def plot_misclasses_mean_std_for_exps_with_tube(df): test_misclasses = extract_from_results( df, lambda r: r.monitor_channels['test_misclass']) test_misclasses, exps_by_epoch = get_padded_chan_vals(test_misclasses, pad_by=np.nan) valid_misclasses = extract_from_results( df, lambda r: r.monitor_channels['valid_misclass']) valid_misclasses, exps_by_epoch = get_padded_chan_vals(valid_misclasses, pad_by=np.nan) train_misclasses = extract_from_results( df, lambda r: r.monitor_channels['train_misclass']) train_misclasses, exps_by_epoch = get_padded_chan_vals(train_misclasses, pad_by=np.nan) plot_with_tube(range(train_misclasses.shape[1]), np.nanmean(train_misclasses, axis=0), np.nanstd(train_misclasses, axis=0)) plot_with_tube(range(valid_misclasses.shape[1]), np.nanmean(valid_misclasses, axis=0), np.nanstd(valid_misclasses, axis=0), color=seaborn.color_palette()[1]) plot_with_tube(range(test_misclasses.shape[1]), np.nanmean(test_misclasses, axis=0), np.nanstd(test_misclasses, axis=0), color=seaborn.color_palette()[2]) plt.plot(exps_by_epoch / float(exps_by_epoch[0]), color='black', linestyle='dashed')
def plot_mean_std_misclasses_over_time(misclasses): padded_misclasses, _ = get_padded_chan_vals(misclasses['train']) plot_mean_and_std(padded_misclasses, color=seaborn.color_palette()[0]) padded_misclasses, _ = get_padded_chan_vals(misclasses['valid']) plot_mean_and_std(padded_misclasses, color=seaborn.color_palette()[1]) padded_misclasses, n_exps_by_epoch = get_padded_chan_vals(misclasses['test']) plot_mean_and_std(padded_misclasses, color=seaborn.color_palette()[2]) plt.plot(n_exps_by_epoch / float(n_exps_by_epoch[0]), color='black', lw=1) plt.ylim(0,1)
def plot_mean_std_misclasses_over_time(misclasses): padded_misclasses, _ = get_padded_chan_vals(misclasses['train']) plot_mean_and_std(padded_misclasses, color=seaborn.color_palette()[0]) padded_misclasses, _ = get_padded_chan_vals(misclasses['valid']) plot_mean_and_std(padded_misclasses, color=seaborn.color_palette()[1]) padded_misclasses, n_exps_by_epoch = get_padded_chan_vals( misclasses['test']) plot_mean_and_std(padded_misclasses, color=seaborn.color_palette()[2]) plt.plot(n_exps_by_epoch / float(n_exps_by_epoch[0]), color='black', lw=1) plt.ylim(0, 1)
def plot_misclasses_mean_std_for_exps_with_tube(df): test_misclasses = extract_from_results(df, lambda r: r.monitor_channels['test_misclass']) test_misclasses, exps_by_epoch = get_padded_chan_vals(test_misclasses, pad_by=np.nan) valid_misclasses = extract_from_results(df, lambda r: r.monitor_channels['valid_misclass']) valid_misclasses, exps_by_epoch = get_padded_chan_vals(valid_misclasses, pad_by=np.nan) train_misclasses = extract_from_results(df, lambda r: r.monitor_channels['train_misclass']) train_misclasses, exps_by_epoch = get_padded_chan_vals(train_misclasses, pad_by=np.nan) plot_with_tube(range(train_misclasses.shape[1]),np.nanmean(train_misclasses, axis=0), np.nanstd(train_misclasses, axis=0)) plot_with_tube(range(valid_misclasses.shape[1]),np.nanmean(valid_misclasses, axis=0), np.nanstd(valid_misclasses, axis=0), color=seaborn.color_palette()[1]) plot_with_tube(range(test_misclasses.shape[1]),np.nanmean(test_misclasses, axis=0), np.nanstd(test_misclasses, axis=0), color=seaborn.color_palette()[2]) plt.plot(exps_by_epoch / float(exps_by_epoch[0]), color='black', linestyle='dashed')