示例#1
0
def verify_tasks(parser: VerifyArgParser):
    """ Verify a range of tasks in the VNN-COMP2020 table. """
    args = parser.parse_args()
    logging.info(fmt_args(args))
    assert args.task_i is not None and args.task_j is not None

    info = VNN20Info()
    d = info.results_all if args.series == 'all' else info.results_hard

    low, high = args.task_i, min(len(d.props), args.task_j)
    logging.info(f'Enumerating verification task [{low}, {high}).')
    for i in range(low, high):
        # parse network id
        nid_nums = [int(v) for v in d.nets[i].strip().split('-')]
        nid = acas.AcasNetID(*nid_nums)

        # parse prop id
        prop = int(d.props[i])
        if prop == 6:
            # 6a and 6b
            all_props = AndProp([acas.AcasProp.property6a(dom), acas.AcasProp.property6b(dom)])
        else:
            prop_method = f'property{prop}'
            prop = getattr(acas.AcasProp, prop_method)(dom)
            all_props = AndProp([prop])

        logging.info(f'===== Processing {nid}, verifying one property {all_props.name} =====')
        t0 = timer()
        res = _verify(nid, all_props, args)
        logging.info(f'After {pp_time(timer() - t0)}, verify result -- CEX: {res}\n\n')
    return
示例#2
0
def _verify(nid: acas.AcasNetID, all_props: AndProp, args: Namespace):
    fpath = nid.fpath()
    net, bound_mins, bound_maxs = acas.AcasNet.load_nnet(fpath, dom, device)
    # logging.info(net)  # no need to print acas network here, all the same

    v = Cluster(dom, all_props) if args.use_new else Bisecter(dom, all_props)

    in_lb, in_ub = all_props.lbub(device)
    in_bitmap = all_props.bitmap(device)
    in_lb = net.normalize_inputs(in_lb, bound_mins, bound_maxs)
    in_ub = net.normalize_inputs(in_ub, bound_mins, bound_maxs)

    res = v.verify(in_lb, in_ub, in_bitmap, net, batch_size=args.batch_size)
    return res
示例#3
0
文件: acas.py 项目: shivamhanda/ART
def inspect_net_props(dom: AbsDom):
    """ Inspect the properties each network should satisfy.
        The network ids are grouped by all property sets, so as to pick the most balanced ones among them.
    """
    unique_ids = []
    grouped = {}
    for nid in AcasNetID.all_ids():
        props = AndProp(nid.applicable_props(dom))
        # print(f'{nid.x}, {nid.y}', end='\t')

        prop_ids = [p.name.split('property')[1] for p in props.props]
        if prop_ids not in unique_ids:
            unique_ids.append(prop_ids)
            grouped[props.name] = [nid]
        else:
            grouped[props.name].append(nid)
        print(f'{nid}: prop', ','.join(prop_ids))

    print('Unique prop ids are:', len(unique_ids))
    for ids in sorted(unique_ids):
        print(ids)
    print()
    print('Grouped for all props:')
    for k, v in grouped.items():
        print('===== Props:', k, '=====')
        print('Nets:')
        for nid in v:
            print(nid)
    return
示例#4
0
def inspect_data_for(dom: AbsDom, nid: AcasNetID, dir: str = ACAS_DIR, normed: bool = True):
    """ Inspect the sampled data from every trained network. To serve as training and test set. """
    fpath = nid.fpath()
    print('Loading sampled data for network', nid, 'picked nnet file:', fpath)
    props = AndProp(nid.applicable_props(dom))
    print('Shall satisfy', props.name)
    net, bound_mins, bound_maxs = AcasNet.load_nnet(fpath, dom)
    net = net.to(device)

    mid = 'normed' if normed else 'orig'
    train_inputs, train_labels = torch.load(Path(dir, f'{str(nid)}-{mid}-train.pt'), device)
    test_inputs, test_labels = torch.load(Path(dir, f'{str(nid)}-{mid}-test.pt'), device)

    assert len(train_inputs) == len(train_labels)
    assert len(test_inputs) == len(test_labels)
    print(f'Loaded {len(train_inputs)} training samples, {len(test_inputs)} test samples.')

    for category in AcasOut:
        cnt = (train_labels == category).sum().item() + (test_labels == category).sum().item()
        print(f'Category {category} has {cnt} samples.')
    print()

    with torch.no_grad():
        # because in ACAS Xu, minimum score is the prediction
        assert torch.equal(train_labels, (net(train_inputs) * -1).argmax(dim=-1))
        assert torch.equal(test_labels, (net(test_inputs) * -1).argmax(dim=-1))
    return
示例#5
0
    def _go(id):
        props = id.applicable_props(dom)
        ap = AndProp(props)

        print('-- For network', id)
        for p in props:
            print('-- Has', p.name)
            lb, ub = p.lbub()
            print('   LB:', lb)
            print('   UB:', ub)

        lb, ub = ap.lbub()
        print('-- All conjoined,', ap.name)
        print('   LB:', lb)
        print('   UB:', ub)
        print('   Labels:', ap.labels)
        print('Cnt:', len(lb))
        for i in range(len(lb)):
            print('  ', i, 'th piece, width:', ub[i] - lb[i],
                  f'area: {total_area(lb[[i]], ub[[i]]) :E}')
        print()
        return
示例#6
0
def verify_net_prop(parser: VerifyArgParser):
    """ Verify a specific network w.r.t. a single property. """
    args = parser.parse_args()
    logging.info(fmt_args(args))

    # parse network id
    nums = [int(v) for v in args.net.strip().split('-')]
    nid = acas.AcasNetID(*nums)

    # parse prop id
    if args.prop == 6:
        # 6a and 6b
        all_props = AndProp([acas.AcasProp.property6a(dom), acas.AcasProp.property6b(dom)])
    else:
        prop_method = f'property{args.prop}'
        prop = getattr(acas.AcasProp, prop_method)(dom)
        all_props = AndProp([prop])

    logging.info(f'===== Processing {nid}, verifying one property {all_props.name} =====')
    res = _verify(nid, all_props, args)
    t0 = timer()
    logging.info(f'After {pp_time(timer() - t0)}, verify result -- CEX: {res}\n\n')
    return res
示例#7
0
def verify_net(parser: VerifyArgParser):
    """ Verify all properties a network should hold at the same time. """
    args = parser.parse_args()
    logging.info(fmt_args(args))

    # parse network id
    nums = [int(v) for v in args.net.strip().split('-')]
    nid = acas.AcasNetID(*nums)

    # should hold for all props
    all_props = AndProp(nid.applicable_props(dom))

    logging.info(f'===== Processing {nid}, verifying all its props {all_props.name} =====')
    t0 = timer()
    res = _verify(nid, all_props, args)
    logging.info(f'After {pp_time(timer() - t0)}, verify result -- CEX: {res}\n\n')
    return res
示例#8
0
文件: acas.py 项目: shivamhanda/ART
 def _fetch(ids: List[str]) -> AndProp:
     names = [f'property{i}' for i in ids]
     return AndProp([getattr(cls, n)(dom) for n in names])
示例#9
0
def train_acas(nid: acas.AcasNetID, args: Namespace) -> Tuple[int, float, bool, float]:
    """ The almost completed skeleton of training ACAS networks using ART.
    :return: trained_epochs, train_time, certified, final accuracies
    """
    fpath = nid.fpath()
    net, bound_mins, bound_maxs = acas.AcasNet.load_nnet(fpath, args.dom, device)
    if args.reset_params:
        net.reset_parameters()
    logging.info(net)

    all_props = AndProp(nid.applicable_props(args.dom))
    v = Bisecter(args.dom, all_props)

    def run_abs(batch_abs_lb: Tensor, batch_abs_ub: Tensor, batch_abs_bitmap: Tensor) -> Tensor:
        """ Return the safety distances over abstract domain. """
        batch_abs_ins = args.dom.Ele.by_intvl(batch_abs_lb, batch_abs_ub)
        batch_abs_outs = net(batch_abs_ins)
        return all_props.safe_dist(batch_abs_outs, batch_abs_bitmap)

    in_lb, in_ub = all_props.lbub(device)
    in_bitmap = all_props.bitmap(device)
    in_lb = net.normalize_inputs(in_lb, bound_mins, bound_maxs)
    in_ub = net.normalize_inputs(in_ub, bound_mins, bound_maxs)

    # already moved to GPU if necessary
    trainset = AcasPoints.load(nid, train=True, device=device)
    testset = AcasPoints.load(nid, train=False, device=device)

    start = timer()

    if args.no_abs or args.no_refine:
        curr_abs_lb, curr_abs_ub, curr_abs_bitmap = in_lb, in_ub, in_bitmap
    else:
        # refine it at the very beginning to save some steps in later epochs
        curr_abs_lb, curr_abs_ub, curr_abs_bitmap = v.split(in_lb, in_ub, in_bitmap, net, args.refine_top_k,
                                                            # tiny_width=args.tiny_width,
                                                            stop_on_k_all=args.start_abs_cnt)

    opti = Adam(net.parameters(), lr=args.lr)
    scheduler = args.scheduler_fn(opti)  # could be None

    accuracies = []  # epoch 0: ratio
    certified = False
    epoch = 0
    while True:
        # first, evaluate current model
        logging.info(f'[{utils.time_since(start)}] After epoch {epoch}:')
        if not args.no_pts:
            logging.info(f'Loaded {trainset.real_len()} points for training.')
        if not args.no_abs:
            logging.info(f'Loaded {len(curr_abs_lb)} abstractions for training.')
            with torch.no_grad():
                full_dists = run_abs(curr_abs_lb, curr_abs_ub, curr_abs_bitmap)
            logging.info(f'min loss {full_dists.min()}, max loss {full_dists.max()}.')
            if full_dists.max() <= 0.:
                certified = True
                logging.info(f'All {len(curr_abs_lb)} abstractions certified.')
            else:
                _, worst_idx = full_dists.max(dim=0)
                logging.debug(f'Max loss at LB: {curr_abs_lb[worst_idx]}, UB: {curr_abs_ub[worst_idx]}, rule: {curr_abs_bitmap[worst_idx]}.')

        accuracies.append(eval_test(net, testset))
        logging.info(f'Test set accuracy {accuracies[-1]}.')

        # check termination
        if certified and epoch >= args.min_epochs:
            # all safe and sufficiently trained
            break

        if epoch >= args.max_epochs:
            break

        epoch += 1
        certified = False
        logging.info(f'\n[{utils.time_since(start)}] Starting epoch {epoch}:')

        absset = exp.AbsIns(curr_abs_lb, curr_abs_ub, curr_abs_bitmap)

        # dataset may have expanded, need to update claimed length to date
        if not args.no_pts:
            trainset.reset_claimed_len()
        if not args.no_abs:
            absset.reset_claimed_len()
        if (not args.no_pts) and (not args.no_abs):
            ''' Might simplify this to just using the amount of abstractions, is it unnecessarily complicated? '''
            # need to enumerate both
            max_claimed_len = max(trainset.claimed_len, absset.claimed_len)
            trainset.claimed_len = max_claimed_len
            absset.claimed_len = max_claimed_len

        if not args.no_pts:
            conc_loader = data.DataLoader(trainset, batch_size=args.batch_size, shuffle=True)
            nbatches = len(conc_loader)
            conc_loader = iter(conc_loader)
        if not args.no_abs:
            abs_loader = data.DataLoader(absset, batch_size=args.batch_size, shuffle=True)
            nbatches = len(abs_loader)  # doesn't matter rewriting len(conc_loader), they are the same
            abs_loader = iter(abs_loader)

        total_loss = 0.
        for i in range(nbatches):
            opti.zero_grad()
            batch_loss = 0.
            if not args.no_pts:
                batch_inputs, batch_labels = next(conc_loader)
                batch_outputs = net(batch_inputs)
                batch_loss += args.accuracy_loss(batch_outputs, batch_labels)
            if not args.no_abs:
                batch_abs_lb, batch_abs_ub, batch_abs_bitmap = next(abs_loader)
                batch_dists = run_abs(batch_abs_lb, batch_abs_ub, batch_abs_bitmap)
                safe_loss = batch_dists.mean()  # L1, need to upgrade to batch_worsts to unlock loss other than L1
                total_loss += safe_loss.item()
                batch_loss += safe_loss
            logging.debug(f'Epoch {epoch}: {i / nbatches * 100 :.2f}%. Batch loss {batch_loss.item()}')
            batch_loss.backward()
            opti.step()

        # inspect the trained weights after another epoch
        # meta.inspect_params(net.state_dict())

        total_loss /= nbatches
        if scheduler is not None:
            scheduler.step(total_loss)
        logging.info(f'[{utils.time_since(start)}] At epoch {epoch}: avg accuracy training loss {total_loss}.')

        # Refine abstractions, note that restart from scratch may output much fewer abstractions thus imprecise.
        if (not args.no_refine) and len(curr_abs_lb) < args.max_abs_cnt:
            curr_abs_lb, curr_abs_ub, curr_abs_bitmap = v.split(curr_abs_lb, curr_abs_ub, curr_abs_bitmap, net,
                                                                args.refine_top_k,
                                                                # tiny_width=args.tiny_width,
                                                                stop_on_k_new=args.refine_top_k)
        pass

    # summarize
    train_time = timer() - start
    logging.info(f'Accuracy at every epoch: {accuracies}')
    logging.info(f'After {epoch} epochs / {utils.pp_time(train_time)}, ' +
                 f'eventually the trained network got certified? {certified}, ' +
                 f'with {accuracies[-1]:.4f} accuracy on test set.')
    return epoch, train_time, certified, accuracies[-1]
示例#10
0
def train_collision(net: nn.Module, full_props: List[c.CollisionProp],
                    args: Namespace) -> Tuple[int, float, int, float]:
    """ The almost completed skeleton of training Collision Avoidance/Detection networks using ART.
    :return: trained_epochs, train_time, certified, final accuracies
    """
    logging.info(net)
    if args.reset_params:
        try:
            net.reset_params()
        except AttributeError:
            ''' This is possible when creating FFNN on the fly which doesn't have reset_params().
                It's fine since such FFNN is using newly initialized weights.
            '''
            pass

    props_dict = c.cluster_props(full_props)
    large_props = [ps[0] for ps in props_dict.values()
                   ]  # pick the largest one for each safety margin base point
    large_props = AndProp(large_props[:args.n_props])
    logging.info(f'Using {len(large_props.props)} largest properties.')

    v = Bisecter(args.dom, large_props)

    def run_abs(batch_abs_lb: Tensor, batch_abs_ub: Tensor,
                batch_abs_bitmap: Tensor) -> Tensor:
        """ Return the safety distances over abstract domain. """
        batch_abs_ins = args.dom.Ele.by_intvl(batch_abs_lb, batch_abs_ub)
        batch_abs_outs = net(batch_abs_ins)
        return large_props.safe_dist(batch_abs_outs, batch_abs_bitmap)

    in_lb, in_ub = large_props.lbub(device)
    in_bitmap = large_props.bitmap(device)

    # already moved to GPU if necessary
    trainset = c.CollisionData.load(device)
    testset = trainset  # there is only training set, following that in Ehlers 2017

    start = timer()

    if args.no_abs or args.no_refine:
        curr_abs_lb, curr_abs_ub, curr_abs_bitmap = in_lb, in_ub, in_bitmap
    else:
        # refine it at the very beginning to save some steps in later epochs
        curr_abs_lb, curr_abs_ub, curr_abs_bitmap = v.split(
            in_lb,
            in_ub,
            in_bitmap,
            net,
            args.refine_top_k,
            # tiny_width=args.tiny_width,
            stop_on_k_all=args.start_abs_cnt)

    opti = Adam(net.parameters(), lr=args.lr)
    scheduler = args.scheduler_fn(opti)  # could be None

    accuracies = []  # epoch 0: ratio
    best_metric = 1e9 if args.accu_bar else -1.
    best_params = None
    certified = False
    epoch = 0
    while True:
        # first, evaluate current model
        logging.info(f'[{utils.time_since(start)}] After epoch {epoch}:')
        if not args.no_pts:
            logging.info(f'Loaded {trainset.real_len()} points for training.')
        if not args.no_abs:
            logging.info(
                f'Loaded {len(curr_abs_lb)} abstractions for training.')
            with torch.no_grad():
                full_dists = run_abs(curr_abs_lb, curr_abs_ub, curr_abs_bitmap)
            worst_loss = full_dists.max()
            logging.info(
                f'min loss {full_dists.min()}, max loss {worst_loss}.')
            if worst_loss <= 0.:
                certified = True
                logging.info(f'All {len(curr_abs_lb)} abstractions certified.')
            else:
                _, worst_idx = full_dists.max(dim=0)
                logging.info(
                    f'Max loss at LB: {curr_abs_lb[worst_idx]}, UB: {curr_abs_ub[worst_idx]}.'
                )
                worst_props = large_props.props_of(curr_abs_bitmap[worst_idx])
                logging.info(
                    f'Max loss labels: {[p.larger_category for p in worst_props]}'
                )

        accu = eval_test(net, testset)
        accuracies.append(accu)
        logging.info(f'Test set accuracy {accu}.')
        if args.accu_bar is None or args.no_abs:
            # pick the best accuracy model
            if accu > best_metric:
                best_metric = accu
                best_params = copy.deepcopy(net.state_dict())
        else:
            if accu > args.accu_bar and worst_loss < best_metric:
                best_metric = worst_loss
                best_params = copy.deepcopy(net.state_dict())

        # check termination
        if certified and epoch >= args.min_epochs:
            # all safe and sufficiently trained
            break

        if epoch >= args.max_epochs:
            break

        epoch += 1
        certified = False

        # writting like this because ReduceLROnPlateau do not have get_lr()
        _param_lrs = [group['lr'] for group in opti.param_groups]
        curr_lr = sum(_param_lrs) / len(_param_lrs)
        logging.info(
            f'\n[{utils.time_since(start)}] Starting epoch {epoch} with lr = {curr_lr}:'
        )

        absset = exp.AbsIns(curr_abs_lb, curr_abs_ub, curr_abs_bitmap)

        # dataset may have expanded, need to update claimed length to date
        if not args.no_pts:
            trainset.reset_claimed_len()
        if not args.no_abs:
            absset.reset_claimed_len()
        if (not args.no_pts) and (not args.no_abs):
            ''' Might simplify this to just using the amount of abstractions, is it unnecessarily complicated? '''
            # need to enumerate both
            max_claimed_len = min(trainset.claimed_len, absset.claimed_len)
            # max_claimed_len = trainset.claimed_len
            trainset.claimed_len = max_claimed_len
            absset.claimed_len = max_claimed_len

        if not args.no_pts:
            # using drop_last may increase accuracy a bit, but decrease safety a bit?
            conc_loader = data.DataLoader(trainset,
                                          batch_size=args.batch_size,
                                          shuffle=True,
                                          drop_last=True)
            nbatches = len(conc_loader)
            conc_loader = iter(conc_loader)
        if not args.no_abs:
            # using drop_last may increase accuracy a bit, but decrease safety a bit?
            abs_loader = data.DataLoader(absset,
                                         batch_size=args.batch_size,
                                         shuffle=True,
                                         drop_last=True)
            nbatches = len(
                abs_loader
            )  # doesn't matter rewriting len(conc_loader), they are the same
            abs_loader = iter(abs_loader)

        accu_total_loss = 0.
        safe_total_loss = 0.
        for i in range(nbatches):
            opti.zero_grad()
            batch_loss = 0.
            if not args.no_pts:
                batch_inputs, batch_labels = next(conc_loader)
                batch_outputs = net(batch_inputs)
                batch_loss += args.accuracy_loss(batch_outputs, batch_labels)
                accu_total_loss += batch_loss.item()
            if not args.no_abs:
                batch_abs_lb, batch_abs_ub, batch_abs_bitmap = next(abs_loader)
                batch_dists = run_abs(batch_abs_lb, batch_abs_ub,
                                      batch_abs_bitmap)
                safe_loss = batch_dists.mean(
                )  # L1, need to upgrade to batch_worsts to unlock loss other than L1
                safe_loss *= args.safe_lambda
                safe_total_loss += safe_loss.item()
                batch_loss += safe_loss
            logging.debug(
                f'Epoch {epoch}: {i / nbatches * 100 :.2f}%. Batch loss {batch_loss.item()}'
            )
            batch_loss.backward()

            nn.utils.clip_grad_norm_(
                net.parameters(),
                args.grad_clip)  # doesn't seem to make a difference here..
            opti.step()

        # inspect the trained weights after another epoch
        # meta.inspect_params(net.state_dict())

        accu_total_loss /= nbatches
        safe_total_loss /= nbatches
        if scheduler is not None:
            scheduler.step(accu_total_loss + safe_total_loss)
        logging.info(
            f'[{utils.time_since(start)}] At epoch {epoch}: avg accuracy training loss {accu_total_loss}, '
            + f'safe training loss {safe_total_loss}.')

        # Refine abstractions, note that restart from scratch may output much fewer abstractions thus imprecise.
        if (not args.no_refine) and len(curr_abs_lb) < args.max_abs_cnt:
            curr_abs_lb, curr_abs_ub, curr_abs_bitmap = v.split(
                curr_abs_lb,
                curr_abs_ub,
                curr_abs_bitmap,
                net,
                args.refine_top_k,
                # tiny_width=args.tiny_width,
                stop_on_k_new=args.refine_top_k)
        pass

    # summarize
    train_time = timer() - start

    if certified and args.n_props == 100:
        # the latest one is certified, use that
        final_accu = accuracies[-1]
        tot_certified = 500
    else:
        # not yet having a certified model, thus pick the one with best accuracy so far and try certify it on all props
        if best_params is not None:
            logging.info(f'Post certify using best metric {best_metric}')
            net.load_state_dict(best_params)

        final_accu = eval_test(net, testset)
        tot_certified = 0
        for i, (k, ps) in enumerate(props_dict.items()):
            assert len(ps) == 5
            for j, p in enumerate(ps):
                tmp_v = Bisecter(args.dom, p)
                in_lb, in_ub = p.lbub(device)
                if tmp_v.try_certify(in_lb,
                                     in_ub,
                                     None,
                                     net,
                                     args.batch_size,
                                     timeout_sec=args.certify_timeout):
                    tot_certified += (5 - j)
                    logging.info(
                        f'Certified prop based at {k} using {j}th eps, now {tot_certified}/{5*(i+1)}.'
                    )
                    break
        pass

    serial_net = nn.Sequential(*[layer.export() for layer in net
                                 ])  # save exported network in serialization
    torch.save(
        serial_net.cpu(),
        Path(RES_DIR, f'trained-{tot_certified}-{final_accu:.4f}-model.pt'))

    accuracies = [f'{v:.4f}' for v in accuracies]
    logging.info(f'Accuracy at every epoch: {accuracies}')
    logging.info(
        f'After {epoch} epochs / {utils.pp_time(train_time)}, ' +
        f'eventually the trained network got certified at {tot_certified} / 500 props, '
        + f'with {final_accu:.4f} accuracy on test set.')
    return epoch, train_time, tot_certified, final_accu