def learning_pipeline(data, conf, config_path='snapw.config'): master_server, server_list = get_servers() data_c = threading.Thread(target=poll_for_kv, args=(data, server_list, master_server)) data_c.start() while data_c.isAlive(): time.sleep(1) logging.info("Learning data captured.") # Conf is a dictionary with key as paramter, value as value, i.e. k-v file. # Data is dictionary with key as machine, value as the k-k-v file. # Setting is a dictionary with key as parameter, value as the category. logging.critical("DATA: %s", data) label_rt = 1.0 setting = { "GenTasks": "average", "GenStubs": "average", "GenGraph": "average", "GetNbr": "average" } logging.info("Generating features.") features, target = generate_features(label_rt, conf["var"], data, setting) logging.info("Training model.") train(features, target) logging.info("Generating new configuration file") new_conf_d = predict(conf["var"]) return new_conf_d
def learning_pipeline(data, conf, config_path='snapw.config'): master_server, server_list = get_servers() data_c = threading.Thread(target=poll_for_kv, args=(data, server_list, master_server )) data_c.start() while data_c.isAlive(): time.sleep(1) logging.info("Learning data captured.") # Conf is a dictionary with key as paramter, value as value, i.e. k-v file. # Data is dictionary with key as machine, value as the k-k-v file. # Setting is a dictionary with key as parameter, value as the category. logging.critical("DATA: %s", data) label_rt = 1.0 setting = {"GenTasks": "average", "GenStubs":"average", "GenGraph":"average", "GetNbr":"average"} logging.info("Generating features.") features, target = generate_features(label_rt, conf["var"], data, setting) logging.info("Training model.") train(features, target) logging.info("Generating new configuration file") new_conf_d = predict(conf["var"]) return new_conf_d
if __name__ == '__main__': # Conf is a dictionary with key as paramter, value as value, i.e. k-v file, # Data is dictionary with key as machine, value as the k-k-v file, # setting is a dictionary with key as parameter, value as the category, # features, target = generate_features(conf, data, setting) # train(features, target) # new_conf_d = predict(features) # Generate new configuration file and pass to other machines. label = 1.0 conf = {"nodes":10000, "range":1, "stat_tasks":1, "gen_tasks":10000, "drange":10000} data = {"GenTasks":{1:2.0, 2:3.0, 4:2.4}, "GenStubs":{"a":1.0, "b":2.0, "c":3}, "GenGraph":{"1":101.0, "2":99.0, "4":2.4}, "GetNbr":{"1":1.0, "2":9.0, "4":1.4}, "GetDist":{"1":101.0, "2":99.0, "3":2.4}} setting = {"GenTasks": "average", "GenStubs":"average", "GenGraph":"average", "GetNbr":"average"} features, target = generate_features(label, conf, data, setting) train(features, target) new_conf_d = predict(conf) print new_conf_d ''' route __Start__ GenTasks route GenTasks GenStubs route GenStubs GenGraph route GenGraph GetNbr route GetNbr:1 GetDist route GetNbr:2 GetTargets route GetTargets GetDist route GetDist:1 GetNbr route GetDist:2 __Finish__ '''
# train(features, target) # new_conf_d = predict(features) # Generate new configuration file and pass to other machines. label = 1.0 conf = {"nodes": 10000, "range": 1, "stat_tasks": 1, "gen_tasks": 10000, "drange": 10000} data = { "GenTasks": {1: 2.0, 2: 3.0, 4: 2.4}, "GenStubs": {"a": 1.0, "b": 2.0, "c": 3}, "GenGraph": {"1": 101.0, "2": 99.0, "4": 2.4}, "GetNbr": {"1": 1.0, "2": 9.0, "4": 1.4}, "GetDist": {"1": 101.0, "2": 99.0, "3": 2.4}, } setting = {"GenTasks": "average", "GenStubs": "average", "GenGraph": "average", "GetNbr": "average"} features, target = generate_features(label, conf, data, setting) train(features, target) new_conf_d = predict(conf) print new_conf_d """ route __Start__ GenTasks route GenTasks GenStubs route GenStubs GenGraph route GenGraph GetNbr route GetNbr:1 GetDist route GetNbr:2 GetTargets route GetTargets GetDist route GetDist:1 GetNbr route GetDist:2 __Finish__ """