示例#1
0
def plot_new_lc(row,
                mjds,
                mag,
                err,
                period,
                target_name,
                phased=1,
                smooth=0.1):

    idx = np.argsort(mjds)
    mjds = mjds[idx]
    mag = mag[idx]
    err = err[idx]

    phase = (mjds / period) - np.floor(mjds / period)
    phase = np.concatenate(
        (phase, (phase + 1.0), (phase + 2.0), (phase + 3.0), (phase + 4.0)))

    mag_long = np.concatenate((mag, mag, mag, mag, mag))

    nir1 = len(mag)

    err_long = np.concatenate((err, err, err, err, err))
    #obs = np.arange(1, num_frames+1, 1)
    ir11, ir1x, yir1, yeir1, xphaseir1 = gf.fit_one_band(
        mag_long, err_long, phase, len(mag), smooth)
    aveir1, adevir1, sdevir1, varir1, skewir1, kurtosisir1, ampir1 = gf.moment(
        ir11[200:300], 100)
    if phased == 1:
        factor = np.sqrt(nir1)
    if phased == 0:
        factor = 1
    sdevir1 = sdevir1 / factor

    target_name_display = re.sub('_', ' ', target_name)

    mp.close()
    mp.clf()
    mp.axis([1, 3.5, (np.average(mag) + 0.3), (np.average(mag) - 0.3)])
    mp.plot(ir1x, ir11, 'k-')
    mp.errorbar(phase, mag_long, yerr=err_long, ls='None', zorder=4)
    mp.plot(phase, mag_long, 'ro', ls='None', zorder=4)
    mp.axhline(aveir1, color='k', ls='--')
    mp.xlabel("Phase")
    mp.ylabel('[3.6]')
    mp.title('Recal:' + target_name_display + ', P = ' +
             str(np.around(period, decimals=4)) + ' d, [3.6] = ' +
             str(np.around(aveir1, decimals=3)) + ' $\pm$ ' +
             str(np.around(sdevir1, decimals=3)) + ' mag')
    mp.show()

    save_lc(target_name + '.rrl_lc_data', mjds, mag, err)

    return (aveir1, sdevir1)
示例#2
0
def plot_existing_lc(row, phased=1, smooth=0.1):

    target_name = row.ix[0, 'target_name']
    rrl_data = target_name + '_rrlyrae.data'

    rrl_df = pd.read_csv(rrl_data,
                         delim_whitespace=True,
                         header=None,
                         names=('mjds', 'mag', 'err'))

    period = row.ix[0, 'period']
    idx = np.argsort(rrl_df.mjds)
    mjds = rrl_df.mjds[idx]
    mag = rrl_df.mag[idx]
    err = rrl_df.err[idx]

    phase = (mjds / period) - np.floor(mjds / period)
    phase = np.concatenate(
        (phase, (phase + 1.0), (phase + 2.0), (phase + 3.0), (phase + 4.0)))

    mag_long = np.concatenate((mag, mag, mag, mag, mag))

    nir1 = len(mag)

    err_long = np.concatenate((err, err, err, err, err))
    #obs = np.arange(1, num_frames+1, 1)
    ir11, ir1x, yir1, yeir1, xphaseir1 = gf.fit_one_band(
        mag_long, err_long, phase, len(mag), smooth)
    aveir1, adevir1, sdevir1, varir1, skewir1, kurtosisir1, ampir1 = gf.moment(
        ir11[200:300], 100)
    if phased == 1:
        factor = np.sqrt(nir1)
    if phased == 0:
        factor = 1
    sdevir1 = sdevir1 / factor

    target_name_display = re.sub('_', ' ', target_name)

    mp.close()
    mp.clf()
    mp.axis([1, 3.5, (np.average(mag) + 0.3), (np.average(mag) - 0.3)])
    mp.plot(ir1x, ir11, 'k-')
    mp.errorbar(phase, mag_long, yerr=err_long, ls='None', zorder=4)
    mp.plot(phase, mag_long, 'ro', ls='None', zorder=4)
    mp.axhline(aveir1, color='k', ls='--')
    mp.xlabel("Phase")
    mp.ylabel('[3.6]')
    mp.title('Existing:' + target_name_display + ', P = ' +
             str(np.around(period, decimals=4)) + ' d, [3.6] = ' +
             str(np.around(aveir1, decimals=3)) + ' $\pm$ ' +
             str(np.around(sdevir1, decimals=3)) + ' mag')
    mp.show()

    return (0)
示例#3
0
def plot_existing_lc(row, phased=1, smooth=0.1):

    target_name = row.ix[0, 'target_name']
    rrl_data = target_name + '_rrlyrae.data'
    
    rrl_df = pd.read_csv(rrl_data, delim_whitespace=True, header=None, names=('mjds', 'mag', 'err'))
    
    period = row.ix[0, 'period']
    idx = np.argsort(rrl_df.mjds)
    mjds = rrl_df.mjds[idx]
    mag = rrl_df.mag[idx]
    err = rrl_df.err[idx]

    phase = (mjds / period) - np.floor(mjds / period)
    phase = np.concatenate((phase,(phase+1.0),(phase+2.0),(phase+3.0),(phase+4.0)))

    mag_long  = np.concatenate((mag, mag, mag, mag, mag))
    
    nir1 = len(mag)

    err_long = np.concatenate((err, err, err, err, err))
    #obs = np.arange(1, num_frames+1, 1)
    ir11, ir1x, yir1, yeir1, xphaseir1 = gf.fit_one_band(mag_long,err_long, phase,len(mag),smooth)
    aveir1, adevir1, sdevir1, varir1, skewir1, kurtosisir1, ampir1 = gf.moment(ir11[200:300],100)
    if phased == 1:
        factor = np.sqrt(nir1)
    if phased == 0:
        factor = 1
    sdevir1 = sdevir1/factor

    target_name_display = re.sub('_', ' ', target_name)

    mp.close()
    mp.clf()
    mp.axis([1,3.5,(np.average(mag) + 0.3),(np.average(mag) - 0.3)])
    mp.plot(ir1x,ir11,'k-')
    mp.errorbar(phase, mag_long, yerr=err_long, ls='None', zorder=4)
    mp.plot(phase, mag_long, 'ro',  ls='None', zorder=4)
    mp.axhline(aveir1, color='k',ls='--')
    mp.xlabel("Phase")
    mp.ylabel('[3.6]')
    mp.title('Existing:' + target_name_display + ', P = ' + str(np.around(period, decimals=4)) +' d, [3.6] = ' + str(np.around(aveir1, decimals=3)) + ' $\pm$ ' + str(np.around(sdevir1, decimals=3)) + ' mag')
    mp.show()
    
    return(0)
示例#4
0
def plot_new_lc(row, mjds, mag, err, period, target_name, phased=1, smooth=0.1):

    idx = np.argsort(mjds)
    mjds = mjds[idx]
    mag = mag[idx]
    err = err[idx]

    phase = (mjds / period) - np.floor(mjds / period)
    phase = np.concatenate((phase,(phase+1.0),(phase+2.0),(phase+3.0),(phase+4.0)))

    mag_long  = np.concatenate((mag, mag, mag, mag, mag))
    
    nir1 = len(mag)

    err_long = np.concatenate((err, err, err, err, err))
    #obs = np.arange(1, num_frames+1, 1)
    ir11, ir1x, yir1, yeir1, xphaseir1 = gf.fit_one_band(mag_long,err_long, phase,len(mag),smooth)
    aveir1, adevir1, sdevir1, varir1, skewir1, kurtosisir1, ampir1 = gf.moment(ir11[200:300],100)
    if phased == 1:
        factor = np.sqrt(nir1)
    if phased == 0:
        factor = 1
    sdevir1 = sdevir1/factor

    target_name_display = re.sub('_', ' ', target_name)

    mp.close()
    mp.clf()
    mp.axis([1,3.5,(np.average(mag) + 0.3),(np.average(mag) - 0.3)])
    mp.plot(ir1x,ir11,'k-')
    mp.errorbar(phase, mag_long, yerr=err_long, ls='None', zorder=4)
    mp.plot(phase, mag_long, 'ro',  ls='None', zorder=4)
    mp.axhline(aveir1, color='k',ls='--')
    mp.xlabel("Phase")
    mp.ylabel('[3.6]')
    mp.title('Recal:' + target_name_display + ', P = ' + str(np.around(period, decimals=4)) +' d, [3.6] = ' + str(np.around(aveir1, decimals=3)) + ' $\pm$ ' + str(np.around(sdevir1, decimals=3)) + ' mag')
    mp.show()
    
    save_lc(target_name + '.rrl_lc_data', mjds, mag, err)
    
    
    return(aveir1, sdevir1)
ax1 = plt.subplot(121)

ax1.axis([1,3.5,(maxlim),(minlim)])
titlestring = cepname2 + ', P = ' + str(period) + ' days'
#print titlestring
mp.title(titlestring, fontsize=20)

ax1.set_ylabel('Magnitude')
ax1.set_xlabel('Phase $\phi$')


## Fitting and plotting for each band
print nu, nb, nv, nr, ni, nj, nh, nk, nir1, nir2, nir3, nir4
if nu > 0:
	u1, ux, yu, yeu, xphaseu = gf.fit_one_band(u,eu,phase,nu,xu)
	ax1.plot(ux,u1+3.,'k-')
	ax1.plot(xphaseu,yu+3.,color='Violet',marker='o',ls='None', label='$U+3$')
	aveu, adevu, sdevu, varu, skewu, kurtosisu, ampu = gf.moment(u1[200:300],100)
	erru = sdevu / sqrt(nu)

	if nu > 1:
		print  '<U> = {0:.3f}    std dev = {1:.3f}     amplitude = {2:.3f}' .format(aveu, sdevu/sqrt(nu), ampu)
		print >> avsout, '<U> = {0:.3f}    std dev = {1:.3f}     amplitude = {2:.3f}' .format(aveu, sdevu/sqrt(nu), ampu)
		
	if nu == 1:
		print  'U = {0:.3f} --- single point'.format(aveu)
		print >> avsout, 'U = {0:.3f} --- single point'.format(aveu)
if nu == 0:
	aveu = 99.99
	erru = 9.999
mp.close()
mp.clf()
mp.axis([1,3.5,(maxlim),(minlim)])
ax1 = subplot(111)
#mp.xlabel('Phase $\phi$')
mp.ylabel('[3.6]')
titlestring = cepname + ', P = ' + str(period) + ' days'
#print titlestring
mp.title(titlestring)


## Fitting and plotting for each band


if nir1 > 0:
	ir11, ir1x, yir1, yeir1, xphaseir1 = gf.fit_one_band(ir1,eir1,phase,nir1,xir1)
#	ax1.plot(ir1x,ir11-0.9,'k-')
# 	ax1.plot(xphaseir1,yir1-0.9,color='MediumVioletRed',marker='o',ls='None', label='[3.6]-0.9')
## for RRLyrae WISE plots:
	#mag1string = '<[3.6]> = ' + str(aveir1) + ' $\pm$ ' + str(sdevir1)
	ax1.plot(ir1x,ir11,'k-')
	ax1.errorbar(xphaseir1, yir1, yeir1, color='k', ls='None') 
 	ax1.plot(xphaseir1,yir1,color='Turquoise',marker='o',ls='None', label='[3.6]')
	aveir1, adevir1, sdevir1, varir1, skewir1, kurtosisir1, ampir1 = gf.moment(ir11[200:300],100)
	if phased == 1:
		factor = sqrt(nir1)
	if phased == 0:
		factor = 1
	if nir1 > 1:
		print >> avsout, '<[3.6]> = {0:.3f}    std dev = {1:.3f}     amplitude = {2:.3f} N ir1 = {3}'.format(aveir1, sdevir1/factor, ampir1,nir1)
		print  '<[3.6]> = {0:.3f}    std dev = {1:.3f}     amplitude = {2:.3f}' .format(aveir1, sdevir1/factor, ampir1)
示例#7
0
def runGloess(mag_ch1, err_ch1, mag_ch2, err_ch2, LC_time, period, starname, xir1, xir2, wantcolour):

    ## Converting the gloess fourtran/pgplot code to python/matplotlib
    ## June 15 2012

    ## Version 1.0
    ## last edit - June 19 2012

    ## Next thing to add:
    ##Print fits to an output text file


    ## Open the input data file and read the info

    #input = sys.argv[1]
    #input = 'c:/Users/Jake/MPhys-code/MPhys-RRL/test_photometry/gloess-master/RRLyr.gloess_in'
    #input = 'c:/Users/Jake/MPhys-code/MPhys-RRL/test_photometry/gloess-master/UVOct.gloess_in'
    #counter = 0

    ## Want to know whether the IRAC data is phased or not. 
    ## If it is phased, must reduce the uncertainty by another factor of sqrt(N)

    #nir1 = sum(ir1<50)
    #nir2= sum(ir2<50)

    phased = 0   # our data is NOT phased

    ir1 = np.array(mag_ch1)
    #nir1 = len(ir1)
    nir1 = sum(ir1<50)
    eir1 = np.array(err_ch1)
    #xir1 = 0.10

    ir2 = np.array(mag_ch2)
    #nir2 = len(ir2)
    nir2 = sum(ir2<50)
    eir2 = np.array(err_ch2)
    #xir2 = 0.10

    mjd = np.array(LC_time)

    # Phases don't need to be done individually by band - only depends on P
    phase = (mjd / period) - np.floor(mjd / period)
    #phase = np.concatenate((phase,(phase+1.0),(phase+2.0),(phase+3.0),(phase+4.0)))

    # Usage:  fit_one_band(data,err,phases,n,smooth):
    maxvals = []
    minvals = []

    if nir1 > 0:
        maxvals.append(np.amax(ir1[ir1<50])-1.4)
        minvals.append(np.amin(ir1[ir1<50])-1.4)
    if nir2 > 0:
        maxvals.append(np.amax(ir2[ir2<50])-1.8)
        minvals.append(np.amin(ir2[ir2<50])-1.8)


    maxvals = np.array(maxvals)
    minvals = np.array(minvals)

    max = np.max(maxvals)
    min = np.min(minvals)
    print(starname, '---- Period =', period, 'days')
    print('------------------------------------------------------')

    # Set up names for output files

    #fitname = starname + '.glo_fits'
    #avname = str(starname) + '.glo_avs'

    #avsout = open(avname,'w')
    #fitout = open(fitname,'w')

    maxlim = max + 0.5
    minlim = min - 0.5

    plt.clf()

    #fig = plt.figure()
    #ax1 = fig.add_subplot(111)
    #plt.figure(figsize=(16.0,10.0))

    gs = gridspec.GridSpec(3, 4)
    ax1 = plt.subplot(gs[:, 0:2])
    ax2 = plt.subplot(gs[0, 2:4])
    ax3 = plt.subplot(gs[1, 2:4])
    ax4 = plt.subplot(gs[2, 2:4])
    ax1.axis([1,3.5,(maxlim),(minlim)])
    titlestring = str(starname) + ', P = ' + str(period) + ' days'
    #print titlestring
    plt.suptitle(titlestring, fontsize=20)

    ax1.set_ylabel('Magnitude')
    ax1.set_xlabel('Phase $\phi$')

    ## Fitting and plotting for each band
    print(nir1, nir2)

    if nir1 > 0:
        ir11, ir1x, yir1, yeir1, xphaseir1 = gf.fit_one_band(ir1,eir1,phase,nir1,xir1)
        ax1.plot(ir1x,ir11-1.4,'k-')
        ax1.plot(xphaseir1,yir1-1.4,color='MediumVioletRed',marker='o',ls='None', label='$[3.6]-1.4$')
    ## for RRLyrae WISE plots:
    #	ax1.plot(ir1x,ir11+1.,'k-')
    # 	ax1.plot(xphaseir1,yir1+1.,color='Turquoise',marker='o',ls='None', label='W1+1.0')
        aveir1, adevir1, sdevir1, varir1, skewir1, kurtosisir1, ampir1 = gf.moment(ir11[200:300],100)
        if phased == 1:
            factor = np.sqrt(nir1)
        if phased == 0:
            factor = 1 
        sdevir1 = sdevir1 / factor  # this way, the value spat out at the end should include this factor
        if nir1 > 1:
            #print('<[3.6]> = {0:.3f}    std dev = {1:.3f}     amplitude = {2:.3f} N ir1 = {3}'.format(aveir1, sdevir1, ampir1,nir1), file = avsout)
            print('<[3.6]> = {0:.3f}    std dev = {1:.3f}     amplitude = {2:.3f}' .format(aveir1, sdevir1, ampir1))
        if nir1 == 1:
            #print('[3.6] = {0:.3f} --- single point'.format(aveir1), file=avsout)
            print('[3.6] = {0:.3f} --- single point'.format(aveir1))
            
        ax2.axis([1,3.5,(np.average(ir11[200:300]) + 0.4),(np.average(ir11[200:300]) - 0.4)])
        ax2.yaxis.tick_right()
        ax2.plot(ir1x,ir11,'k-')
        ax2.plot(xphaseir1,yir1,color='MediumVioletRed',marker='o',ls='None', label='$[3.6]$')
        ax2.annotate('$[3.6]$', xy=(0.04, 0.8375), xycoords='axes fraction', fontsize=16)
    else:
        aveir1 = float("NaN")
        ampir1 = float("NaN")
        sdevir1 = float("NaN")

    if nir2 > 0:
        ir21, ir2x, yir2, yeir2, xphaseir2 = gf.fit_one_band(ir2,eir2,phase,nir2,xir2)
        ax1.plot(ir2x,ir21-1.8,'k-')
        ax1.plot(xphaseir2,yir2-1.8,color='DeepPink',marker='o',ls='None', label='$[4.5]-1.8$')
    ## For RRLyrae WISE plots:
    #	ax1.plot(ir2x,ir21,'k-')
    # 	ax1.plot(xphaseir2,yir2,color='Gold',marker='o',ls='None', label='W2')
        aveir2, adevir2, sdevir2, varir2, skewir2, kurtosisir2, ampir2= gf.moment(ir21[200:300],100)
        if phased == 1:
            factor = np.sqrt(nir2)
        if phased == 0:
            factor = 1
        sdevir2 = sdevir2 / factor
        if nir2 > 1:
            #print('<[4.5]> = {0:.3f}    std dev = {1:.3f}     amplitude = {2:.3f} N IR2 = {3}'.format(aveir2, sdevir2, ampir2,nir2), file = avsout)
            print('<[4.5]> = {0:.3f}    std dev = {1:.3f}     amplitude = {2:.3f}' .format(aveir2, sdevir2, ampir2))
        if nir2 == 1:
            #print('[4.5] = {0:.3f} --- single point'.format(aveir2), file = avsout)
            print('[4.5] = {0:.3f} --- single point'.format(aveir2))
            
        ax3.axis([1,3.5,(np.average(ir21[200:300]) + 0.4),(np.average(ir21[200:300]) - 0.4)])
        ax3.yaxis.tick_right()
        ax3.plot(ir2x,ir21,'k-')
        ax3.plot(xphaseir2,yir2,color='DeepPink',marker='o',ls='None', label='$[3.6]$')
        ax3.annotate('$[4.5]$', xy=(0.04, 0.8375), xycoords='axes fraction',fontsize=16)
    else:
        aveir2 = float("NaN")
        ampir2 = float("NaN")
        sdevir2 = float("NaN")


    handles, labels = ax1.get_legend_handles_labels() 
    #ax1.legend(handles[::-1],labels[::-1],bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0., numpoints=1)
    ax1.legend(handles[::-1],labels[::-1],loc=4, numpoints=1,prop={'size':10})

    #plt.setp(ax1.get_xticklabels(),visible=False)

    if (wantcolour == 'yes' or wantcolour == True):
        if nir1 == nir2:
            ### Define the colour curve
            colour_curve = ir11 - ir21
            ## Define the colour points
            ch1_points = yir1[yir1<99]
            ch2_points = yir2[yir2<99]
            colour_points = ch1_points - ch2_points
            colour_phases = xphaseir1[yir1<99]

            colour_points = np.concatenate((colour_points,colour_points,colour_points,colour_points,colour_points))
            colour_phases = np.concatenate((colour_phases,(colour_phases+1.),(colour_phases+2.),(colour_phases+3.),(colour_phases+4.)))


            avecol, adevcol, sdevcol, varcol, skewcol, kurtosiscol, ampcol = gf.moment(colour_curve[200:300],100)

            #print('<[3.6] - [4.5]> = {0:.3f}    std dev = {1:.3f}     amplitude = {2:.3f}' .format(avecol, sdevcol/factor, ampcol), file = avsout)
            print('<[3.6] - [4.5]> = {0:.3f}    std dev = {1:.3f}     amplitude = {2:.3f}' .format(avecol, sdevcol/factor, ampcol))

            print(np.average(ir11[200:300]) + 0.3)
            print(np.average(ir11[200:300]) - 0.3)


            #divider = make_axes_locatable(ax1)
            #axcol = divider.append_axes("bottom",1.2,pad=0.1,sharex=ax1)
            myaxis2 = [1,3.5,-0.2,0.2]
            ax4.axis(myaxis2)
            ax4.yaxis.tick_right()
            ax4.yaxis.set_major_locator(plt.FixedLocator([-0.1,0,0.1]))
            ax4.plot(ir1x,colour_curve,'k-')
            ax4.plot(colour_phases,colour_points,color='Black',marker='o',ls='None', label='$[3.6]-[4.5]$')

            ax4.set_xlabel('Phase $\phi$')
            #ax4.annotate('$[3.6] - [4.5]$', xy=(1.1, 0.135), xycoords='data')
            ax4.annotate('$[3.6] - [4.5]$', xy=(0.04, 0.8375), xycoords='axes fraction',fontsize=16)

            ax4.hlines(0,1,3.5,'k','dashdot')
        else:
            print("Channels don't have the same number of measurements, so colour curve couldn't be plotted")

    plt.setp(ax2.get_xticklabels(),visible=False)
    plt.setp(ax3.get_xticklabels(),visible=False)

    plotname = str(starname)+'.eps'
    #plt.savefig(plotname, transparent='True')
    plt.savefig(plotname)

    #avsout.close()
    plt.show()
    #fitout.close()

    return aveir1, ampir1, sdevir1, aveir2, ampir2, sdevir2
示例#8
0
def runGloess(mag_ch1, err_ch1, LC_time):

    #print(dummy)
    #dummy += 1
    #print(dummy)

    du = []
    db = []
    dv = []
    dr = []
    di = []
    dj = []
    dh = []
    dk = []
    dir1 = []
    dir2 = []
    dir3 = []
    dir4 = []
    deu = []
    deb = []
    dev = []
    der = []
    dei = []
    dej = []
    deh = []
    dek = []
    deir1 = []
    deir2 = []
    deir3 = []
    deir4 = []
    dmjd = []

    ## Converting the gloess fourtran/pgplot code to python/matplotlib
    ## June 15 2012

    ## Version 1.0
    ## last edit - June 19 2012

    ## Next thing to add:
    ##Print fits to an output text file

    ## Open the input data file and read the info

    #input = sys.argv[1]
    #input = 'c:/Users/Jake/MPhys-code/MPhys-RRL/test_photometry/gloess-master/RRLyr.gloess_in'
    input = 'c:/Users/Jake/MPhys-code/MPhys-RRL/test_photometry/gloess-master/UVOct.gloess_in'
    counter = 0

    ## Want to know whether the IRAC data is phased or not.
    ## If it is phased, must reduce the uncertainty by another factor of sqrt(N)
    ## if phased == 1 then true. if phased == 0, false

    print(input)

    for line in open(input):
        data = line.split()
        if counter == 0:
            cepname = data[0]
        if counter == 1:
            period = float(data[0])
            if period > 0:
                phased = 1
            else:
                phased = 0
        if counter == 2:
            nlines = float(data[0])
        if counter == 3:
            xu = float(data[0])
            xb = float(data[1])
            xv = float(data[2])
            xr = float(data[3])
            xi = float(data[4])
            xj = float(data[5])
            xh = float(data[6])
            xk = float(data[7])
            xir1 = float(data[8])
            xir2 = float(data[9])
            xir3 = float(data[10])
            xir4 = float(data[11])
        if counter > 3:
            dmjd.append(float(data[0]))
            du.append(float(data[1]))
            deu.append(float(data[2]))
            db.append(float(data[3]))
            deb.append(float(data[4]))
            dv.append(float(data[5]))
            dev.append(float(data[6]))
            dr.append(float(data[7]))
            der.append(float(data[8]))
            di.append(float(data[9]))
            dei.append(float(data[10]))
            dj.append(float(data[11]))
            dej.append(float(data[12]))
            dh.append(float(data[13]))
            deh.append(float(data[14]))
            dk.append(float(data[15]))
            dek.append(float(data[16]))
            dir1.append(float(data[17]))
            deir1.append(float(data[18]))
            dir2.append(float(data[19]))
            deir2.append(float(data[20]))
            dir3.append(float(data[21]))
            deir3.append(float(data[22]))
            dir4.append(float(data[23]))
            deir4.append(float(data[24]))
        counter = counter + 1

    ## Read in all the data from the file and filled the arrays. Need to convert these to numpy arrays.

    number = counter - 4  # Number data lines in the file
    #print number

    u = np.array(du)
    b = np.array(db)
    v = np.array(dv)
    r = np.array(dr)
    i = np.array(di)
    j = np.array(dj)
    h = np.array(dh)
    k = np.array(dk)
    ir1 = np.array(dir1)
    ir2 = np.array(dir2)
    ir3 = np.array(dir3)
    ir4 = np.array(dir4)
    eu = np.array(deu)
    eb = np.array(deb)
    ev = np.array(dev)
    er = np.array(der)
    ei = np.array(dei)
    ej = np.array(dej)
    eh = np.array(deh)
    ek = np.array(dek)
    eir1 = np.array(deir1)
    eir2 = np.array(deir2)
    eir3 = np.array(deir3)
    eir4 = np.array(deir4)
    mjd = np.array(dmjd)

    nu = sum(u < 50)
    nb = sum(b < 50)
    nv = sum(v < 50)
    nr = sum(r < 50)
    ni = sum(i < 50)
    nj = sum(j < 50)
    nh = sum(h < 50)
    nk = sum(k < 50)
    nir1 = sum(ir1 < 50)
    nir2 = sum(ir2 < 50)
    nir3 = sum(ir3 < 50)
    nir4 = sum(ir4 < 50)

    ir1 = np.array(mag_ch1)
    nir1 = len(ir1)
    eir1 = np.array(err_ch1)
    xir1 = 0.10
    mjd = np.array(LC_time)

    # Phases don't need to be done individually by band - only depends on P
    phase = (mjd / period) - np.floor(mjd / period)
    #phase = np.concatenate((phase,(phase+1.0),(phase+2.0),(phase+3.0),(phase+4.0)))

    # Usage:  fit_one_band(data,err,phases,n,smooth):
    maxvals = []
    minvals = []
    if nu > 0:
        maxvals.append(np.amax(u[u < 50]) + 3.0)
        minvals.append(np.amin(u[u < 50]) + 3.0)
    if nb > 0:
        maxvals.append(np.amax(b[b < 50]) + 1.5)
        minvals.append(np.amin(b[b < 50]) + 1.5)
    if nv > 0:
        maxvals.append(np.amax(v[v < 50]) + 1.2)
        minvals.append(np.amin(v[v < 50]) + 1.2)
    if nr > 0:
        maxvals.append(np.amax(r[r < 50]) + 0.7)
        minvals.append(np.amin(r[r < 50]) + 0.7)
    if ni > 0:
        maxvals.append(np.amax(i[i < 50]) + 0.2)
        minvals.append(np.amin(i[i < 50]) + 0.2)
    if nj > 0:
        maxvals.append(np.amax(j[j < 50]))
        minvals.append(np.amin(j[j < 50]))
    if nh > 0:
        maxvals.append(np.amax(h[h < 50]) - 0.4)
        minvals.append(np.amin(h[h < 50]) - 0.4)
    if nk > 0:
        maxvals.append(np.amax(k[k < 50]) - 0.8)
        minvals.append(np.amin(k[k < 50]) - 0.8)
    if nir1 > 0:
        maxvals.append(np.amax(ir1[ir1 < 50]) - 1.4)
        minvals.append(np.amin(ir1[ir1 < 50]) - 1.4)
    if nir2 > 0:
        maxvals.append(np.amax(ir2[ir2 < 50]) - 1.8)
        minvals.append(np.amin(ir2[ir2 < 50]) - 1.8)
    if nir3 > 0:
        maxvals.append(np.amax(ir3[ir3 < 50]) - 2.2)
        minvals.append(np.amin(ir3[ir3 < 50]) - 2.2)
    if nir4 > 0:
        maxvals.append(np.amax(ir4[ir4 < 50]) - 2.6)
        minvals.append(np.amin(ir4[ir4 < 50]) - 2.6)

    maxvals = np.array(maxvals)
    minvals = np.array(minvals)

    max = np.max(maxvals)
    min = np.min(minvals)
    print(cepname, ' ---- Period =', period, 'days')
    print('------------------------------------------------------')

    # Set up names for output files

    #fitname = cepname + '.glo_fits'
    avname = cepname + '.glo_avs'

    avsout = open(avname, 'w')
    #fitout = open(fitname,'w')

    maxlim = max + 0.5
    minlim = min - 0.5

    plt.clf()

    #fig = plt.figure()
    #ax1 = fig.add_subplot(111)
    #plt.figure(figsize=(16.0,10.0))

    gs = gridspec.GridSpec(3, 4)
    ax1 = plt.subplot(gs[:, 0:2])
    ax2 = plt.subplot(gs[0, 2:4])
    ax3 = plt.subplot(gs[1, 2:4])
    ax4 = plt.subplot(gs[2, 2:4])
    ax1.axis([1, 3.5, (maxlim), (minlim)])
    titlestring = cepname + ', P = ' + str(period) + ' days'
    #print titlestring
    plt.suptitle(titlestring, fontsize=20)

    ax1.set_ylabel('Magnitude')
    ax1.set_xlabel('Phase $\phi$')

    ## Fitting and plotting for each band
    print(nu, nb, nv, nr, ni, nj, nh, nk, nir1, nir2, nir3, nir4)

    if nir1 > 0:
        ir11, ir1x, yir1, yeir1, xphaseir1 = gf.fit_one_band(
            ir1, eir1, phase, nir1, xir1)
        ax1.plot(ir1x, ir11 - 1.4, 'k-')
        ax1.plot(xphaseir1,
                 yir1 - 1.4,
                 color='MediumVioletRed',
                 marker='o',
                 ls='None',
                 label='$[3.6]-1.4$')
        ## for RRLyrae WISE plots:
        #	ax1.plot(ir1x,ir11+1.,'k-')
        # 	ax1.plot(xphaseir1,yir1+1.,color='Turquoise',marker='o',ls='None', label='W1+1.0')
        aveir1, adevir1, sdevir1, varir1, skewir1, kurtosisir1, ampir1 = gf.moment(
            ir11[200:300], 100)
        if phased == 1:
            factor = np.sqrt(nir1)
        if phased == 0:
            factor = 1
        if nir1 > 1:
            print(
                '<[3.6]> = {0:.3f}    std dev = {1:.3f}     amplitude = {2:.3f} N ir1 = {3}'
                .format(aveir1, sdevir1 / factor, ampir1, nir1),
                file=avsout)
            print(
                '<[3.6]> = {0:.3f}    std dev = {1:.3f}     amplitude = {2:.3f}'
                .format(aveir1, sdevir1 / factor, ampir1))
        if nir1 == 1:
            print('[3.6] = {0:.3f} --- single point'.format(aveir1),
                  file=avsout)
            print('[3.6] = {0:.3f} --- single point'.format(aveir1))
    '''if nir2 > 0:
		ir21, ir2x, yir2, yeir2, xphaseir2 = gf.fit_one_band(ir2,eir2,phase,nir2,xir2)
		ax1.plot(ir2x,ir21-1.8,'k-')
		ax1.plot(xphaseir2,yir2-1.8,color='DeepPink',marker='o',ls='None', label='$[4.5]-1.8$')
	## For RRLyrae WISE plots:
	#	ax1.plot(ir2x,ir21,'k-')
	# 	ax1.plot(xphaseir2,yir2,color='Gold',marker='o',ls='None', label='W2')
		aveir2, adevir2, sdevir2, varir2, skewir2, kurtosisir2, ampir2= gf.moment(ir21[200:300],100)
		if phased == 1:
			factor = np.sqrt(nir2)
		if phased == 0:
			factor = 1

		if nir2 > 1:
			print('<[4.5]> = {0:.3f}    std dev = {1:.3f}     amplitude = {2:.3f} N IR2 = {3}'.format(aveir2, sdevir2/factor, ampir2,nir2), file = avsout)
			print('<[4.5]> = {0:.3f}    std dev = {1:.3f}     amplitude = {2:.3f}' .format(aveir2, sdevir2/factor, ampir2))
		if nir2 == 1:
			print('[4.5] = {0:.3f} --- single point'.format(aveir2), file = avsout)
			print('[4.5] = {0:.3f} --- single point'.format(aveir2))'''

    handles, labels = ax1.get_legend_handles_labels()
    #ax1.legend(handles[::-1],labels[::-1],bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0., numpoints=1)
    ax1.legend(handles[::-1],
               labels[::-1],
               loc=4,
               numpoints=1,
               prop={'size': 10})

    #plt.setp(ax1.get_xticklabels(),visible=False)
    '''### Define the colour curve
	colour_curve = ir11 - ir21
	## Define the colour points
	ch1_points = yir1[yir1<99]
	ch2_points = yir2[yir2<99]
	colour_points = ch1_points - ch2_points
	colour_phases = xphaseir1[yir1<99]

	colour_points = np.concatenate((colour_points,colour_points,colour_points,colour_points,colour_points))
	colour_phases = np.concatenate((colour_phases,(colour_phases+1.),(colour_phases+2.),(colour_phases+3.),(colour_phases+4.)))


	avecol, adevcol, sdevcol, varcol, skewcol, kurtosiscol, ampcol = gf.moment(colour_curve[200:300],100)

	print('<[3.6] - [4.5]> = {0:.3f}    std dev = {1:.3f}     amplitude = {2:.3f}' .format(avecol, sdevcol/factor, ampcol), file = avsout)
	print('<[3.6] - [4.5]> = {0:.3f}    std dev = {1:.3f}     amplitude = {2:.3f}' .format(avecol, sdevcol/factor, ampcol))'''

    print(np.average(ir11[200:300]) + 0.3)
    print(np.average(ir11[200:300]) - 0.3)

    ax2.axis([
        1, 3.5, (np.average(ir11[200:300]) + 0.4),
        (np.average(ir11[200:300]) - 0.4)
    ])
    ax2.yaxis.tick_right()
    ax2.plot(ir1x, ir11, 'k-')
    ax2.plot(xphaseir1,
             yir1,
             color='MediumVioletRed',
             marker='o',
             ls='None',
             label='$[3.6]$')
    ax2.annotate('$[3.6]$',
                 xy=(0.04, 0.8375),
                 xycoords='axes fraction',
                 fontsize=16)
    '''ax3.axis([1,3.5,(np.average(ir21[200:300]) + 0.4),(np.average(ir21[200:300]) - 0.4)])
	ax3.yaxis.tick_right()
	ax3.plot(ir2x,ir21,'k-')
	ax3.plot(xphaseir2,yir2,color='DeepPink',marker='o',ls='None', label='$[3.6]$')
	ax3.annotate('$[4.5]$', xy=(0.04, 0.8375), xycoords='axes fraction',fontsize=16)'''

    #divider = make_axes_locatable(ax1)
    #axcol = divider.append_axes("bottom",1.2,pad=0.1,sharex=ax1)
    myaxis2 = [1, 3.5, -0.2, 0.2]
    ax4.axis(myaxis2)
    ax4.yaxis.tick_right()
    ax4.yaxis.set_major_locator(plt.FixedLocator([-0.1, 0, 0.1]))
    #ax4.plot(ir1x,colour_curve,'k-')
    #ax4.plot(colour_phases,colour_points,color='Black',marker='o',ls='None', label='$[3.6]-[4.5]$')

    ax4.set_xlabel('Phase $\phi$')
    #ax4.annotate('$[3.6] - [4.5]$', xy=(1.1, 0.135), xycoords='data')
    ax4.annotate('$[3.6] - [4.5]$',
                 xy=(0.04, 0.8375),
                 xycoords='axes fraction',
                 fontsize=16)

    ax4.hlines(0, 1, 3.5, 'k', 'dashdot')

    plt.setp(ax2.get_xticklabels(), visible=False)
    plt.setp(ax3.get_xticklabels(), visible=False)

    plotname = cepname + '.eps'
    #plt.savefig(plotname, transparent='True')
    plt.savefig(plotname)

    avsout.close()
    plt.show()
    #fitout.close()

    #return dummy
示例#9
0
min = np.min(minvals)
print cepname, ' ---- Period =', period, 'days'
print '------------------------------------------------------'

# Set up names for output files

#fitname = cepname + '.glo_fits'
avname = cepname + '.glo_avs'

avsout = open(avname,'w')
#fitout = open(fitname,'w')


## gloess differential

v1, vx, yv, yev, xphasev = gf.fit_one_band(v,ev,phase,nv,xv)
ir11, ir1x, yir1, yeir1, xphaseir1 = gf.fit_one_band(ir1,eir1,phase,nir1,xir1)

avev, adevv, sdevv, varv, skewv, kurtosisv, ampv = gf.moment(v1[200:300],100)
aveir1, adevir1, sdevir1, varir1, skewir1, kurtosisir1, ampir1 = gf.moment(ir11[200:300],100)

offset = avev - aveir1

off_ir11 = ir11 + offset
off_yir1 = yir1 + offset

dy1dp_max_light = 1000
dy1dp_min_light = 1000

dyvdp_max_light = 1000
dyvdp_min_light = 1000