def squared_clustering_errors(inputs, k): """ finds total squared error from k-means clustering of inputs """ clusterer = KMeans(k) clusterer.train(inputs) means = clusterer.means assignments = map(clusterer.classify, inputs) return sum(squared_distance(input, means[cluster]) for input, cluster in zip(inputs, assignments))
def squared_clustering_errors(inputs, k): """ finds total squared error from k-means clustering of inputs """ clusterer = KMeans(k) clusterer.train(inputs) means = clusterer.means assignments = map(clusterer.classify, inputs) return sum( squared_distance(input, means[cluster]) for input, cluster in zip(inputs, assignments))
def helper(cluster_index): """ calculates the squared distance between input and cluster vector mean """ return squared_distance(input, self.means[cluster_index])