from GoreUtilities import plot_heat_map import os, FlowCytometryTools from pylab import * import matplotlib.pyplot as plt # Locate sample data included with this package datadir = os.path.join(FlowCytometryTools.__path__[0], 'tests', 'data', 'Plate01') # datadir = '[insert path to your own folder with fcs files.]' # Make sure that the files follow the correct naming convention for the 'name' parser. # Alternatively, change the parser (see tutorial online for further information). # Load plate plate = FCPlate.from_dir(ID='Demo Plate', path=datadir, parser='name') plate = plate.transform('hlog', channels=['Y2-A', 'B1-A'], b=500.0) # Drop empty cols / rows plate = plate.dropna() # Create a threshold gates from FlowCytometryTools import ThresholdGate y2_gate = ThresholdGate(1000.0, 'Y2-A', region='above') # Plot plate = plate.gate(y2_gate) plot_heat_map(plate.counts(), include_values=True, show_colorbar=True, cmap=cm.Oranges) title('Heat map of fluorescent counts on plate') #show() # <-- Uncomment when running as a script.
# datadir = '[insert path to your own folder with fcs files.]' # Make sure that the files follow the correct naming convention for the 'name' parser. # Alternatively, change the parser (see tutorial online for further information). # Load plate plate = FCPlate.from_dir(ID='Demo Plate', path=datadir, parser='name') plate = plate.transform('hlog', channels=['Y2-A', 'B1-A'], b=500.0) # Drop empty cols / rows plate = plate.dropna() # Create a threshold gates from FlowCytometryTools import ThresholdGate y2_gate = ThresholdGate(1000.0, 'Y2-A', region='above') # Plot plate = plate.gate(y2_gate) def calculate_median_Y2(well): return well.data['Y2-A'].median() output = plate.apply(calculate_median_Y2) plot_heat_map(output, include_values=True, show_colorbar=True, cmap=cm.Reds) title('Heat map of median RFP fluorescence on plate') #show() # <-- Uncomment when running as a script.