def startupParameters(): numpy.set_printoptions(threshold=numpy.nan) # argv: outputPath, occluder, occLevel, numIterations ind = sys.argv.index('--') args = sys.argv[ind+1:] outputPath = str('/om/user/janner/mit/urop/picture/centos/' + args[0]) print('\nOutput Path: ', outputPath) hideAll_inference() occluder = args[1] occLevel = 0 if occluder == 'None' else int(args[2]) if occLevel != 0: parameterize(occluder, outputPath, 0, 0, occLevel) print('Occlusion: ', occluder, str(occLevel)) if len(args) >= 4: numIterations = int(args[3]) else: numIterations = 20 print('numIterations: ', numIterations, '\n') if len(args) >= 5: batchNumber = int(args[4]) print('batchNumber: ', batchNumber, '\n') if len(args) >= 6: sweep = int(args[5]) print('sweep: ', sweep, '\n') gpu = int(args[6]) print('gpu: ', gpu) if gpu: setToGPU() return outputPath, occluder, occLevel, numIterations, batchNumber, sweep
end = int(args[1]) if len(args) > 2: gpu = eval(args[2]) else: gpu = False if gpu: switchToGPU() outputBase = '/om/user/janner/mit/urop/picture/centos/dDiff-dOccl/' # identity, name, outputPath = startupParameters(outputBase) shapeMU, shapePC, shapeEV, texMU, texPC, texEV, segMM, segMB, tl = loadModel() #### [identity, name, path, (occluder, occLevel)] renderArray = numpy.load(outputBase + 'render.npy') for [identity, name, tempPath, (occluder, occlusionLevel)] in renderArray[start:end]: hideAll_inference() print(len(identity)) if len(identity) == 1: identity = identity.tolist()[0] print('Converted to list of length ', len(identity), sep='') # print(identity) print(str(outputBase + tempPath + name)) alpha = identity[:200] beta = identity[200:] # print('alpha: ', alpha) # print('beta: ', beta) print('Received coefs:', len(alpha), len(beta)) print('tempPath: ', '/om' in tempPath, tempPath) parameterize(occluder, outputBase + tempPath, 0, 0, occlusionLevel) newFace(alpha, beta) write(outputBase + tempPath if '/om/' not in tempPath else tempPath, name)