_trim_bp_CG = 0
    filter_remove_overlap_bp = 0
    filter_not_mapping_reads = 0
    all_reads = 0
    not_mapping_reads = 0
    all_mapping_bp = 0

    ##filter the 5' bisulfite failure
    for sam in sam_inf:
        out_sam = sam[:-4] + '_' + name + '_filter.sam'
        out = open(out_sam, 'w')
        #check the input mapping files
        record_mate = {}
        sam_format, read_inf = check.check_mapping_file_header(sam, s_path)

        for read in read_inf:
            #for sam header
            if read.startswith('@'):
                out.write(read)
                continue
            else:
                all_reads += 1  ##record the read number (2013-06-20)

                #Get the read information for trimming
                #If the read isn't unique mapping, we will get a empty list ([]).
                #In: single unique mapping read  Out: [flag,strand,chr,pos,CIGAR,seq,score]
                #In: paired unique mapping read  Out: [flag,strand,chr,pos1,CIGAR,pos2,insert,seq,score]
            read_info = RI(read, bsm)
            read_info = read_info.extract_information()

            if len(read_info) == 0:
                not_mapping_reads += 1
                if not_mapping:  #keep the not_unique mapping reads (or not paired mapping)
                    out.write(read)
                else:
                    filter_not_mapping_reads += 1  ##record the not mapping read number (2013-06-20)
                continue

            if len(
                    loc_dict
            ) > 0:  #the --filter_dup has been set True, have to remove duplicate reads
                duplicate, loc_dict = DF(read_info, loc_dict, max_cov,
                                         single_on)
            else:
                duplicate = False

            if single_on:
                all_mapping_bp += len(
                    read_info[5]
                )  ##record the mapping read basepair (2013-06-20)
            else:
                all_mapping_bp += len(
                    read_info[7]
                )  ##record the mapping read basepair (2013-06-20)

            record_mate, trim_position, filter_nonuniform_trim_bp_CG, filter_duplicate_reads, filter_remove_overlap_bp = NF.nonuniform_filter(
                read, out, read_info, ref, remove_overlap, duplicate,
                single_on, record_mate, trim_position,
                filter_nonuniform_trim_bp_CG, filter_duplicate_reads,
                filter_remove_overlap_bp)
        out.close()
        del record_mate
    NR.nonuniform_generator(trim_position, name)

    for i in range(len(trim_position)):
        filter_nonuniform_trim_bp += i * trim_position[i]

    ##produce the filter report
    info('Produce the report file...')
    report_out = open(name + "_BSeQC_nonuniform_filter_report.txt", 'w')
    report_out.write('Total reads: %d\n' % all_reads)
    if single_on:
        report_out.write('Not unique mapping reads: %d(%.2f%s all reads)\n' %
                         (not_mapping_reads,
                          float(not_mapping_reads) / all_reads * 100, "%"))
        report_out.write(
            'Unique mapping reads: %d(%.2f%s all reads)\n' %
            ((all_reads - not_mapping_reads),
             float(all_reads - not_mapping_reads) / all_reads * 100, "%"))
        report_out.write(
            'Skip not unique mapping reads: %d(%.2f%s all reads)\n' %
            (filter_not_mapping_reads,
             float(filter_not_mapping_reads) / all_reads * 100, "%"))
        report_out.write('In unique mapping reads:\n')
        report_out.write('All unique mapping basepairs: %d\n' % all_mapping_bp)
        report_out.write(
            'Filter Duplicate reads: %d(%.2f%s of unique mapping reads)\n' %
            (filter_duplicate_reads, float(filter_duplicate_reads) /
             (all_reads - not_mapping_reads) * 100, "%"))
        report_out.write(
            "Filter 5' nonconversion basepairs: %d(%.2f%s of unique mapping basepairs)\n"
            % (filter_nonuniform_trim_bp,
               float(filter_nonuniform_trim_bp) / all_mapping_bp * 100, "%"))
        report_out.write(
            "Filter 5' nonconversion CpG basepairs: %d(%.2f%s of unique mapping basepairs)\n"
            %
            (filter_nonuniform_trim_bp_CG,
             float(filter_nonuniform_trim_bp_CG) / all_mapping_bp * 100, "%"))

    else:
        report_out.write('Not unique paired mapping reads: %d(%.2f%s)\n' %
                         (not_mapping_reads,
                          float(not_mapping_reads) / all_reads * 100, "%"))
        report_out.write(
            'Unique paired mapping reads: %d(%.2f%s)\n' %
            ((all_reads - not_mapping_reads),
             float(all_reads - not_mapping_reads) / all_reads * 100, "%"))
        report_out.write(
            'Skip not paired unique mapping reads: %d(%.2f%s)\n' %
            (filter_not_mapping_reads,
             float(filter_not_mapping_reads) / all_reads * 100, "%"))
        report_out.write('In unique paired mapping reads:\n')
        report_out.write('All unique paired mapping basepairs: %d\n' %
                         all_mapping_bp)
        report_out.write(
            'Filter Duplicate reads: %d(%.2f%s of unique paired mapping reads)\n'
            % (filter_duplicate_reads, float(filter_duplicate_reads) /
               (all_reads - not_mapping_reads * 100), "%"))
        report_out.write(
            "Filter 5' nonconversion basepairs: %d(%.2f%s of unique mapping basepairs)\n"
            % (filter_nonuniform_trim_bp,
               float(filter_nonuniform_trim_bp) / all_mapping_bp * 100, "%"))
        report_out.write(
            "Filter 5' nonconversion CpG basepairs: %d(%.2f%s of unique mapping basepairs)\n"
            %
            (filter_nonuniform_trim_bp_CG,
             float(filter_nonuniform_trim_bp_CG) / all_mapping_bp * 100, "%"))
        report_out.write(
            'Filter overlapped basepairs: %d(%.2f%s of unique paired mapping basepairs)\n'
            % (filter_remove_overlap_bp,
               float(filter_remove_overlap_bp) / all_mapping_bp * 100, "%"))
    report_out.close()
    info('Get the report file!')
示例#2
0
def filter_sam(sam_inf, strand_t, read_l, single_on, name, s_path, auto, remove_overlap, loc_dict, max_cov,
               not_mapping):
    '''
    Trim the mapping files with the biased positions of every length in every strand,
    which are saved in the variance: strand_t.
    '''
    filter_duplicate_reads = 0
    filter_mbias_trim_bp = 0
    filter_remove_overlap_bp = 0
    filter_not_mapping_reads = 0
    all_reads = 0
    not_mapping_reads = 0
    all_mapping_bp = 0
    for sam in sam_inf:
        out_sam = sam[:-4] + '_' + name + '_filter.sam'
        out = open(out_sam, 'w')

        #check the input mapping files
        sam_format, read_inf = check.check_mapping_file_header(sam, s_path)

        #scan every read to qc_filter
        for read in read_inf:
            #for sam header
            if read.startswith('@'):
                out.write(read)
                continue
            else:
                all_reads += 1  ##record the read number (2013-06-20)

            #Get the read information for trimming
            #If the read isn't unique mapping, we will get a empty list ([]).
            #In: single unique mapping read  Out: [flag,strand,chr,pos,CIGAR,seq,score]
            #In: paired unique mapping read  Out: [flag,strand,chr,pos1,CIGAR,pos2,insert,seq,score]
            read_info = RI(read)
            read_info = read_info.extract_information()
            if len(read_info) == 0:
                not_mapping_reads += 1
                if not_mapping:         #keep the not_unique mapping reads
                    out.write(read)
                else:
                    filter_not_mapping_reads += 1  ##record the not mapping read number (2013-06-20)
                continue

            if len(loc_dict) > 0: #the --filter_dup has been set True, have to remove duplicate reads
                duplicate, loc_dict = DF(read_info, loc_dict, max_cov, single_on)
            else:
                duplicate = False

            if single_on:
                all_mapping_bp += len(read_info[5])     ##record the mapping read basepair (2013-06-20)
                if auto:
                    if read_l[0] != '':
                        original_length = int(read_l[sam_inf.index(sam)])
                    else:
                        original_length = ''
                    filter_mbias_trim_bp, filter_duplicate_reads = SF(read, strand_t, out, read_info, original_length,
                        duplicate, filter_mbias_trim_bp, filter_duplicate_reads)
                else:
                    if not duplicate and len(loc_dict) > 0:
                        out.write(read)                 #not trimming, only output not_duplicate reads
                    else:
                        filter_duplicate_reads += 1     ##record the duplicate read (2013-06-20)
            else:
                all_mapping_bp += len(read_info[7])     ##record the mapping read basepair (2013-06-20)
                if auto or remove_overlap:
                    if read_l[0] != '':
                        original_length = [int(i) for i in read_l[sam_inf.index(sam)].split('-')]
                    else:
                        original_length = ''
                    filter_mbias_trim_bp, filter_duplicate_reads, filter_remove_overlap_bp = PF(read, strand_t, out,
                        read_info, original_length, auto, remove_overlap, duplicate, filter_mbias_trim_bp,
                        filter_duplicate_reads, filter_remove_overlap_bp)
                else:
                    if not duplicate and len(loc_dict) > 0:
                        out.write(read)                  #not trimming, only output not_duplicate reads
                    else:
                        filter_duplicate_reads += 1     ##record the duplicate read (2013-06-20)
        out.close()

    ##produce the filter report
    info('Produce the report file...')
    report_out = open(name + "_BSeQC_mbias_filter_report.txt", 'w')
    report_out.write('Total reads: %d\n' % all_reads)
    if single_on:
        report_out.write('Not unique mapping reads: %d(%.2f%s all reads)\n' % (
        not_mapping_reads, float(not_mapping_reads) / all_reads * 100, "%"))
        report_out.write('Unique mapping reads: %d(%.2f%s all reads)\n' % (
        (all_reads - not_mapping_reads), float(all_reads - not_mapping_reads) / all_reads * 100, "%"))
        report_out.write('Skip not unique mapping reads: %d(%.2f%s all reads)\n' % (
        filter_not_mapping_reads, float(filter_not_mapping_reads) / all_reads * 100, "%"))
        report_out.write('In unique mapping reads:\n')
        report_out.write('All unique mapping basepairs: %d\n' % all_mapping_bp)
        report_out.write('Filter Duplicate reads: %d(%.2f%s of unique mapping reads)\n' % (
        filter_duplicate_reads, float(filter_duplicate_reads) / (all_reads - not_mapping_reads) * 100, "%"))
        report_out.write('Filter Mbias basepairs: %d(%.2f%s of unique mapping basepairs)\n' % (
        filter_mbias_trim_bp, float(filter_mbias_trim_bp) / all_mapping_bp * 100, "%"))

    else:
        report_out.write('Not unique paired mapping reads: %d(%.2f%s)\n' % (
        not_mapping_reads, float(not_mapping_reads) / all_reads * 100, "%"))
        report_out.write('Unique paired mapping reads: %d(%.2f%s)\n' % (
        (all_reads - not_mapping_reads), float(all_reads - not_mapping_reads) / all_reads * 100, "%"))
        report_out.write('Skip not paired unique mapping reads: %d(%.2f%s)\n' % (
        filter_not_mapping_reads, float(filter_not_mapping_reads) / all_reads * 100, "%"))
        report_out.write('In unique paired mapping reads:\n')
        report_out.write('All unique paired mapping basepairs: %d\n' % all_mapping_bp)
        report_out.write('Filter Duplicate reads: %d(%.2f%s of unique paired mapping reads)\n' % (
        filter_duplicate_reads, float(filter_duplicate_reads) / (all_reads - not_mapping_reads) * 100, "%"))
        report_out.write('Filter Mbias basepairs: %d(%.2f%s of unique paired mapping basepairs)\n' % (
        filter_mbias_trim_bp, float(filter_mbias_trim_bp) / all_mapping_bp * 100, "%"))
        report_out.write('Filter overlapped basepairs: %d(%.2f%s of unique paired mapping basepairs)\n' % (
        filter_remove_overlap_bp, float(filter_remove_overlap_bp) / all_mapping_bp * 100, "%"))
    report_out.close()
    info('Get the report file!')




	
示例#3
0
def filter_sam(sam_inf, strand_t, read_l, single_on, name, s_path, auto, remove_overlap, loc_dict, max_cov,
               not_mapping):
    '''
    Trim the mapping files with the biased positions of every length in every strand,
    which are saved in the variance: strand_t.
    '''
    filter_duplicate_reads = 0
    filter_mbias_trim_bp = 0
    filter_remove_overlap_bp = 0
    filter_not_mapping_reads = 0
    all_reads = 0
    not_mapping_reads = 0
    all_mapping_bp = 0
    for sam in sam_inf:
        out_sam = sam[:-4] + '_' + name + '_filter.sam'
        out = open(out_sam, 'w')

        #check the input mapping files
        sam_format, read_inf = check.check_mapping_file_header(sam, s_path)

        #scan every read to qc_filter
        for read in read_inf:
            #for sam header
            if read.startswith('@'):
                out.write(read)
                continue
            else:
                all_reads += 1  ##record the read number (2013-06-20)

            #Get the read information for trimming
            #If the read isn't unique mapping, we will get a empty list ([]).
            #In: single unique mapping read  Out: [flag,strand,chr,pos,CIGAR,seq,score]
            #In: paired unique mapping read  Out: [flag,strand,chr,pos1,CIGAR,pos2,insert,seq,score]
            read_info = RI(read)
            read_info = read_info.extract_information()
            if len(read_info) == 0:
                not_mapping_reads += 1
                if not_mapping:         #keep the not_unique mapping reads
                    out.write(read)
                else:
                    filter_not_mapping_reads += 1  ##record the not mapping read number (2013-06-20)
                continue

            if len(loc_dict) > 0: #the --filter_dup has been set True, have to remove duplicate reads
                duplicate, loc_dict = DF(read_info, loc_dict, max_cov, single_on)
            else:
                duplicate = False

            if single_on:
                all_mapping_bp += len(read_info[5])     ##record the mapping read basepair (2013-06-20)
                if auto:
                    if read_l[0] != '':
                        original_length = int(read_l[sam_inf.index(sam)])
                    else:
                        original_length = ''
                    filter_mbias_trim_bp, filter_duplicate_reads = SF(read, strand_t, out, read_info, original_length,
                        duplicate, filter_mbias_trim_bp, filter_duplicate_reads)
                else:
                    if not duplicate and len(loc_dict) > 0:
                        out.write(read)                 #not trimming, only output not_duplicate reads
                    else:
                        filter_duplicate_reads += 1     ##record the duplicate read (2013-06-20)
            else:
                all_mapping_bp += len(read_info[7])     ##record the mapping read basepair (2013-06-20)
                if auto or remove_overlap:
                    if read_l[0] != '':
                        original_length = [int(i) for i in read_l[sam_inf.index(sam)].split('-')]
                    else:
                        original_length = ''
                    filter_mbias_trim_bp, filter_duplicate_reads, filter_remove_overlap_bp = PF(read, strand_t, out,
                        read_info, original_length, auto, remove_overlap, duplicate, filter_mbias_trim_bp,
                        filter_duplicate_reads, filter_remove_overlap_bp)
                else:
                    if not duplicate and len(loc_dict) > 0:
                        out.write(read)                  #not trimming, only output not_duplicate reads
                    else:
                        filter_duplicate_reads += 1     ##record the duplicate read (2013-06-20)
        out.close()

    ##produce the filter report
    info('Produce the report file...')
    report_out = open(name + "_BSeQC_mbias_filter_report.txt", 'w')
    report_out.write('Total reads: %d\n' % all_reads)
    if single_on:
        report_out.write('Not unique mapping reads: %d(%.2f%s all reads)\n' % (
        not_mapping_reads, float(not_mapping_reads) / all_reads * 100, "%"))
        report_out.write('Unique mapping reads: %d(%.2f%s all reads)\n' % (
        (all_reads - not_mapping_reads), float(all_reads - not_mapping_reads) / all_reads * 100, "%"))
        report_out.write('Skip not unique mapping reads: %d(%.2f%s all reads)\n' % (
        filter_not_mapping_reads, float(filter_not_mapping_reads) / all_reads * 100, "%"))
        report_out.write('In unique mapping reads:\n')
        report_out.write('All unique mapping basepairs: %d\n' % all_mapping_bp)
        report_out.write('Filter Duplicate reads: %d(%.2f%s of unique mapping reads)\n' % (
        filter_duplicate_reads, float(filter_duplicate_reads) / (all_reads - not_mapping_reads) * 100, "%"))
        report_out.write('Filter Mbias basepairs: %d(%.2f%s of unique mapping basepairs)\n' % (
        filter_mbias_trim_bp, float(filter_mbias_trim_bp) / all_mapping_bp * 100, "%"))

    else:
        report_out.write('Not unique paired mapping reads: %d(%.2f%s)\n' % (
        not_mapping_reads, float(not_mapping_reads) / all_reads * 100, "%"))
        report_out.write('Unique paired mapping reads: %d(%.2f%s)\n' % (
        (all_reads - not_mapping_reads), float(all_reads - not_mapping_reads) / all_reads * 100, "%"))
        report_out.write('Skip not paired unique mapping reads: %d(%.2f%s)\n' % (
        filter_not_mapping_reads, float(filter_not_mapping_reads) / all_reads * 100, "%"))
        report_out.write('In unique paired mapping reads:\n')
        report_out.write('All unique paired mapping basepairs: %d\n' % all_mapping_bp)
        report_out.write('Filter Duplicate reads: %d(%.2f%s of unique paired mapping reads)\n' % (
        filter_duplicate_reads, float(filter_duplicate_reads) / (all_reads - not_mapping_reads) * 100, "%"))
        report_out.write('Filter Mbias basepairs: %d(%.2f%s of unique paired mapping basepairs)\n' % (
        filter_mbias_trim_bp, float(filter_mbias_trim_bp) / all_mapping_bp * 100, "%"))
        report_out.write('Filter overlapped basepairs: %d(%.2f%s of unique paired mapping basepairs)\n' % (
        filter_remove_overlap_bp, float(filter_remove_overlap_bp) / all_mapping_bp * 100, "%"))
    report_out.close()
    info('Get the report file!')
示例#4
0
def parser_trim_sambam(sam_inf, ref, bsmp, s_path, dige_site, single_on,
                       remove_overlap, not_mapping, name):
    '''
    1. Scan each SAM file to calculate the methylation level of the end-repaired C in the MspI site.
    2. Trim the end-repaired C and adapter sequence by recognizing the MspI site
    '''

    info(
        'Scan each SAM file to calculate the methylation level of the end-repaired C in the MspI site.'
    )
    info(
        'and trim the end-repaired C and adapter sequence by recognizing the MspI site.'
    )
    dige_dict = {}
    #dige_dict['++'] = {'s': [[], [0, 0]], 'e': [[], [0, 0]]}
    #dige_dict['-+'] = {'s': [[], [0, 0]], 'e': [[], [0, 0]]}
    #dige_dict['++'] = {'s': [0] * 22, 'e': [0] * 22}
    #dige_dict['-+'] = {'s': [0] * 22, 'e': [0] * 22}
    dige_dict['++'] = {'s': [0] * 2, 'e': [0] * 2}
    dige_dict['-+'] = {'s': [0] * 2, 'e': [0] * 2}
    if not single_on:
        #dige_dict['+-'] = {'s': [[], [0, 0]], 'e': [[], [0, 0]]}
        #dige_dict['--'] = {'s': [[], [0, 0]], 'e': [[], [0, 0]]}
        #dige_dict['+-'] = {'s': [0] * 22, 'e': [0] * 22}
        #dige_dict['--'] = {'s': [0] * 22, 'e': [0] * 22}
        dige_dict['+-'] = {'s': [0] * 2, 'e': [0] * 2}
        dige_dict['--'] = {'s': [0] * 2, 'e': [0] * 2}

    filter_remove_overlap_bp = 0
    filter_not_mapping_reads = 0
    all_reads = 0
    not_mapping_reads = 0
    all_mapping_bp = 0
    filter_MspI_end_repaired_bp = 0

    for s in range(len(sam_inf)):
        sam_format, read_inf = check.check_mapping_file_header(
            sam_inf[s], s_path)
        out_sam = sam_inf[s][:-4] + '_' + name + '_filter.sam'
        out = open(out_sam, 'w')
        record_mate = {}
        for read in read_inf:
            if read.startswith('@'):
                out.write(read)
                continue
            else:
                all_reads += 1
                #get read information and MspI site
            read_info, site_meth_list = DI.record_site(read, ref, bsmp,
                                                       dige_site)

            if len(read_info) == 0:
                not_mapping_reads += 1
                if not_mapping:
                    out.write(read)
                else:
                    filter_not_mapping_reads += 1
                continue

            strand = read_info[1]
            if single_on:
                all_mapping_bp += len(read_info[5])
            else:
                all_mapping_bp += len(read_info[7])

            if len(site_meth_list) != 0:
                #record the methylation state of the MspI site
                dige_dict[strand]['s'] = [
                    sum(x)
                    for x in zip(dige_dict[strand]['s'], site_meth_list[:2])
                ]
                dige_dict[strand]['e'] = [
                    sum(x)
                    for x in zip(dige_dict[strand]['e'], site_meth_list[2:])
                ]
                #dige_dict[strand]['s'] = [sum(x) for x in zip(dige_dict[strand]['s'], site_meth_list[0] + site_meth_list[1])]
                #dige_dict[strand]['e'] = [sum(x) for x in zip(dige_dict[strand]['e'], site_meth_list[2] + site_meth_list[3])]

                #trim the end-repaired nucleotides and adapter sequence by the MspI site
                record_mate, filter_MspI_end_repaired_bp, filter_remove_overlap_bp = RF.rrbs_trim(
                    read, read_info, site_meth_list, single_on, remove_overlap,
                    record_mate, filter_MspI_end_repaired_bp,
                    filter_remove_overlap_bp, out)
        out.close()
    return dige_dict, all_reads, all_mapping_bp, not_mapping_reads, filter_not_mapping_reads, filter_MspI_end_repaired_bp, filter_remove_overlap_bp
示例#5
0
文件: rrbs.py 项目: hanfeisun/bseqc
def parser_trim_sambam(sam_inf, ref, bsmp, s_path, dige_site, single_on, remove_overlap, not_mapping, name):
    '''
    1. Scan each SAM file to calculate the methylation level of the end-repaired C in the MspI site.
    2. Trim the end-repaired C and adapter sequence by recognizing the MspI site
    '''

    info('Scan each SAM file to calculate the methylation level of the end-repaired C in the MspI site.')
    info('and trim the end-repaired C and adapter sequence by recognizing the MspI site.')
    dige_dict = {}
    #dige_dict['++'] = {'s': [[], [0, 0]], 'e': [[], [0, 0]]}
    #dige_dict['-+'] = {'s': [[], [0, 0]], 'e': [[], [0, 0]]}
    #dige_dict['++'] = {'s': [0] * 22, 'e': [0] * 22}
    #dige_dict['-+'] = {'s': [0] * 22, 'e': [0] * 22}
    dige_dict['++'] = {'s': [0] * 2, 'e': [0] * 2}
    dige_dict['-+'] = {'s': [0] * 2, 'e': [0] * 2}
    if not single_on:
        #dige_dict['+-'] = {'s': [[], [0, 0]], 'e': [[], [0, 0]]}
        #dige_dict['--'] = {'s': [[], [0, 0]], 'e': [[], [0, 0]]}
        #dige_dict['+-'] = {'s': [0] * 22, 'e': [0] * 22}
        #dige_dict['--'] = {'s': [0] * 22, 'e': [0] * 22}
        dige_dict['+-'] = {'s': [0] * 2, 'e': [0] * 2}
        dige_dict['--'] = {'s': [0] * 2, 'e': [0] * 2}

    filter_remove_overlap_bp = 0
    filter_not_mapping_reads = 0
    all_reads = 0
    not_mapping_reads = 0
    all_mapping_bp = 0
    filter_MspI_end_repaired_bp = 0

    for s in range(len(sam_inf)):
        sam_format, read_inf = check.check_mapping_file_header(sam_inf[s], s_path)
        out_sam = sam_inf[s][:-4] + '_' + name + '_filter.sam'
        out = open(out_sam, 'w')
        record_mate = {}
        for read in read_inf:
            if read.startswith('@'):
                out.write(read)
                continue
            else:
                all_reads += 1
                #get read information and MspI site
            read_info, site_meth_list = DI.record_site(read, ref, bsmp, dige_site)

            if len(read_info) == 0:
                not_mapping_reads += 1
                if not_mapping:
                    out.write(read)
                else:
                    filter_not_mapping_reads += 1
                continue

            strand = read_info[1]
            if single_on:
                all_mapping_bp += len(read_info[5])
            else:
                all_mapping_bp += len(read_info[7])

            if len(site_meth_list) != 0:
            #record the methylation state of the MspI site
                dige_dict[strand]['s'] = [sum(x) for x in zip(dige_dict[strand]['s'], site_meth_list[:2])]
                dige_dict[strand]['e'] = [sum(x) for x in zip(dige_dict[strand]['e'], site_meth_list[2:])]
                #dige_dict[strand]['s'] = [sum(x) for x in zip(dige_dict[strand]['s'], site_meth_list[0] + site_meth_list[1])]
                #dige_dict[strand]['e'] = [sum(x) for x in zip(dige_dict[strand]['e'], site_meth_list[2] + site_meth_list[3])]

                #trim the end-repaired nucleotides and adapter sequence by the MspI site
                record_mate, filter_MspI_end_repaired_bp, filter_remove_overlap_bp = RF.rrbs_trim(read, read_info,
                                                                                                  site_meth_list,
                                                                                                  single_on,
                                                                                                  remove_overlap,
                                                                                                  record_mate,
                                                                                                  filter_MspI_end_repaired_bp,
                                                                                                  filter_remove_overlap_bp, out)
        out.close()
    return dige_dict, all_reads, all_mapping_bp, not_mapping_reads, filter_not_mapping_reads, filter_MspI_end_repaired_bp, filter_remove_overlap_bp
示例#6
0
def run(args):
    """
    Alternative module: Use the strategy in Bis-SNP to trim 5' bisulfite conversion failures
    """
    options = args.parse_args()

    if len(options.sam_file) == 0:
        error("Missing the SAM file, use -s or --sam option.")
    else:
        options.sam_file = options.sam_file.split(',')
    for s in options.sam_file:
        if not os.path.isfile(s):
            error("Can't open the SAM file: " + s)
            sys.exit(1)

    if len(options.ref_file) == 0:
        error("Missing the reference genome fasta file, use -r or --ref option.")
    else:
        if not os.path.isfile(options.ref_file):
            error("Can't open the ref file: " + options.ref_file)

    if len(options.samtools) != 0:
        if options.samtools[-1] != '/':
            options.samtools += '/'

    if len(options.name) == 0:
        error("Missing the output file name, use -n or --name options.")

    sam_inf = options.sam_file
    ref_file = options.ref_file
    bsm = options.bsm
    s_path = options.samtools
    name = options.name
    remove_overlap = options.remove_overlap
    filter_dup = options.filter_dup
    p_poisson = options.p_poisson
    gsize = options.gsize
    not_mapping = options.not_mapping

    info("Get the all parameter!!")

    #check the input mapping files
    sam_format, read_inf = check.check_mapping_file_flag(sam_inf[0], s_path)
    pre_flag = read_inf.readline().split('\t')[1]
    if 'p' in pre_flag:
        single_on = False
        info("The input mapping files are paired-end sequencing!")
    else:
        single_on = True
        info("The input mapping files are single-end sequencing!")

    loc_dict = {}
    if filter_dup:
        ## if filter_up is TRUE, the duplicate reads will be assessed and shown in Dup_dis.pdf
        info("The filter_dup has been set True.")
        info("Assess the duplicate reads...")
        for sam in sam_inf:
            #check the input mapping files
            sam_format, read_inf = check.check_mapping_file(sam, s_path)
            if single_on:
                for read in read_inf:
                    loc_dict = LI.Loc_single(read, loc_dict, bsm)
            else:
                for read in read_inf:
                    loc_dict = LI.Loc_paired(read, loc_dict, bsm)
        max_cov = DR.duplicate_report(loc_dict, gsize, p_poisson, name)
        info('Get the duplicate reads distribution!')

    #get reference information
    ref = GR.get_ref(ref_file)
    trim_position = []

    filter_duplicate_reads = 0
    filter_nonuniform_trim_bp = 0
    filter_nonuniform_trim_bp_CG = 0
    filter_remove_overlap_bp = 0
    filter_not_mapping_reads = 0
    all_reads = 0
    not_mapping_reads = 0
    all_mapping_bp = 0

    ##filter the 5' bisulfite failure
    for sam in sam_inf:
        out_sam = sam[:-4] + '_' + name + '_filter.sam'
        out = open(out_sam, 'w')
        #check the input mapping files
        record_mate = {}
        sam_format, read_inf = check.check_mapping_file_header(sam, s_path)

        for read in read_inf:
            #for sam header
            if read.startswith('@'):
                out.write(read)
                continue
            else:
                all_reads += 1  ##record the read number (2013-06-20)

                #Get the read information for trimming
                #If the read isn't unique mapping, we will get a empty list ([]).
                #In: single unique mapping read  Out: [flag,strand,chr,pos,CIGAR,seq,score]
                #In: paired unique mapping read  Out: [flag,strand,chr,pos1,CIGAR,pos2,insert,seq,score]
            read_info = RI(read, bsm)
            read_info = read_info.extract_information()

            if len(read_info) == 0:
                not_mapping_reads += 1
                if not_mapping:         #keep the not_unique mapping reads (or not paired mapping)
                    out.write(read)
                else:
                    filter_not_mapping_reads += 1  ##record the not mapping read number (2013-06-20)
                continue

            if len(loc_dict) > 0: #the --filter_dup has been set True, have to remove duplicate reads
                duplicate, loc_dict = DF(read_info, loc_dict, max_cov, single_on)
            else:
                duplicate = False

            if single_on:
                all_mapping_bp += len(read_info[5])   ##record the mapping read basepair (2013-06-20)
            else:
                all_mapping_bp += len(read_info[7])   ##record the mapping read basepair (2013-06-20)

            record_mate, trim_position, filter_nonuniform_trim_bp_CG, filter_duplicate_reads, filter_remove_overlap_bp = NF.nonuniform_filter(read,
                                                                                                                out,
                                                                                                                read_info,
                                                                                                                ref,
                                                                                                                remove_overlap,
                                                                                                                duplicate,
                                                                                                                single_on,
                                                                                                                record_mate,
                                                                                                                trim_position,
                                                                                                                filter_nonuniform_trim_bp_CG,
                                                                                                                filter_duplicate_reads,
                                                                                                                filter_remove_overlap_bp)
        out.close()
        del record_mate
    NR.nonuniform_generator(trim_position, name)

    for i in range(len(trim_position)):
        filter_nonuniform_trim_bp += i * trim_position[i]

    ##produce the filter report
    info('Produce the report file...')
    report_out = open(name + "_BSeQC_nonuniform_filter_report.txt", 'w')
    report_out.write('Total reads: %d\n' % all_reads)
    if single_on:
        report_out.write('Not unique mapping reads: %d(%.2f%s all reads)\n' % (
            not_mapping_reads, float(not_mapping_reads) / all_reads * 100, "%"))
        report_out.write('Unique mapping reads: %d(%.2f%s all reads)\n' % (
            (all_reads - not_mapping_reads), float(all_reads - not_mapping_reads) / all_reads * 100, "%"))
        report_out.write('Skip not unique mapping reads: %d(%.2f%s all reads)\n' % (
            filter_not_mapping_reads, float(filter_not_mapping_reads) / all_reads * 100, "%"))
        report_out.write('In unique mapping reads:\n')
        report_out.write('All unique mapping basepairs: %d\n' % all_mapping_bp)
        report_out.write('Filter Duplicate reads: %d(%.2f%s of unique mapping reads)\n' % (
            filter_duplicate_reads, float(filter_duplicate_reads) / (all_reads - not_mapping_reads) * 100, "%"))
        report_out.write("Filter 5' nonconversion basepairs: %d(%.2f%s of unique mapping basepairs)\n" % (
            filter_nonuniform_trim_bp, float(filter_nonuniform_trim_bp) / all_mapping_bp * 100, "%"))
        report_out.write("Filter 5' nonconversion CpG basepairs: %d(%.2f%s of unique mapping basepairs)\n" % (
            filter_nonuniform_trim_bp_CG, float(filter_nonuniform_trim_bp_CG) / all_mapping_bp * 100, "%"))

    else:
        report_out.write('Not unique paired mapping reads: %d(%.2f%s)\n' % (
            not_mapping_reads, float(not_mapping_reads) / all_reads * 100, "%"))
        report_out.write('Unique paired mapping reads: %d(%.2f%s)\n' % (
            (all_reads - not_mapping_reads), float(all_reads - not_mapping_reads) / all_reads * 100, "%"))
        report_out.write('Skip not paired unique mapping reads: %d(%.2f%s)\n' % (
            filter_not_mapping_reads, float(filter_not_mapping_reads) / all_reads * 100, "%"))
        report_out.write('In unique paired mapping reads:\n')
        report_out.write('All unique paired mapping basepairs: %d\n' % all_mapping_bp)
        report_out.write('Filter Duplicate reads: %d(%.2f%s of unique paired mapping reads)\n' % (
            filter_duplicate_reads, float(filter_duplicate_reads) / (all_reads - not_mapping_reads * 100), "%"))
        report_out.write("Filter 5' nonconversion basepairs: %d(%.2f%s of unique mapping basepairs)\n" % (
            filter_nonuniform_trim_bp, float(filter_nonuniform_trim_bp) / all_mapping_bp * 100, "%"))
        report_out.write("Filter 5' nonconversion CpG basepairs: %d(%.2f%s of unique mapping basepairs)\n" % (
            filter_nonuniform_trim_bp_CG, float(filter_nonuniform_trim_bp_CG) / all_mapping_bp * 100, "%"))
        report_out.write('Filter overlapped basepairs: %d(%.2f%s of unique paired mapping basepairs)\n' % (
            filter_remove_overlap_bp, float(filter_remove_overlap_bp) / all_mapping_bp * 100, "%"))
    report_out.close()
    info('Get the report file!')