def call_pls(chrom,xdata,factors,mask,data): """Runs pls on a subset of X-variables""" scores = [] for i in range(chrom.shape[0]): if _remdup(chrom[i]) == 0: #extract vars from xdata slice = scipy.take(xdata,chrom[i,:].tolist(),1) collate = 0 for nF in range(mask.shape[1]): #split in to training and test try: pls_output = pls(slice,data['class'][:,0][:,nA],mask[:,nF].tolist(),factors) if min(pls_output['rmsec']) <= min(pls_output['rmsepc']): collate += pls_output['RMSEPC'] else: collate += 10.0**5 except: collate = 0 if collate != 0: scores.append(collate/float(mask.shape[1])) else: scores.append(10.0**5) else: scores.append(10.0**5) return scipy.asarray(scores)[:,nA]
def call_pls(chrom, xdata, factors, mask, data): """Runs pls on a subset of X-variables""" scores = [] for i in range(chrom.shape[0]): if _remdup(chrom[i]) == 0: #extract vars from xdata slice = scipy.take(xdata, chrom[i, :].tolist(), 1) collate = 0 for nF in range(mask.shape[1]): #split in to training and test try: pls_output = pls(slice, data['class'][:, 0][:, nA], mask[:, nF].tolist(), factors) if min(pls_output['rmsec']) <= min(pls_output['rmsepc']): collate += pls_output['RMSEPC'] else: collate += 10.0**5 except: collate = 0 if collate != 0: scores.append(collate / float(mask.shape[1])) else: scores.append(10.0**5) else: scores.append(10.0**5) return scipy.asarray(scores)[:, nA]
def call_dfa(chrom, xdata, DFs, mask, data): """Runs DFA on subset of variables from "xdata" as defined by "chrom" and returns a vector of fitness scores to be fed back into the GA """ Y = [] for x in range(len(chrom)): if _remdup(chrom[x]) == 0: #extract vars from xdata slice = meancent(_slice(xdata, chrom[x])) collate = 0 for nF in range(mask.shape[1]): #split in to training and test tr_slice, cv_slice, ts_slice, tr_grp, cv_grp, ts_grp, tr_nm, cv_nm, ts_nm = _split( slice, data['class'][:, 0], mask[:, nF].tolist(), data['label']) try: u, v, eigs, dummy = cva(tr_slice, tr_grp, DFs) projU = scipy.dot(cv_slice, v) u = scipy.concatenate((u, projU), 0) group2 = scipy.concatenate((tr_grp, cv_grp), 0) B, W = _BW(u, group2) L, A = scipy.linalg.eig(B, W) order = _flip( scipy.argsort(scipy.reshape(L.real, (len(L), )))) Ls = _flip(scipy.sort(L.real)) eigval = Ls[0:DFs] collate += sum(eigval) except: continue if collate != 0: Y.append(float(mask.shape[1]) / collate) else: Y.append(10.0**5) else: Y.append(10.0**5) return scipy.array(Y)[:, nA]
def call_dfa(chrom,xdata,DFs,mask,data): """Runs DFA on subset of variables from "xdata" as defined by "chrom" and returns a vector of fitness scores to be fed back into the GA """ Y = [] for x in range(len(chrom)): if _remdup(chrom[x]) == 0: #extract vars from xdata slice = meancent(_slice(xdata,chrom[x])) collate = 0 for nF in range(mask.shape[1]): #split in to training and test tr_slice,cv_slice,ts_slice,tr_grp,cv_grp,ts_grp,tr_nm,cv_nm,ts_nm=_split(slice, data['class'][:,0],mask[:,nF].tolist(),data['label']) try: u,v,eigs,dummy = cva(tr_slice,tr_grp,DFs) projU = scipy.dot(cv_slice,v) u = scipy.concatenate((u,projU),0) group2 = scipy.concatenate((tr_grp,cv_grp),0) B,W = _BW(u,group2) L,A = scipy.linalg.eig(B,W) order = _flip(scipy.argsort(scipy.reshape(L.real,(len(L),)))) Ls = _flip(scipy.sort(L.real)) eigval = Ls[0:DFs] collate += sum(eigval) except: continue if collate != 0: Y.append(float(mask.shape[1])/collate) else: Y.append(10.0**5) else: Y.append(10.0**5) return scipy.array(Y)[:,nA]