示例#1
0
def test_peak_finding():

    vertices, faces=get_sphere('symmetric724')
    odf=np.zeros(len(vertices))
    odf = np.abs(vertices.sum(-1))

    odf[1] = 10.
    odf[505] = 505.
    odf[143] = 143.

    peaks, inds=peak_finding(odf.astype('f8'), faces.astype('uint16'))
    print peaks, inds
    edges = unique_edges(faces)
    peaks, inds = local_maxima(odf, edges)
    print peaks, inds
    vertices_half, edges_half, faces_half = reduce_antipodal(vertices, faces)
    n = len(vertices_half)
    peaks, inds = local_maxima(odf[:n], edges_half)
    print peaks, inds
    mevals=np.array(([0.0015,0.0003,0.0003],
                    [0.0015,0.0003,0.0003]))
    e0=np.array([1,0,0.])
    e1=np.array([0.,1,0])
    mevecs=[all_tensor_evecs(e0),all_tensor_evecs(e1)]
    odf = multi_tensor_odf(vertices, [0.5,0.5], mevals, mevecs)
    peaks, inds=peak_finding(odf, faces)
    print peaks, inds
    peaks2, inds2 = local_maxima(odf[:n], edges_half)
    print peaks2, inds2
    assert_equal(len(peaks), 2)
    assert_equal(len(peaks2), 2)
示例#2
0
def standard_dsi_algorithm(S,bvals,bvecs):
    #volume size
    sz=16
    #shifting
    origin=8
    #hanning width
    filter_width=32.
    #number of signal sampling points
    n=515

    #odf radius
    #radius=np.arange(2.1,30,.1)
    radius=np.arange(2.1,6,.2)
    #radius=np.arange(.1,6,.1)   
    
    bv=bvals
    bmin=np.sort(bv)[1]
    bv=np.sqrt(bv/bmin)
    qtable=np.vstack((bv,bv,bv)).T*bvecs
    qtable=np.floor(qtable+.5)
   
    #calculate radius for the hanning filter
    r = np.sqrt(qtable[:,0]**2+qtable[:,1]**2+qtable[:,2]**2)
        
    #setting hanning filter width and hanning
    hanning=.5*np.cos(2*np.pi*r/filter_width)
    
    #center and index in q space volume
    q=qtable+origin
    q=q.astype('i8')
    
    #apply the hanning filter
    values=S*hanning
    
    #create the signal volume    
    Sq=np.zeros((sz,sz,sz))
    for i in range(n):        
        Sq[q[i][0],q[i][1],q[i][2]]+=values[i]
    
    #apply fourier transform
    Pr=fftshift(np.abs(np.real(fftn(fftshift(Sq),(sz,sz,sz)))))

    #vertices, edges, faces  = create_unit_sphere(5)    
    #vertices, faces = sphere_vf_from('symmetric362')           
    vertices, faces = sphere_vf_from('symmetric724')           
    odf = np.zeros(len(vertices))
        
    for m in range(len(vertices)):
        
        xi=origin+radius*vertices[m,0]
        yi=origin+radius*vertices[m,1]
        zi=origin+radius*vertices[m,2]
        
        PrI=map_coordinates(Pr,np.vstack((xi,yi,zi)),order=1)
        for i in range(len(radius)):
            odf[m]=odf[m]+PrI[i]*radius[i]**2
   
    peaks,inds=peak_finding(odf.astype('f8'),faces.astype('uint16'))

    return Pr,odf,peaks
示例#3
0
def standard_dsi_algorithm(S, bvals, bvecs):
    #volume size
    sz = 16
    #shifting
    origin = 8
    #hanning width
    filter_width = 32.
    #number of signal sampling points
    n = 515

    #odf radius
    #radius=np.arange(2.1,30,.1)
    radius = np.arange(2.1, 6, .2)
    #radius=np.arange(.1,6,.1)

    bv = bvals
    bmin = np.sort(bv)[1]
    bv = np.sqrt(bv / bmin)
    qtable = np.vstack((bv, bv, bv)).T * bvecs
    qtable = np.floor(qtable + .5)

    #calculate radius for the hanning filter
    r = np.sqrt(qtable[:, 0]**2 + qtable[:, 1]**2 + qtable[:, 2]**2)

    #setting hanning filter width and hanning
    hanning = .5 * np.cos(2 * np.pi * r / filter_width)

    #center and index in q space volume
    q = qtable + origin
    q = q.astype('i8')

    #apply the hanning filter
    values = S * hanning

    #create the signal volume
    Sq = np.zeros((sz, sz, sz))
    for i in range(n):
        Sq[q[i][0], q[i][1], q[i][2]] += values[i]

    #apply fourier transform
    Pr = fftshift(np.abs(np.real(fftn(fftshift(Sq), (sz, sz, sz)))))

    #vertices, edges, faces  = create_unit_sphere(5)
    #vertices, faces = sphere_vf_from('symmetric362')
    vertices, faces = sphere_vf_from('symmetric724')
    odf = np.zeros(len(vertices))

    for m in range(len(vertices)):

        xi = origin + radius * vertices[m, 0]
        yi = origin + radius * vertices[m, 1]
        zi = origin + radius * vertices[m, 2]

        PrI = map_coordinates(Pr, np.vstack((xi, yi, zi)), order=1)
        for i in range(len(radius)):
            odf[m] = odf[m] + PrI[i] * radius[i]**2

    peaks, inds = peak_finding(odf.astype('f8'), faces.astype('uint16'))

    return Pr, odf, peaks
示例#4
0
def revised_peak_no(odf,odf_faces,peak_thr):
    peaks,inds=peak_finding(odf,odf_faces)
    ibigp=np.where(peaks>peak_thr*peaks[0])[0]
    l=len(ibigp)                
    if l>3:
        l=3               
    if l==0:
        return np.sum(peaks[l]/np.float(peaks[0])>0)                         
    if l>0:                    
        return np.sum(peaks[:l]/np.float(peaks[0])>0)
示例#5
0
def test_performance():
    # test this implementation against Frank Yeh implementation
    vertices, faces = SPHERE_DATA
    n_vertices = vertices.shape[0]
    vert_inds = sym_hemisphere(vertices)
    adj = vertinds_to_neighbors(vert_inds, faces)
    np.random.seed(42)
    vert_vals = np.random.uniform(size=(n_vertices, ))
    maxinds = argmax_from_adj(vert_vals, vert_inds, adj)
    maxes, pfmaxinds = dcr.peak_finding(vert_vals, faces)
    assert_array_equal(maxinds, pfmaxinds[::-1])
示例#6
0
def test_performance():
    # test this implementation against Frank Yeh implementation
    vertices, faces = SPHERE_DATA
    n_vertices = vertices.shape[0]
    vert_inds = sym_hemisphere(vertices)
    adj = vertinds_to_neighbors(vert_inds, faces)
    np.random.seed(42)
    vert_vals = np.random.uniform(size=(n_vertices,))
    maxinds = argmax_from_adj(vert_vals, vert_inds, adj)
    maxes, pfmaxinds = dcr.peak_finding(vert_vals, faces)
    assert_array_equal(maxinds, pfmaxinds[::-1])
示例#7
0
 def simple_peaks(ODF,faces,thr):
     x,g=ODF.shape
     PK=np.zeros((x,5))
     IN=np.zeros((x,5))
     for (i,odf) in enumerate(ODF):
         peaks,inds=peak_finding(odf,faces)
         ibigp=np.where(peaks>thr*peaks[0])[0]
         l=len(ibigp)
         if l>3:
             l=3
         PK[i,:l]=peaks[:l]
         IN[i,:l]=inds[:l]
     return PK,IN
示例#8
0
def test_dandelion():
    
    fimg,fbvals,fbvecs=get_data('small_64D')    
    bvals=np.load(fbvals)
    gradients=np.load(fbvecs)
    data=nib.load(fimg).get_data()    
    
    print(bvals.shape, gradients.shape, data.shape)    
    sd=SphericalDandelion(data,bvals,gradients)    
    sdf=sd.spherical_diffusivity(data[5,5,5])    
    print(sdf.shape)
    gq=GeneralizedQSampling(data,bvals,gradients)
    sodf=gq.odf(data[5,5,5])     
        
    eds=np.load(get_sphere('symmetric362'))
    vertices=eds['vertices']
    faces=eds['faces']    
    print(faces.shape)    
    peaks,inds=peak_finding(np.squeeze(sdf),faces)
    print(peaks, inds)    
    peaks2,inds2=peak_finding(np.squeeze(sodf),faces)
    print(peaks2, inds2)
        
    '''
示例#9
0
def extended_peak_filtering(odfs,odf_faces,thr=0.3):
        new_peaks=[]        
        for (i,odf) in enumerate(odfs):
            peaks,inds=peak_finding(odf,odf_faces)
            
            ismallp=np.where(peaks/peaks[0]<thr)
            if len(ismallp[0])>0:
                l=ismallp[0][0]
            else:
                l=len(peaks)
       
            print '#',i,peaknos[i]
            if l==0:
                print peaks[0]/peaks[0]
            else:
                print peaks[:l]/peaks[0]
示例#10
0
def simple_peaks(ODF,faces,thr,low):
    x,y,z,g=ODF.shape
    S=ODF.reshape(x*y*z,g)
    f,g=S.shape
    PK=np.zeros((f,5))
    IN=np.zeros((f,5))
    for (i,odf) in enumerate(S):
        if odf.max()>low:
            peaks,inds=peak_finding(odf,faces)            
            ibigp=np.where(peaks>thr*peaks[0])[0]
            l=len(ibigp)
            if l>3:
                l=3
            PK[i,:l]=peaks[:l]/np.float(peaks[0])
            IN[i,:l]=inds[:l]
    PK=PK.reshape(x,y,z,5)
    IN=IN.reshape(x,y,z,5)
    return PK,IN
示例#11
0
def super_reduced_peaks(odfs,odf_vertices,odf_faces,angle):
        
        final=[]
        for (i,odf) in enumerate(odfs):
            pks,ins=peak_finding(odf,odf_faces)
            peaks=pks[:3]
            inds=ins[:3]
            print '#', peaks
            del_peaks=[]
            for (j,ind) in enumerate(inds):
                pts=radial_points_on_sphere(ind,odf_vertices,angle)
                for p in pts:
                    if peaks[j]<odf[p]:
                        del_peaks.append(j)
            
            peaks=np.delete(peaks,del_peaks)
            print '@',peaks
            print ' ', len(peaks)
            final.append(len(peaks))
        print(final)    
示例#12
0
    def extended_peak_filtering(odfs, odf_faces):
        new_peaks = []
        for (i, odf) in enumerate(odfs):
            peaks, inds = peak_finding(odf, odf_faces)
            dpeaks = np.abs(np.diff(peaks[:3]))
            print "#", i, peaknos[i]
            print peaks[:3]
            print dpeaks
            print odf.min()
            print peaks[:3] / peaks[0]
            print peaks[1:3] / peaks[1]
            print

            """
            ismallp=np.where(dpeaks<2)
            if len(ismallp[0])>0:
                l=ismallp[0][0]
            else:
                l=len(peaks)
            """
            """
示例#13
0
    def fit(self):
        #memory allocations for 4D volumes
        if len(self.datashape) == 4:
            x, y, z, g = self.datashape
            S = self.data.reshape(x * y * z, g)
            GFA = np.zeros((x * y * z))
            IN = np.zeros((x * y * z, 5))
            NFA = np.zeros((x * y * z, 5))
            QA = np.zeros((x * y * z, 5))
            PK = np.zeros((x * y * z, 5))
            if self.save_odfs:
                ODF = np.zeros((x * y * z, self.odfn))
            if self.mask != None:
                if self.mask.shape[:3] == self.datashape[:3]:
                    msk = self.mask.ravel().copy()
            if self.mask == None:
                self.mask = np.ones(self.datashape[:3])
                msk = self.mask.ravel().copy()
        #memory allocations for a series of voxels
        if len(self.datashape) == 2:
            x, g = self.datashape
            S = self.data
            GFA = np.zeros(x)
            IN = np.zeros((x, 5))
            NFA = np.zeros((x, 5))
            QA = np.zeros((x, 5))
            PK = np.zeros((x, 5))
            if self.save_odfs:
                ODF = np.zeros((x, self.odfn))
            if self.mask != None:
                if mask.shape[0] == self.datashape[0]:
                    msk = self.mask.ravel().copy()
            if self.mask == None:
                self.mask = np.ones(self.datashape[:1])
                msk = self.mask.ravel().copy()
        #find the global normalization parameter
        #useful for quantitative anisotropy
        glob_norm_param = 0.
        #loop over all voxels
        for (i, s) in enumerate(S):
            if msk[i] > 0:
                #calculate the diffusion propagator or spectrum
                Pr = self.pdf(s)
                #calculate the orientation distribution function
                odf = self.odf(Pr)
                if self.save_odfs:
                    ODF[i] = odf
                #normalization for QA
                glob_norm_param = max(np.max(odf), glob_norm_param)
                #calculate the generalized fractional anisotropy
                GFA[i] = self.std_over_rms(odf)
                #find peaks
                peaks, inds = peak_finding(odf, self.odf_faces)
                #remove small peaks
                l = self.reduce_peaks(peaks, odf.min())
                #print '#',l,peaks[:l]
                if l == 0:
                    IN[i][l] = inds[l]
                    NFA[i][l] = GFA[i]
                    QA[i][l] = peaks[l] - np.min(odf)
                    PK[i][l] = peaks[l]
                if l > 0 and l < 5:
                    IN[i][:l] = inds[:l]
                    NFA[i][:l] = GFA[i]
                    QA[i][:l] = peaks[:l] - np.min(odf)
                    PK[i][:l] = peaks[:l]
                """
                if len(peaks)>0:
                    ismallp=np.where(peaks/peaks.min()<self.peak_thr)                                                                        
                    l=ismallp[0][0]
                    
                    if l<5 and l>0:                                        
                        IN[i][:l] = inds[:l]
                        NFA[i][:l] = GFA[i]
                        QA[i][:l] = peaks[:l]-np.min(odf)
                    if l==0:
                        IN[i][l] = inds[l]
                        NFA[i][l] = GFA[i]
                        QA[i][l] = peaks[l]-np.min(odf)
                """

        if len(self.datashape) == 4:
            self.GFA = GFA.reshape(x, y, z)
            self.NFA = NFA.reshape(x, y, z, 5)
            self.QA = QA.reshape(x, y, z, 5) / glob_norm_param
            self.IN = IN.reshape(x, y, z, 5)
            self.PK = PK.reshape(x, y, z, 5)
            if self.save_odfs:
                self.ODF = ODF.reshape(x, y, z, ODF.shape[-1])
            self.QA_norm = glob_norm_param
        if len(self.datashape) == 2:
            self.GFA = GFA
            self.NFA = NFA
            self.QA = QA
            self.IN = IN
            self.PK = PK
            if self.save_odfs:
                self.ODF = ODF
            self.QA_norm = None
示例#14
0
def test_gqiodf():

    #read bvals,gradients and data
    fimg,fbvals,fbvecs=get_data('small_64D')    
    bvals=np.load(fbvals)
    gradients=np.load(fbvecs)
    data=nib.load(fimg).get_data()

    #print(bvals.shape)
    #print(gradients.shape)
    #print(data.shape)
    t1=time.clock()
    
    gqs = gq.GeneralizedQSampling(data,bvals,gradients)
    ten = dt.Tensor(data,bvals,gradients,thresh=50)
    
    fa=ten.fa()

    x,y,z,a,b=ten.evecs.shape
    evecs=ten.evecs
    xyz=x*y*z
    evecs = evecs.reshape(xyz,3,3)
    #vs = np.sign(evecs[:,2,:])
    #print vs.shape
    #print np.hstack((vs,vs,vs)).reshape(1000,3,3).shape
    #evecs = np.hstack((vs,vs,vs)).reshape(1000,3,3)
    #print evecs.shape
    evals=ten.evals
    evals = evals.reshape(xyz,3)
    #print evals.shape

    

    t2=time.clock()
    #print('GQS in %d' %(t2-t1))
        
    eds=np.load(get_sphere('symmetric362'))
    
    odf_vertices=eds['vertices']
    odf_faces=eds['faces']

    #Yeh et.al, IEEE TMI, 2010
    #calculate the odf using GQI

    scaling=np.sqrt(bvals*0.01506) # 0.01506 = 6*D where D is the free
    #water diffusion coefficient 
    #l_values sqrt(6 D tau) D free water
    #diffusion coefficiet and tau included in the b-value

    tmp=np.tile(scaling,(3,1))
    b_vector=gradients.T*tmp
    Lambda = 1.2 # smoothing parameter - diffusion sampling length
    
    q2odf_params=np.sinc(np.dot(b_vector.T, odf_vertices.T) * Lambda/np.pi)
    #implements equation no. 9 from Yeh et.al.

    S=data.copy()

    x,y,z,g=S.shape
    S=S.reshape(x*y*z,g)
    QA = np.zeros((x*y*z,5))
    IN = np.zeros((x*y*z,5))

    fwd = 0
    
    #Calculate Quantitative Anisotropy and find the peaks and the indices
    #for every voxel

    summary = {}

    summary['vertices'] = odf_vertices
    v = odf_vertices.shape[0]
    summary['faces'] = odf_faces
    f = odf_faces.shape[0]

    '''
    If e = number_of_edges
    the Euler formula says f-e+v = 2 for a mesh on a sphere
    Here, assuming we have a healthy triangulation
    every face is a triangle, all 3 of whose edges should belong to
    exactly two faces = so 2*e = 3*f
    to avoid division we test whether 2*f - 3*f + 2*v == 4
    or equivalently 2*v - f == 4
    '''

    assert_equal(2*v-f, 4,'Euler test fails')
    
    for (i,s) in enumerate(S):
        #print 'Volume %d' % i
        istr = str(i)
        summary[istr] = {}
        
        odf = Q2odf(s,q2odf_params)
        peaks,inds=rp.peak_finding(odf,odf_faces)
        fwd=max(np.max(odf),fwd)
        peaks = peaks - np.min(odf)
        l=min(len(peaks),5)
        QA[i][:l] = peaks[:l]
        IN[i][:l] = inds[:l]

        summary[istr]['odf'] = odf
        summary[istr]['peaks'] = peaks
        summary[istr]['inds'] = inds
        summary[istr]['evecs'] = evecs[i,:,:]
        summary[istr]['evals'] = evals[i,:]
   
    QA/=fwd
    QA=QA.reshape(x,y,z,5)    
    IN=IN.reshape(x,y,z,5)

    peaks_1 = [i for i in range(1000) if len(summary[str(i)]['inds'])==1]
    peaks_2 = [i for i in range(1000) if len(summary[str(i)]['inds'])==2]
    peaks_3 = [i for i in range(1000) if len(summary[str(i)]['inds'])==3]

    # correct numbers of voxels with respectively 1,2,3 ODF/QA peaks
    assert_array_equal((len(peaks_1),len(peaks_2),len(peaks_3)), (790,196,14),
                             'error in numbers of QA/ODF peaks')

    # correct indices of odf directions for voxels 0,10,44
    # with respectively 1,2,3 ODF/QA peaks
    assert_array_equal(summary['0']['inds'],[116],
                             'wrong peak indices for voxel 0')
    assert_array_equal(summary['10']['inds'],[105, 78],
                             'wrong peak indices for voxel 10')
    assert_array_equal(summary['44']['inds'],[95, 84, 108],
                             'wrong peak indices for voxel 44')

    assert_equal(np.argmax(summary['0']['odf']), 116)
    assert_equal(np.argmax(summary['10']['odf']), 105)
示例#15
0
def test():

    # img=nib.load('/home/eg309/Data/project01_dsi/connectome_0001/tp1/RAWDATA/OUT/mr000001.nii.gz')
    btable = np.loadtxt(get_data("dsi515btable"))
    # volume size
    sz = 16
    # shifting
    origin = 8
    # hanning width
    filter_width = 32.0
    # number of signal sampling points
    n = 515
    # odf radius
    radius = np.arange(2.1, 6, 0.2)
    # create q-table
    bv = btable[:, 0]
    bmin = np.sort(bv)[1]
    bv = np.sqrt(bv / bmin)
    qtable = np.vstack((bv, bv, bv)).T * btable[:, 1:]
    qtable = np.floor(qtable + 0.5)
    # copy bvals and bvecs
    bvals = btable[:, 0]
    bvecs = btable[:, 1:]
    # S=img.get_data()[38,50,20]#[96/2,96/2,20]
    S, stics = SticksAndBall(
        bvals, bvecs, d=0.0015, S0=100, angles=[(0, 0), (60, 0), (90, 90)], fractions=[0, 0, 0], snr=None
    )

    S2 = S.copy()
    S2 = S2.reshape(1, len(S))
    dn = DiffusionNabla(S2, bvals, bvecs, auto=False)
    pR = dn.equators
    odf = dn.odf(S)
    # Xs=dn.precompute_interp_coords()
    peaks, inds = peak_finding(odf.astype("f8"), dn.odf_faces.astype("uint16"))
    print peaks
    print peaks / peaks.min()
    # print dn.PK
    dn.fit()
    print dn.PK

    # """
    ren = fvtk.ren()
    colors = fvtk.colors(odf, "jet")
    fvtk.add(ren, fvtk.point(dn.odf_vertices, colors, point_radius=0.05, theta=8, phi=8))
    fvtk.show(ren)
    # """

    stop

    # ds=DiffusionSpectrum(S2,bvals,bvecs)
    # tpr=ds.pdf(S)
    # todf=ds.odf(tpr)

    """
    #show projected signal
    Bvecs=np.concatenate([bvecs[1:],-bvecs[1:]])
    X0=np.dot(np.diag(np.concatenate([S[1:],S[1:]])),Bvecs)    
    ren=fvtk.ren()
    fvtk.add(ren,fvtk.point(X0,fvtk.yellow,1,2,16,16))    
    fvtk.show(ren)
    """
    # qtable=5*matrix[:,1:]

    # calculate radius for the hanning filter
    r = np.sqrt(qtable[:, 0] ** 2 + qtable[:, 1] ** 2 + qtable[:, 2] ** 2)

    # setting hanning filter width and hanning
    hanning = 0.5 * np.cos(2 * np.pi * r / filter_width)

    # center and index in q space volume
    q = qtable + origin
    q = q.astype("i8")

    # apply the hanning filter
    values = S * hanning

    """
    #plot q-table
    ren=fvtk.ren()
    colors=fvtk.colors(values,'jet')
    fvtk.add(ren,fvtk.point(q,colors,1,0.1,6,6))
    fvtk.show(ren)
    """

    # create the signal volume
    Sq = np.zeros((sz, sz, sz))
    for i in range(n):
        Sq[q[i][0], q[i][1], q[i][2]] += values[i]

    # apply fourier transform
    Pr = fftshift(np.abs(np.real(fftn(fftshift(Sq), (sz, sz, sz)))))

    # """
    ren = fvtk.ren()
    vol = fvtk.volume(Pr)
    fvtk.add(ren, vol)
    fvtk.show(ren)
    # """

    """
    from enthought.mayavi import mlab
    mlab.pipeline.volume(mlab.pipeline.scalar_field(Sq))
    mlab.show()
    """

    # vertices, edges, faces  = create_unit_sphere(5)
    vertices, faces = sphere_vf_from("symmetric362")
    odf = np.zeros(len(vertices))

    for m in range(len(vertices)):

        xi = origin + radius * vertices[m, 0]
        yi = origin + radius * vertices[m, 1]
        zi = origin + radius * vertices[m, 2]
        PrI = map_coordinates(Pr, np.vstack((xi, yi, zi)), order=1)
        for i in range(len(radius)):
            odf[m] = odf[m] + PrI[i] * radius[i] ** 2

    """
    ren=fvtk.ren()
    colors=fvtk.colors(odf,'jet')
    fvtk.add(ren,fvtk.point(vertices,colors,point_radius=.05,theta=8,phi=8))
    fvtk.show(ren)
    """

    """
    #Pr[Pr<500]=0    
    ren=fvtk.ren()
    #ren.SetBackground(1,1,1)
    fvtk.add(ren,fvtk.volume(Pr))
    fvtk.show(ren)
    """

    peaks, inds = peak_finding(odf.astype("f8"), faces.astype("uint16"))

    Eq = np.zeros((sz, sz, sz))
    for i in range(n):
        Eq[q[i][0], q[i][1], q[i][2]] += S[i] / S[0]

    LEq = laplace(Eq)

    # Pr[Pr<500]=0
    ren = fvtk.ren()
    # ren.SetBackground(1,1,1)
    fvtk.add(ren, fvtk.volume(Eq))
    fvtk.show(ren)

    phis = np.linspace(0, 2 * np.pi, 100)

    planars = []
    for phi in phis:
        planars.append(sphere2cart(1, np.pi / 2, phi))
    planars = np.array(planars)

    planarsR = []
    for v in vertices:
        R = vec2vec_rotmat(np.array([0, 0, 1]), v)
        planarsR.append(np.dot(R, planars.T).T)

    """
    ren=fvtk.ren()
    fvtk.add(ren,fvtk.point(planarsR[0],fvtk.green,1,0.1,8,8))
    fvtk.add(ren,fvtk.point(2*planarsR[1],fvtk.red,1,0.1,8,8))
    fvtk.show(ren)
    """

    azimsums = []
    for disk in planarsR:
        diskshift = 4 * disk + origin
        # Sq0=map_coordinates(Sq,diskshift.T,order=1)
        # azimsums.append(np.sum(Sq0))
        # Eq0=map_coordinates(Eq,diskshift.T,order=1)
        # azimsums.append(np.sum(Eq0))
        LEq0 = map_coordinates(LEq, diskshift.T, order=1)
        azimsums.append(np.sum(LEq0))

    azimsums = np.array(azimsums)

    # """
    ren = fvtk.ren()
    colors = fvtk.colors(azimsums, "jet")
    fvtk.add(ren, fvtk.point(vertices, colors, point_radius=0.05, theta=8, phi=8))
    fvtk.show(ren)
    # """

    # for p in planarsR[0]:
    """
示例#16
0
    def overlaps_faces(arrays):
        n = len(arrays)
        m = set([])
        for i in range(n - 1):
            for j in range(i + 1, n):
                m = set.union(m, set.intersection(set(faces[arrays[i]].ravel()), set(faces[arrays[j]].ravel())))
        return m

    import pickle

    f = open("dn.dump", "r")
    print "picked dn reloading ...\n"
    [faces, vertices, odf] = pickle.load(f)
    print "picked dn reloaded ...\n"
    print "old peak hunting ...\n"
    peaks, peakinds = peak_finding(odf, faces)
    print "new peak hunting ...\n"
    newpeaks = dominant(faces, odf)
    # oldpeaks = [305, 317, 171, 170, 172, 169,  40,  45,   2]
    newpeaks = [2, 40, 45, 169, 170, 171, 172, 305, 317, 323, 361, 366, 490, 491, 492, 493, 626, 638]
    # newpeaks = [2, 40, 45, 169, 170, 171, 172, 305][::-1]

    print "starting green paint job ...\n"

    # print 'old peaks', peakinds
    # print 'half the (old) peaks:', oldpeaks, '\n'
    # print 'half the peaks:', newpeaks, '\n'
    print "all the new peaks:", newpeaks, "\n"

    white = 0.0
    red = 1.0
示例#17
0
    def fit(self):
        #memory allocations for 4D volumes 
        if len(self.datashape)==4:
            x,y,z,g=self.datashape        
            S=self.data.reshape(x*y*z,g)
            GFA=np.zeros((x*y*z))
            IN=np.zeros((x*y*z,5))
            NFA=np.zeros((x*y*z,5))
            QA=np.zeros((x*y*z,5))
            PK=np.zeros((x*y*z,5))
            if self.save_odfs:
                ODF=np.zeros((x*y*z,self.odfn))
                #BODF=np.zeros((x*y*z,self.odfn))        
            if self.mask != None:
                if self.mask.shape[:3]==self.datashape[:3]:
                    msk=self.mask.ravel().copy()
            if self.mask == None:
                self.mask=np.ones(self.datashape[:3])
                msk=self.mask.ravel().copy()
        #memory allocations for a series of voxels       
        if len(self.datashape)==2:
            x,g= self.datashape
            S=self.data
            GFA=np.zeros(x)
            IN=np.zeros((x,5))
            NFA=np.zeros((x,5))
            QA=np.zeros((x,5))
            PK=np.zeros((x,5))
            if self.save_odfs:
                ODF=np.zeros((x,self.odfn))
                #BODF=np.zeros((x,self.odfn))                
            if self.mask != None:
                if self.mask.shape[0]==self.datashape[0]:
                    msk=self.mask.ravel().copy()
            if self.mask == None:
                self.mask=np.ones(self.datashape[:1])
                msk=self.mask.ravel().copy()
        #find the global normalization parameter 
        #useful for quantitative anisotropy
        glob_norm_param = 0.
        #loop over all voxels
        for (i,s) in enumerate(S):
            if msk[i]>0:
                #calculate the orientation distribution function        
                #odf=self.odf(s)
                odf=self.odf(s)                
                odf=self.angular_weighting(odf)                                
                if self.save_odfs:
                    ODF[i]=odf                
                #normalization for QA
                glob_norm_param=max(np.max(odf),glob_norm_param)
                #calculate the generalized fractional anisotropy
                GFA[i]=self.std_over_rms(odf)                
                odf_max=odf.max()
                #if not in isotropic case
                #if odf.min()<self.iso_thr*odf_max:
                if np.std(odf)/np.mean(odf) > self.iso_thr:                                                                                                        
                    #find peaks
                    peaks,inds=peak_finding(odf,self.odf_faces)                
                    ismallp=np.where(peaks/peaks[0]<self.peak_thr)      
                    if len(ismallp[0])>0:
                        l=ismallp[0][0]
                        #do not allow more that three peaks
                        if l>3:
                            l=3
                    else:
                        l=len(peaks)
                    if l==0:
                        IN[i][l] = inds[l]
                        NFA[i][l] = GFA[i]
                        QA[i][l] = peaks[l]-np.min(odf)
                        PK[i][l] = peaks[l]                         
                    if l>0 and l<=3:                    
                        IN[i][:l] = inds[:l]
                        NFA[i][:l] = GFA[i]
                        QA[i][:l] = peaks[:l]-np.min(odf)
                        PK[i][:l] = peaks[:l]                    

        if len(self.datashape) == 4:
            self.GFA=GFA.reshape(x,y,z)
            self.NFA=NFA.reshape(x,y,z,5)
            self.QA=QA.reshape(x,y,z,5)/glob_norm_param
            self.PK=PK.reshape(x,y,z,5)
            self.IN=IN.reshape(x,y,z,5)
            if self.save_odfs:
                self.ODF=ODF.reshape(x,y,z,ODF.shape[-1])                            
            self.QA_norm=glob_norm_param            
        if len(self.datashape) == 2:
            self.GFA=GFA
            self.NFA=NFA
            self.QA=QA
            self.PK=PK
            self.IN=IN
            if self.save_odfs:
                self.ODF=ODF
                #self.BODF=BODF
            self.QA_norm=None
示例#18
0
文件: gqi.py 项目: cournape/dipy
    def __init__(self, data, bvals, gradients,
                 Lambda=1.2, odf_sphere='symmetric362', mask=None):
        """ Generates a model-free description for every voxel that can
        be used from simple to very complicated configurations like
        quintuple crossings if your datasets support them.

        You can use this class for every kind of DWI image but it will
        perform much better when you have a balanced sampling scheme.

        Implements equation [9] from Generalized Q-Sampling as
        described in Fang-Cheng Yeh, Van J. Wedeen, Wen-Yih Isaac Tseng.
        Generalized Q-Sampling Imaging. IEEE TMI, 2010.

        Parameters
        -----------
        data: array, shape(X,Y,Z,D)
        bvals: array, shape (N,)
        gradients: array, shape (N,3) also known as bvecs
        Lambda: float, optional
            smoothing parameter - diffusion sampling length
        odf_sphere : None or str or tuple, optional
            input that will result in vertex, face arrays for a sphere.
        mask : None or ndarray, optional

        Key Properties
        ---------------
        QA : array, shape(X,Y,Z,5), quantitative anisotropy
        IN : array, shape(X,Y,Z,5), indices of QA, qa unit directions
        fwd : float, normalization parameter

        Notes
        -------
        In order to reconstruct the spin distribution function  a nice symmetric
        evenly distributed sphere is provided using 362 points. This is usually
        sufficient for most of the datasets.

        See also
        --------
        dipy.tracking.propagation.EuDX, dipy.reconst.dti.Tensor,
        dipy.data.__init__.get_sphere
        """
        odf_vertices, odf_faces = sphere_vf_from(odf_sphere)
        self.odf_vertices=odf_vertices

        # 0.01506 = 6*D where D is the free water diffusion coefficient 
        # l_values sqrt(6 D tau) D free water diffusion coefficient and
        # tau included in the b-value
        scaling = np.sqrt(bvals*0.01506)
        tmp=np.tile(scaling, (3,1))

        #the b vectors might have nan values where they correspond to b
        #value equals with 0
        gradients[np.isnan(gradients)]= 0.
        gradsT = gradients.T
        b_vector=gradsT*tmp # element-wise also known as the Hadamard product

        #q2odf_params=np.sinc(np.dot(b_vector.T, odf_vertices.T) * Lambda/np.pi)              

        q2odf_params=np.real(np.sinc(np.dot(b_vector.T, odf_vertices.T) * Lambda/np.pi))
        
        #q2odf_params[np.isnan(q2odf_params)]= 1.

        #define total mask 
        #tot_mask = (mask > 0) & (data[...,0] > thresh)
        
        S=data

        datashape=S.shape #initial shape
        msk=None #tmp mask

        if len(datashape)==4:

            x,y,z,g=S.shape        
            S=S.reshape(x*y*z,g)
            QA = np.zeros((x*y*z,5))
            IN = np.zeros((x*y*z,5))

            if mask != None:
                if mask.shape[:3]==datashape[:3]:
                    msk=mask.ravel().copy()
                    #print 'msk.shape',msk.shape

        if len(datashape)==2:

            x,g= S.shape
            QA = np.zeros((x,5))
            IN = np.zeros((x,5))  
            
        glob_norm_param = 0

        self.q2odf_params=q2odf_params

        #Calculate Quantitative Anisotropy and 
        #find the peaks and the indices
        #for every voxel
        
        if mask !=None:
            for (i,s) in enumerate(S):                            
                if msk[i]>0:
                    #Q to ODF
                    odf=np.dot(s,q2odf_params)            
                    peaks,inds=rp.peak_finding(odf,odf_faces)            
                    glob_norm_param=max(np.max(odf),glob_norm_param)
                    #remove the isotropic part
                    peaks = peaks - np.min(odf)
                    l=min(len(peaks),5)
                    QA[i][:l] = peaks[:l]
                    IN[i][:l] = inds[:l]

        if mask==None:
            for (i,s) in enumerate(S):                            
                #Q to ODF
                odf=np.dot(s,q2odf_params)            
                peaks,inds=rp.peak_finding(odf,odf_faces)            
                glob_norm_param=max(np.max(odf),glob_norm_param)
                #remove the isotropic part
                peaks = peaks - np.min(odf)
                l=min(len(peaks),5)
                QA[i][:l] = peaks[:l]
                IN[i][:l] = inds[:l]

        #normalize
        QA/=glob_norm_param
       
        if len(datashape) == 4:
            self.QA=QA.reshape(x,y,z,5)    
            self.IN=IN.reshape(x,y,z,5)
            
        if len(datashape) == 2:
            self.QA=QA
            self.IN=IN
            
        self.glob_norm_param = glob_norm_param
示例#19
0
文件: gqi.py 项目: jgors/dipy
    def fit(self):
        """ process all voxels
        """
        S = self.data
        datashape = S.shape  #initial shape
        #memory allocations for 4D volumes
        if len(datashape) == 4:
            x, y, z, g = S.shape
            S = S.reshape(x * y * z, g)
            QA = np.zeros((x * y * z, 5))
            IN = np.zeros((x * y * z, 5))
            if self.save_odfs:
                ODF = np.zeros((x * y * z, self.odfn))
            if self.mask != None:
                if self.mask.shape[:3] == datashape[:3]:
                    msk = self.mask.ravel().copy()
            if self.mask == None:
                self.mask = np.ones(datashape[:3])
                msk = self.mask.ravel().copy()
        #memory allocations for a series of voxels
        if len(datashape) == 2:
            x, g = S.shape
            QA = np.zeros((x, 5))
            IN = np.zeros((x, 5))
            if self.save_odfs:
                ODF = np.zeros((x, self.odfn))
            if self.mask != None:
                if self.mask.shape[0] == datashape[0]:
                    msk = self.mask.ravel().copy()
            if self.mask == None:
                self.mask = np.ones(datashape[:1])
                msk = self.mask.ravel().copy()
        glob_norm_param = 0
        #Calculate Quantitative Anisotropy and
        #find the peaks and the indices
        #for every voxel
        for (i, s) in enumerate(S):
            if msk[i] > 0:
                #Q to ODF
                odf = np.dot(s, self.q2odf_params)
                min_odf = np.min(odf)
                if self.save_odfs:
                    ODF[i] = odf  #-min_odf
                peaks, inds = rp.peak_finding(odf, self.odf_faces)
                glob_norm_param = max(np.max(odf), glob_norm_param)
                #print peaks,min_odf
                #remove the isotropic part
                l = self.reduce_peaks(peaks, min_odf)
                if l == 0:
                    QA[i][0] = peaks[0] - min_odf
                    IN[i][0] = inds[0]
                if l > 0 and l < 5:
                    QA[i][:l] = peaks[:l] - min_odf
                    IN[i][:l] = inds[:l]

        #normalize QA
        QA /= glob_norm_param
        if len(datashape) == 4:
            self.QA = QA.reshape(x, y, z, 5)
            self.IN = IN.reshape(x, y, z, 5)
            if self.save_odfs:
                self.ODF = ODF.reshape(x, y, z, ODF.shape[-1])
            self.QA_norm = glob_norm_param
        if len(datashape) == 2:
            self.QA = QA
            self.IN = IN
            if self.save_odfs:
                self.ODF = ODF
            self.QA_norm = None
        self.glob_norm_param = glob_norm_param
示例#20
0
文件: gqi.py 项目: jgors/dipy
    def fit(self):
        """ process all voxels
        """    
        S=self.data
        datashape=S.shape #initial shape       
        #memory allocations for 4D volumes
        if len(datashape)==4:
            x,y,z,g=S.shape        
            S=S.reshape(x*y*z,g)
            QA = np.zeros((x*y*z,5))
            IN = np.zeros((x*y*z,5))
            if self.save_odfs:
                ODF=np.zeros((x*y*z,self.odfn))  
            if self.mask != None:
                if self.mask.shape[:3]==datashape[:3]:
                    msk=self.mask.ravel().copy()
            if self.mask == None:
                self.mask=np.ones(datashape[:3])
                msk=self.mask.ravel().copy()
        #memory allocations for a series of voxels
        if len(datashape)==2:
            x,g= S.shape
            QA = np.zeros((x,5))
            IN = np.zeros((x,5))
            if self.save_odfs:
                ODF=np.zeros((x,self.odfn))            
            if self.mask != None:
                if self.mask.shape[0]==datashape[0]:
                    msk=self.mask.ravel().copy()
            if self.mask == None:
                self.mask=np.ones(datashape[:1])
                msk=self.mask.ravel().copy()
        glob_norm_param = 0        
        #Calculate Quantitative Anisotropy and 
        #find the peaks and the indices
        #for every voxel        
        for (i,s) in enumerate(S):                            
            if msk[i]>0:
                #Q to ODF
                odf=np.dot(s,self.q2odf_params)
                min_odf=np.min(odf)
                if self.save_odfs:
                    ODF[i]=odf#-min_odf            
                peaks,inds=rp.peak_finding(odf,self.odf_faces)            
                glob_norm_param=max(np.max(odf),glob_norm_param)                
                #print peaks,min_odf
                #remove the isotropic part
                l=self.reduce_peaks(peaks,min_odf)
                if l==0:
                    QA[i][0] = peaks[0]-min_odf
                    IN[i][0] = inds[0]
                if l>0 and l<5:
                    QA[i][:l] = peaks[:l]-min_odf
                    IN[i][:l] = inds[:l]


        #normalize QA
        QA/=glob_norm_param
        if len(datashape) == 4:
            self.QA=QA.reshape(x,y,z,5)    
            self.IN=IN.reshape(x,y,z,5)  
            if self.save_odfs:
                self.ODF=ODF.reshape(x,y,z,ODF.shape[-1])
            self.QA_norm= glob_norm_param         
        if len(datashape) == 2:
            self.QA=QA
            self.IN=IN 
            if self.save_odfs:
                self.ODF=ODF
            self.QA_norm=None           
        self.glob_norm_param = glob_norm_param
示例#21
0
def test_gqi_small():

    #read bvals,gradients and data
    fimg,fbvals,fbvecs=get_data('small_64D')    
    bvals=np.load(fbvals)
    gradients=np.load(fbvecs)
    data=nib.load(fimg).get_data()

    print(bvals.shape)
    print(gradients.shape)
    print(data.shape)

    t1=time.clock()
    
    gqs = gq.GeneralizedQSampling(data,bvals,gradients)

    t2=time.clock()
    print('GQS in %d' %(t2-t1))
    eds=np.load(get_sphere('symmetric362'))   
   
    odf_vertices=eds['vertices']
    odf_faces=eds['faces']

    #Yeh et.al, IEEE TMI, 2010
    #calculate the odf using GQI

    scaling=np.sqrt(bvals*0.01506) # 0.01506 = 6*D where D is the free
    #water diffusion coefficient 
    #l_values sqrt(6 D tau) D free water
    #diffusion coefficiet and tau included in the b-value

    tmp=np.tile(scaling,(3,1))
    b_vector=gradients.T*tmp
    Lambda = 1.2 # smoothing parameter - diffusion sampling length
    
    q2odf_params=np.sinc(np.dot(b_vector.T, odf_vertices.T) * Lambda/np.pi)
    #implements equation no. 9 from Yeh et.al.
    S=data.copy()
    x,y,z,g=S.shape
    S=S.reshape(x*y*z,g)
    QA = np.zeros((x*y*z,5))
    IN = np.zeros((x*y*z,5))
    fwd = 0
    
    #Calculate Quantitative Anisotropy and find the peaks and the indices
    #for every voxel

    for (i,s) in enumerate(S):

        odf = Q2odf(s,q2odf_params)
        peaks,inds=rp.peak_finding(odf,odf_faces)
        fwd=max(np.max(odf),fwd)
        peaks = peaks - np.min(odf)
        l=min(len(peaks),5)
        QA[i][:l] = peaks[:l]
        IN[i][:l] = inds[:l]

    QA/=fwd
    QA=QA.reshape(x,y,z,5)    
    IN=IN.reshape(x,y,z,5)
    
    print('Old %d secs' %(time.clock() - t2))    
    assert_equal((gqs.QA-QA).max(),0.,'Frank QA different than dipy QA')
    assert_equal((gqs.QA.shape),QA.shape, 'Frank QA shape is different') 
示例#22
0
def test_gqiodf():

    #read bvals,gradients and data
    bvals=np.load(opj(os.path.dirname(__file__), \
                          'data','small_64D.bvals.npy'))
    gradients=np.load(opj(os.path.dirname(__file__), \
                              'data','small_64D.gradients.npy'))    
    img =ni.load(os.path.join(os.path.dirname(__file__),\
                                  'data','small_64D.nii'))
    data=img.get_data()    

    #print(bvals.shape)
    #print(gradients.shape)
    #print(data.shape)


    # t1=time.clock()
    
    gq.GeneralizedQSampling(data,bvals,gradients)
    ten = dt.Tensor(data,bvals,gradients,thresh=50)

    
    ten.fa()

    x,y,z,a,b=ten.evecs.shape
    evecs=ten.evecs
    xyz=x*y*z
    evecs = evecs.reshape(xyz,3,3)
    #vs = np.sign(evecs[:,2,:])
    #print vs.shape
    #print np.hstack((vs,vs,vs)).reshape(1000,3,3).shape
    #evecs = np.hstack((vs,vs,vs)).reshape(1000,3,3)
    #print evecs.shape
    evals=ten.evals
    evals = evals.reshape(xyz,3)
    #print evals.shape

    #print('GQS in %d' %(t2-t1))
        
    eds=np.load(opj(os.path.dirname(__file__),\
                        '..','matrices',\
                        'evenly_distributed_sphere_362.npz'))

    
    odf_vertices=eds['vertices']
    odf_faces=eds['faces']

    #Yeh et.al, IEEE TMI, 2010
    #calculate the odf using GQI

    scaling=np.sqrt(bvals*0.01506) # 0.01506 = 6*D where D is the free
    #water diffusion coefficient 
    #l_values sqrt(6 D tau) D free water
    #diffusion coefficiet and tau included in the b-value

    tmp=np.tile(scaling,(3,1))
    b_vector=gradients.T*tmp
    Lambda = 1.2 # smoothing parameter - diffusion sampling length
    
    q2odf_params=np.sinc(np.dot(b_vector.T, odf_vertices.T) * Lambda/np.pi)
    #implements equation no. 9 from Yeh et.al.

    S=data.copy()

    x,y,z,g=S.shape
    S=S.reshape(x*y*z,g)
    QA = np.zeros((x*y*z,5))
    IN = np.zeros((x*y*z,5))

    fwd = 0
    
    #Calculate Quantitative Anisotropy and find the peaks and the indices
    #for every voxel

    summary = {}

    summary['vertices'] = odf_vertices
    v = odf_vertices.shape[0]
    summary['faces'] = odf_faces
    f = odf_faces.shape[0]

    '''
    If e = number_of_edges
    the Euler formula says f-e+v = 2 for a mesh on a sphere
    Here, assuming we have a healthy triangulation
    every face is a triangle, all 3 of whose edges should belong to
    exactly two faces = so 2*e = 3*f
    to avoid division we test whether 2*f - 3*f + 2*v == 4
    or equivalently 2*v - f == 4
    '''

    assert_equal(2*v-f, 4,'Direct Euler test fails')
    assert_true(meshes.euler_characteristic_check(odf_vertices, odf_faces,chi=2),'euler_characteristic_check fails')
    
    coarse = meshes.coarseness(odf_faces)
    print 'coarseness: ', coarse

    for (i,s) in enumerate(S):

        #print 'Volume %d' % i

        istr = str(i)

        summary[istr] = {}

        odf = Q2odf(s,q2odf_params)
        peaks,inds=rp.peak_finding(odf,odf_faces)
        fwd=max(np.max(odf),fwd)
        peaks = peaks - np.min(odf)
        l=min(len(peaks),5)
        QA[i][:l] = peaks[:l]
        IN[i][:l] = inds[:l]

        summary[istr]['odf'] = odf
        summary[istr]['peaks'] = peaks
        summary[istr]['inds'] = inds
        summary[istr]['evecs'] = evecs[i,:,:]
        summary[istr]['evals'] = evals[i,:]
   
    QA /= fwd
    # QA=QA.reshape(x,y,z,5)
    # IN=IN.reshape(x,y,z,5)
    
    #print('Old %d secs' %(time.clock() - t2))
    # assert_equal((gqs.QA-QA).max(),0.,'Frank QA different than our QA')

    # assert_equal((gqs.QA.shape),QA.shape, 'Frank QA shape is different')
       
    # assert_equal((gqs.QA-QA).max(), 0.)

    #import dipy.core.track_propagation as tp

    #tp.FACT_Delta(QA,IN)

    #return tp.FACT_Delta(QA,IN,seeds_no=10000).tracks

    peaks_1 = [i for i in range(1000) if len(summary[str(i)]['inds'])==1]
    peaks_2 = [i for i in range(1000) if len(summary[str(i)]['inds'])==2]
    peaks_3 = [i for i in range(1000) if len(summary[str(i)]['inds'])==3]

    # correct numbers of voxels with respectively 1,2,3 ODF/QA peaks
    assert_array_equal((len(peaks_1),len(peaks_2),len(peaks_3)), (790,196,14),
                       'error in numbers of QA/ODF peaks')

    # correct indices of odf directions for voxels 0,10,44
    # with respectively 1,2,3 ODF/QA peaks
    assert_array_equal(summary['0']['inds'],[116],
                       'wrong peak indices for voxel 0')
    assert_array_equal(summary['10']['inds'],[105, 78],
                       'wrong peak indices for voxel 10')
    assert_array_equal(summary['44']['inds'],[95, 84, 108],
                       'wrong peak indices for voxel 44')

    assert_equal(np.argmax(summary['0']['odf']), 116)
    assert_equal(np.argmax(summary['10']['odf']), 105)
    assert_equal(np.argmax(summary['44']['odf']), 95)

    # pole_1 = summary['vertices'][116]
    #print 'pole_1', pole_1
    # pole_2 = summary['vertices'][105]
    #print 'pole_2', pole_2
    # pole_3 = summary['vertices'][95]
    #print 'pole_3', pole_3

    vertices = summary['vertices']

    width = 0.02#0.3 #0.05
    
    '''
    print 'pole_1 equator contains:', len([i for i,v in enumerate(vertices) if np.abs(np.dot(v,pole_1)) < width])
    print 'pole_2 equator contains:', len([i for i,v in enumerate(vertices) if np.abs(np.dot(v,pole_2)) < width])
    print 'pole_3 equator contains:', len([i for i,v in enumerate(vertices) if np.abs(np.dot(v,pole_3)) < width])
    '''
    
    #print 'pole_1 equator contains:', len(meshes.equatorial_vertices(vertices,pole_1,width))
    #print 'pole_2 equator contains:', len(meshes.equatorial_vertices(vertices,pole_2,width))
    #print 'pole_3 equator contains:', len(meshes'equatorial_vertices(vertices,pole_3,width))

    #print triple_odf_maxima(vertices,summary['0']['odf'],width)
    #print triple_odf_maxima(vertices,summary['10']['odf'],width)
    #print triple_odf_maxima(vertices,summary['44']['odf'],width)
    #print summary['0']['evals']
    '''

    pole=np.array([0,0,1])

    from dipy.viz import fos
    r=fos.ren()
    fos.add(r,fos.point(pole,fos.green))
    for i,ev in enumerate(vertices):        
        if np.abs(np.dot(ev,pole))<width:
            fos.add(r,fos.point(ev,fos.red))
    fos.show(r)

    '''

    triple = triple_odf_maxima(vertices, summary['10']['odf'], width)
    
    indmax1, odfmax1 = triple[0]
    indmax2, odfmax2 = triple[1]
    indmax3, odfmax3 = triple[2] 

    '''
    from dipy.viz import fos
    r=fos.ren()
    for v in vertices:
        fos.add(r,fos.point(v,fos.cyan))
    fos.add(r,fos.sphere(upper_hemi_map(vertices[indmax1]),radius=0.1,color=fos.red))
    #fos.add(r,fos.line(np.array([0,0,0]),vertices[indmax1]))
    fos.add(r,fos.sphere(upper_hemi_map(vertices[indmax2]),radius=0.05,color=fos.green))
    fos.add(r,fos.sphere(upper_hemi_map(vertices[indmax3]),radius=0.025,color=fos.blue))
    fos.add(r,fos.sphere(upper_hemi_map(summary['0']['evecs'][:,0]),radius=0.1,color=fos.red,opacity=0.7))
    fos.add(r,fos.sphere(upper_hemi_map(summary['0']['evecs'][:,1]),radius=0.05,color=fos.green,opacity=0.7))
    fos.add(r,fos.sphere(upper_hemi_map(summary['0']['evecs'][:,2]),radius=0.025,color=fos.blue,opacity=0.7))
    fos.add(r,fos.sphere([0,0,0],radius=0.01,color=fos.white))
    fos.show(r)
    '''
    
    mat = np.vstack([vertices[indmax1],vertices[indmax2],vertices[indmax3]])

    print np.dot(mat,np.transpose(mat))
    # this is to assess how othogonal the triple is/are
    print np.dot(summary['0']['evecs'],np.transpose(mat))
示例#23
0
    def fit(self):
        #memory allocations for 4D volumes
        if len(self.datashape) == 4:
            x, y, z, g = self.datashape
            S = self.data.reshape(x * y * z, g)
            GFA = np.zeros((x * y * z))
            IN = np.zeros((x * y * z, 5))
            NFA = np.zeros((x * y * z, 5))
            QA = np.zeros((x * y * z, 5))
            PK = np.zeros((x * y * z, 5))
            if self.save_odfs:
                ODF = np.zeros((x * y * z, self.odfn))
                #BODF=np.zeros((x*y*z,self.odfn))
            if self.mask != None:
                if self.mask.shape[:3] == self.datashape[:3]:
                    msk = self.mask.ravel().copy()
            if self.mask == None:
                self.mask = np.ones(self.datashape[:3])
                msk = self.mask.ravel().copy()
        #memory allocations for a series of voxels
        if len(self.datashape) == 2:
            x, g = self.datashape
            S = self.data
            GFA = np.zeros(x)
            IN = np.zeros((x, 5))
            NFA = np.zeros((x, 5))
            QA = np.zeros((x, 5))
            PK = np.zeros((x, 5))
            if self.save_odfs:
                ODF = np.zeros((x, self.odfn))
                #BODF=np.zeros((x,self.odfn))
            if self.mask != None:
                if self.mask.shape[0] == self.datashape[0]:
                    msk = self.mask.ravel().copy()
            if self.mask == None:
                self.mask = np.ones(self.datashape[:1])
                msk = self.mask.ravel().copy()
        #find the global normalization parameter
        #useful for quantitative anisotropy
        glob_norm_param = 0.
        #loop over all voxels
        for (i, s) in enumerate(S):
            if msk[i] > 0:
                #calculate the orientation distribution function
                #odf=self.odf(s)
                odf = self.odf(s)
                odf = self.angular_weighting(odf)
                if self.save_odfs:
                    ODF[i] = odf
                #normalization for QA
                glob_norm_param = max(np.max(odf), glob_norm_param)
                #calculate the generalized fractional anisotropy
                GFA[i] = self.std_over_rms(odf)
                odf_max = odf.max()
                #if not in isotropic case
                #if odf.min()<self.iso_thr*odf_max:
                if np.std(odf) / np.mean(odf) > self.iso_thr:
                    #find peaks
                    peaks, inds = peak_finding(odf, self.odf_faces)
                    ismallp = np.where(peaks / peaks[0] < self.peak_thr)
                    if len(ismallp[0]) > 0:
                        l = ismallp[0][0]
                        #do not allow more that three peaks
                        if l > 3:
                            l = 3
                    else:
                        l = len(peaks)
                    if l == 0:
                        IN[i][l] = inds[l]
                        NFA[i][l] = GFA[i]
                        QA[i][l] = peaks[l] - np.min(odf)
                        PK[i][l] = peaks[l]
                    if l > 0 and l <= 3:
                        IN[i][:l] = inds[:l]
                        NFA[i][:l] = GFA[i]
                        QA[i][:l] = peaks[:l] - np.min(odf)
                        PK[i][:l] = peaks[:l]

        if len(self.datashape) == 4:
            self.GFA = GFA.reshape(x, y, z)
            self.NFA = NFA.reshape(x, y, z, 5)
            self.QA = QA.reshape(x, y, z, 5) / glob_norm_param
            self.PK = PK.reshape(x, y, z, 5)
            self.IN = IN.reshape(x, y, z, 5)
            if self.save_odfs:
                self.ODF = ODF.reshape(x, y, z, ODF.shape[-1])
            self.QA_norm = glob_norm_param
        if len(self.datashape) == 2:
            self.GFA = GFA
            self.NFA = NFA
            self.QA = QA
            self.PK = PK
            self.IN = IN
            if self.save_odfs:
                self.ODF = ODF
                #self.BODF=BODF
            self.QA_norm = None
示例#24
0
for fib in fibs:

    dix=get_sim_voxels(fib)
    
    data=dix['data']
    bvals=dix['bvals']
    gradients=dix['gradients']
    
    no=10
    
    print(bvals.shape, gradients.shape, data.shape)    
    print(dix['fibres'])
    
    np.set_printoptions(2)
    for no in range(len(data)):
    
        sd=SphericalDandelion(data,bvals,gradients)    
        sdf=sd.spherical_diffusivity(data[no])    
    
        gq=GeneralizedQSampling(data,bvals,gradients)
        sodf=gq.odf(data[no])
                
        #print(faces.shape)    
        peaks,inds=peak_finding(np.squeeze(sdf),faces)
        #print(peaks, inds)    
        peaks2,inds2=peak_finding(np.squeeze(sodf),faces)
        #print(peaks2, inds2)    
        print 'sdi',inds,'sodf',inds2, vertices[inds[0]]-vertices[inds2[0]]     
        #print data[no]

示例#25
0
    def __init__(self, data, bvals, gradients, smoothing=1.,
                 odf_sphere='symmetric362', mask=None):
        '''
        Parameters
        -----------
        data : array, shape(X,Y,Z,D)
        bvals : array, shape (N,)
        gradients : array, shape (N,3) also known as bvecs
        smoothing : float, smoothing parameter
        odf_sphere : str or tuple, optional
            If str, then load sphere of given name using ``get_sphere``.
            If tuple, gives (vertices, faces) for sphere.

        See also
        ----------
        dipy.reconst.dti.Tensor, dipy.reconst.gqi.GeneralizedQSampling
        '''
        odf_vertices, odf_faces = sphere_vf_from(odf_sphere)
        self.odf_vertices=odf_vertices
        self.bvals=bvals

        gradients[np.isnan(gradients)] = 0.
        self.gradients=gradients
        self.weighting=np.abs(np.dot(gradients,self.odf_vertices.T))     
        #self.weighting=self.weighting/np.sum(self.weighting,axis=0)

        S=data
        datashape=S.shape #initial shape
        msk=None #tmp mask

        if len(datashape)==4:
            x,y,z,g=S.shape        
            S=S.reshape(x*y*z,g)
            XA = np.zeros((x*y*z,5))
            IN = np.zeros((x*y*z,5))
            if mask != None:
                if mask.shape[:3]==datashape[:3]:
                    msk=mask.ravel().copy()
                    
        if len(datashape)==2:
            x,g= S.shape
            XA = np.zeros((x,5))
            IN = np.zeros((x,5))
        
        if mask !=None:
            for (i,s) in enumerate(S):                            
                if msk[i]>0:               
                    
                    odf=self.spherical_diffusivity(s)                    
                    peaks,inds=peak_finding(odf,odf_faces)            
                    l=min(len(peaks),5)
                    XA[i][:l] = peaks[:l]
                    IN[i][:l] = inds[:l]

        if mask==None:
            for (i,s) in enumerate(S):                            

                odf=self.spherical_diffusivity(s)
                peaks,inds=peak_finding(odf,odf_faces)            
                l=min(len(peaks),5)
                XA[i][:l] = peaks[:l]
                IN[i][:l] = inds[:l]
                
        if len(datashape) == 4:
            self.XA=XA.reshape(x,y,z,5)    
            self.IN=IN.reshape(x,y,z,5)
                    
        if len(datashape) == 2:
            self.XA=XA
            self.IN=IN            
示例#26
0
文件: dsi.py 项目: jgors/dipy
    def fit(self):
        #memory allocations for 4D volumes 
        if len(self.datashape)==4:
            x,y,z,g=self.datashape        
            S=self.data.reshape(x*y*z,g)
            GFA=np.zeros((x*y*z))
            IN=np.zeros((x*y*z,5))
            NFA=np.zeros((x*y*z,5))
            QA=np.zeros((x*y*z,5))
            PK=np.zeros((x*y*z,5))
            if self.save_odfs:
                ODF=np.zeros((x*y*z,self.odfn))            
            if self.mask != None:
                if self.mask.shape[:3]==self.datashape[:3]:
                    msk=self.mask.ravel().copy()
            if self.mask == None:
                self.mask=np.ones(self.datashape[:3])
                msk=self.mask.ravel().copy()
        #memory allocations for a series of voxels       
        if len(self.datashape)==2:
            x,g= self.datashape
            S=self.data
            GFA=np.zeros(x)
            IN=np.zeros((x,5))
            NFA=np.zeros((x,5))
            QA=np.zeros((x,5))
            PK=np.zeros((x,5))
            if self.save_odfs:
                ODF=np.zeros((x,self.odfn))
            if self.mask != None:
                if mask.shape[0]==self.datashape[0]:
                    msk=self.mask.ravel().copy()
            if self.mask == None:
                self.mask=np.ones(self.datashape[:1])
                msk=self.mask.ravel().copy()
        #find the global normalization parameter 
        #useful for quantitative anisotropy
        glob_norm_param = 0.
        #loop over all voxels
        for (i,s) in enumerate(S):
            if msk[i]>0:
                #calculate the diffusion propagator or spectrum                   
                Pr=self.pdf(s)           
                #calculate the orientation distribution function        
                odf=self.odf(Pr)
                if self.save_odfs:
                    ODF[i]=odf
                #normalization for QA
                glob_norm_param=max(np.max(odf),glob_norm_param)
                #calculate the generalized fractional anisotropy
                GFA[i]=self.std_over_rms(odf)
                #find peaks
                peaks,inds=peak_finding(odf,self.odf_faces)
                #remove small peaks
                l=self.reduce_peaks(peaks,odf.min())
                #print '#',l,peaks[:l]         
                if l==0:
                    IN[i][l] = inds[l]
                    NFA[i][l] = GFA[i]
                    QA[i][l] = peaks[l]-np.min(odf)
                    PK[i][l] = peaks[l]                         
                if l>0 and l<5:
                    IN[i][:l] = inds[:l]
                    NFA[i][:l] = GFA[i]
                    QA[i][:l] = peaks[:l]-np.min(odf)
                    PK[i][:l] = peaks[:l]
                
                
                """
                if len(peaks)>0:
                    ismallp=np.where(peaks/peaks.min()<self.peak_thr)                                                                        
                    l=ismallp[0][0]
                    
                    if l<5 and l>0:                                        
                        IN[i][:l] = inds[:l]
                        NFA[i][:l] = GFA[i]
                        QA[i][:l] = peaks[:l]-np.min(odf)
                    if l==0:
                        IN[i][l] = inds[l]
                        NFA[i][l] = GFA[i]
                        QA[i][l] = peaks[l]-np.min(odf)
                """

                        
        if len(self.datashape) == 4:
            self.GFA=GFA.reshape(x,y,z)
            self.NFA=NFA.reshape(x,y,z,5)
            self.QA=QA.reshape(x,y,z,5)/glob_norm_param
            self.IN=IN.reshape(x,y,z,5)
            self.PK=PK.reshape(x,y,z,5)
            if self.save_odfs:
                self.ODF=ODF.reshape(x,y,z,ODF.shape[-1])
            self.QA_norm=glob_norm_param            
        if len(self.datashape) == 2:
            self.GFA=GFA
            self.NFA=NFA
            self.QA=QA
            self.IN=IN
            self.PK=PK
            if self.save_odfs:
                self.ODF=ODF
            self.QA_norm=None
示例#27
0
文件: test_dni.py 项目: jgors/dipy
    S,stics=SticksAndBall(bvals, bvecs, d, S0, 
                          angles=[(30, 0),(60,0),(90,90)], 
                          fractions=[0,0,0], snr=snr)
    data[13]=S.copy()
    
    return data

if __name__ == '__main__':
#def test_dni():
 
    btable=np.loadtxt(get_data('dsi515btable'))    
    bvals=btable[:,0]
    bvecs=btable[:,1:]
    data=sim_data(bvals,bvecs)
    
    dn=DiffusionNabla(data,bvals,bvecs,save_odfs=True)
    pks=dn.pk()
    #assert_array_equal(np.sum(pks>0,axis=1),
    #                   np.array([0, 1, 2, 3, 3, 3, 3, 3, 3, 2, 2, 1, 1, 0]))
    
    odfs=dn.odfs()
    peaks,inds=peak_finding(odfs[10],dn.odf_faces)
    

    





示例#28
0
def test_gqi_small():

    #read bvals,gradients and data
    bvals=np.load(opj(os.path.dirname(__file__), \
                          'data','small_64D.bvals.npy'))
    gradients=np.load(opj(os.path.dirname(__file__), \
                              'data','small_64D.gradients.npy'))    
    img =ni.load(os.path.join(os.path.dirname(__file__),\
                                  'data','small_64D.nii'))
    data=img.get_data()    

    print(bvals.shape)
    print(gradients.shape)
    print(data.shape)


    t1=time.clock()
    
    gqs = gq.GeneralizedQSampling(data,bvals,gradients)

    t2=time.clock()
    print('GQS in %d' %(t2-t1))
        
    eds=np.load(opj(os.path.dirname(__file__),\
                        '..','matrices',\
                        'evenly_distributed_sphere_362.npz'))

    
    odf_vertices=eds['vertices']
    odf_faces=eds['faces']

    #Yeh et.al, IEEE TMI, 2010
    #calculate the odf using GQI

    scaling=np.sqrt(bvals*0.01506) # 0.01506 = 6*D where D is the free
    #water diffusion coefficient 
    #l_values sqrt(6 D tau) D free water
    #diffusion coefficiet and tau included in the b-value

    tmp=np.tile(scaling,(3,1))
    b_vector=gradients.T*tmp
    Lambda = 1.2 # smoothing parameter - diffusion sampling length
    
    q2odf_params=np.sinc(np.dot(b_vector.T, odf_vertices.T) * Lambda/np.pi)
    #implements equation no. 9 from Yeh et.al.

    S=data.copy()

    x,y,z,g=S.shape
    S=S.reshape(x*y*z,g)
    QA = np.zeros((x*y*z,5))
    IN = np.zeros((x*y*z,5))

    fwd = 0
    
    #Calculate Quantitative Anisotropy and find the peaks and the indices
    #for every voxel

    for (i,s) in enumerate(S):

        odf = Q2odf(s,q2odf_params)
        peaks,inds=rp.peak_finding(odf,odf_faces)
        fwd=max(np.max(odf),fwd)
        peaks = peaks - np.min(odf)
        l=min(len(peaks),5)
        QA[i][:l] = peaks[:l]
        IN[i][:l] = inds[:l]

    QA/=fwd
    QA=QA.reshape(x,y,z,5)    
    IN=IN.reshape(x,y,z,5)
    
    print('Old %d secs' %(time.clock() - t2))
    
    assert_equal((gqs.QA-QA).max(),0.,'Frank QA different than dipy QA')
    assert_equal((gqs.QA.shape),QA.shape, 'Frank QA shape is different')  

    assert_equal(len(tp.FACT_Delta(QA,IN,seeds_no=100).tracks),100,
                 'FACT_Delta is not generating the right number of '
                 'tracks for this dataset')
def run_small_data():

    smalldir = '/home/eg309/Devel/dipy/dipy/data/'
    bvals=np.load(smalldir+'small_64D.bvals.npy')
    gradients=np.load(smalldir+'small_64D.gradients.npy')
    img=nibabel.load(smalldir+'small_64D.nii')
    small_data=img.get_data()    

    print 'real_data', small_data.shape
    gqsmall = dgqs.GeneralizedQSampling(small_data,bvals,gradients)
    tnsmall = ddti.Tensor(small_data,bvals,gradients)

    x,y,z,a,b=tnsmall.evecs.shape
    evecs=tnsmall.evecs
    xyz=x*y*z
    evecs = evecs.reshape(xyz,3,3)
    evals=tnsmall.evals
    evals = evals.reshape(xyz,3)
        
    """
    eds=np.load(opj(os.path.dirname(__file__),\
                        '..','matrices',\
                        'evenly_distributed_sphere_362.npz'))
    """
    from dipy.data import get_sphere

    odf_vertices,odf_faces=get_sphere('symmetric362')

    scaling=np.sqrt(bvals*0.01506) # 0.01506 = 6*D where D is the free
    #water diffusion coefficient 
    #l_values sqrt(6 D tau) D free water
    #diffusion coefficiet and tau included in the b-value

    tmp=np.tile(scaling,(3,1))
    b_vector=gradients.T*tmp
    Lambda = 1.2 # smoothing parameter - diffusion sampling length
    
    q2odf_params=np.sinc(np.dot(b_vector.T, odf_vertices.T) * Lambda/np.pi)
    #implements equation no. 9 from Yeh et.al.

    S=small_data.copy()

    x,y,z,g=S.shape
    S=S.reshape(x*y*z,g)
    # QA = np.zeros((x*y*z,5))
    IN = np.zeros((x*y*z,5))
    FA = tnsmall.fa().reshape(x*y*z)

    fwd = 0
    
    #Calculate Quantitative Anisotropy and find the peaks and the indices
    #for every voxel

    summary = {}

    summary['vertices'] = odf_vertices
    # v = odf_vertices.shape[0]
    summary['faces'] = odf_faces
    # f = odf_faces.shape[0]

    for (i,s) in enumerate(S):

        istr = str(i)

        summary[istr] = {}

        t0, t1, t2, npa = gqsmall.npa(s, width = 5)
        summary[istr]['triple']=(t0,t1,t2)
        summary[istr]['npa']=npa

        odf = Q2odf(s,q2odf_params)
        peaks,inds=rp.peak_finding(odf,odf_faces)
        fwd=max(np.max(odf),fwd)
        n_peaks=min(len(peaks),5)
        peak_heights = [odf[i] for i in inds[:n_peaks]]
        IN[i][:n_peaks] = inds[:n_peaks]

        summary[istr]['odf'] = odf
        summary[istr]['peaks'] = peaks
        summary[istr]['inds'] = inds
        summary[istr]['evecs'] = evecs[i,:,:]
        summary[istr]['evals'] = evals[i,:]
        summary[istr]['n_peaks'] = n_peaks
        summary[istr]['peak_heights'] = peak_heights
        summary[istr]['fa'] = FA[i]
    """
    QA/=fwd
    QA=QA.reshape(x,y,z,5)    
    IN=IN.reshape(x,y,z,5)
    """
    
    peaks_1 = [i for i in range(1000) if summary[str(i)]['n_peaks']==1]
    peaks_2 = [i for i in range(1000) if summary[str(i)]['n_peaks']==2]
    peaks_3 = [i for i in range(1000) if summary[str(i)]['n_peaks']==3]

    print '#voxels with 1, 2, 3 peaks', len(peaks_1),len(peaks_2),len(peaks_3)

    return FA, summary