def _runColorMap(self, colormap_file, Ng_32F, N0_32F, A_8U):
        M_32F = loadColorMap(colormap_file)

        L0 = normalizeVector(np.array([-0.2, 0.3, 0.6]))
        L0_img = lightSphere(L0)
        L0_txt = 0.01 * np.int32(100 * L0)

        C0_32F = ColorMapShader(M_32F).diffuseShading(L0, Ng_32F)
        I_32F = luminance(C0_32F)

        L = lightEstimation(I_32F, N0_32F, A_8U)

        L_txt = 0.01 * np.int32(100 * L)
        L_img = lightSphere(L)

        fig, axes = plt.subplots(figsize=(11, 5))
        font_size = 15
        fig.subplots_adjust(left=0.05, right=0.95, top=0.9, hspace=0.12, wspace=0.05)
        fig.suptitle(self.name(), fontsize=font_size)

        num_rows = 1
        num_cols = 4
        plot_grid = SubplotGrid(num_rows, num_cols)

        plot_grid.showImage(setAlpha(C0_32F, A_8U), r'Input image: $\mathbf{c}$', font_size=font_size)
        plot_grid.showImage(normalToColor(N0_32F, A_8U), r'Initial normal: $\mathbf{N}_0$')
        plot_grid.showImage(L0_img, r'Ground trugh light: $L_g = (%s, %s, %s)$' %(L0_txt[0], L0_txt[1], L0_txt[2]))
        plot_grid.showImage(L_img, r'Estimated light: $L = (%s, %s, %s)$' %(L_txt[0], L_txt[1], L_txt[2]))

        showMaximize()
def computeErrorTables(Lg=normalizeVector(np.array([-0.2, 0.3, 0.6]))):
    colormap_files = colorMapFiles()
    shape_names = shapeNames()

    num_materials = len(colormap_files)
    num_shapes = len(shape_names)

    L_errors = np.zeros((num_shapes, num_materials))

    Ms = []
    for colormap_file in colormap_files:
        M_32F = loadColorMap(colormap_file)
        Ms.append(M_32F)

    for si, shape_name in enumerate(shape_names):
        Ng_data = shapeFile(shape_name)

        Ng_data = loadNormal(Ng_data)
        Ng_32F, A_8U = Ng_data

        N0_file = shapeResultFile(result_name="InitialNormal", data_name=shape_name)
        N0_data = loadNormal(N0_file)
        N0_32F, A_8U = N0_data

        for mi, M_32F in enumerate(Ms):
            C0_32F = ColorMapShader(M_32F).diffuseShading(Lg, Ng_32F)
            I_32F = luminance(C0_32F)

            L = lightEstimation(I_32F, N0_32F, A_8U)

            L_errors[si, mi] = angleError(Lg, L)

    file_path = shapeResultFile("LightEstimation", "LightEstimationError", file_ext=".npy")
    np.save(file_path, L_errors)
示例#3
0
    def _runSFS(self, C0_32F, A_8U, N0_32F, AN_8U):
        I0_32F = luminance(C0_32F)
        L = lightEstimation(I0_32F, N0_32F, A_8U)

        LdN = LdotN(L, N0_32F)

        layer_area = A_8U > 0.5 * np.max(A_8U)
        Cs = C0_32F[layer_area].reshape(-1, 3)
        Is = LdN[layer_area].flatten()

        M = ColorMapEstimation(Cs, Is)

        I_const = M.illumination(Cs)
        I_32F = np.array(I0_32F)
        I_32F[layer_area] = I_const
        I_32F[A_8U < 0.5 * np.max(A_8U)] = np.min(I_const)

        toon_sfs = ToonSFS(L, C0_32F, A_8U)
        toon_sfs.setInitialNormal(N0_32F)
        toon_sfs.run()

        N_32F = toon_sfs.normal()
        LdN_recovered = LdotN(L, N_32F)
        LdN_recovered[A_8U < 0.5 * np.max(A_8U)] = np.min(LdN_recovered)

        Is = LdN_recovered[layer_area].flatten()

        Cs_recovered = M.shading(Is)

        C_32F = np.array(C0_32F)
        C_32F[layer_area, :] = Cs_recovered

        return N_32F, L, C_32F, M
示例#4
0
    def _runSFS(self, C0_32F, A_8U, N0_32F, AN_8U):
        I0_32F = luminance(C0_32F)
        L = lightEstimation(I0_32F, N0_32F, A_8U)

        LdN = LdotN(L, N0_32F)

        layer_area = A_8U > 0.5 * np.max(A_8U)
        Cs = C0_32F[layer_area].reshape(-1, 3)
        Is = LdN[layer_area].flatten()

        M = ColorMapEstimation(Cs, Is)

        I_const = M.illumination(Cs)
        I_32F = np.array(I0_32F)
        I_32F[layer_area] = I_const
        I_32F[A_8U < 0.5 * np.max(A_8U)] = np.min(I_const)

        toon_sfs = ToonSFS(L, C0_32F, A_8U)
        toon_sfs.setInitialNormal(N0_32F)
        toon_sfs.run()

        N_32F = toon_sfs.normal()
        LdN_recovered = LdotN(L, N_32F)
        LdN_recovered[A_8U < 0.5 * np.max(A_8U)] = np.min(LdN_recovered)

        Is = LdN_recovered[layer_area].flatten()

        Cs_recovered = M.shading(Is)

        C_32F = np.array(C0_32F)
        C_32F[layer_area, :] = Cs_recovered

        return N_32F, L, C_32F, M
 def _computeBaseDetalSeparation(self):
     sigma_space, sigma_range = self._parameters["sigmaSpace"], self._parameters["sigmaRange"]
     C0_32F = self._C0_32F
     I_32F = luminance(C0_32F)
     B_b, D_b = baseDetailSeparationBilateral(I_32F, sigma_space=sigma_space.value(), sigma_range=sigma_range.value())
     self._D = D_b
     self._N_b = bumpNormal(B_b, scale=1.0, sigma=1.0)
     self._N_d = bumpNormal(D_b, scale=1.0, sigma=1.0)
     self._view.render(D_b)
    def _runLayer(self, layer_file):
        C0_8U = loadRGBA(layer_file)

        if C0_8U is None:
            return

        A_8U = alpha(C0_8U)

#         if A_8U is None:
#             return

        C0_32F = to32F(rgb(C0_8U))
        I_32F = luminance(C0_32F)

        Lab_32F = rgb2Lab(C0_32F)

        th_specular = 0.2
        th_contour = 0.02
        th_material = 0.1
        E_32F = DoG(I_32F, sigma=2.0)

        contour = th_contour * np.min(E_32F) - E_32F
        contour *= 1.0 / np.max(contour)
        contour = np.clip(contour, 0.0, 1.0)
        specular = E_32F - th_specular * np.max(E_32F)
        specular *= 1.0 / np.max(specular)
        specular = np.clip(specular, 0.0, 1.0)

        material = rgb(C0_8U)
#         edge_mask = np.zeros(I_32F.shape, dtype=np.uint8)
#         edge_mask[contour > 0.0] = 1.0
#         material = cv2.inpaint(material, edge_mask, 3, cv2.INPAINT_TELEA)

        for i in xrange(1):
            material = cv2.medianBlur(material, ksize=7)
#         material = th_material * np.max(np.abs(E_32F)) - np.abs(E_32F)
#         material *= 1.0 / np.max(material)
#         material = np.clip(material, 0.0, 1.0)
#         material[material > 0.0] = 1.0
        E_32F[E_32F < 0.0] = 0.0

        fig, axes = plt.subplots(figsize=(11, 5))
        font_size = 15
        fig.subplots_adjust(left=0.05, right=0.95, top=0.9, hspace=0.12, wspace=0.05)
        fig.suptitle(self.name(), fontsize=font_size)

        num_rows = 1
        num_cols = 4
        plot_grid = SubplotGrid(num_rows, num_cols)

        plot_grid.showImage(C0_8U, r'$C$')
        #plot_grid.showImage(setAlpha(C0_32F, material), r'$Material$')
        plot_grid.showImage(setAlpha(material, A_8U), r'$Material$')
        plot_grid.showImage(setAlpha(C0_32F, contour), r'$Contour$')
        plot_grid.showImage(setAlpha(C0_32F, specular), r'$Specular$')

        showMaximize()
示例#7
0
    def _runLayer(self, layer_file):
        C0_8U = loadRGBA(layer_file)

        if C0_8U is None:
            return

        A_8U = alpha(C0_8U)

        if A_8U is None:
            return

        C0_32F = to32F(rgb(C0_8U))
        I_32F = luminance(C0_32F)

        N0_32F, A_8U = loadNormal(
            self.characterResultFile("N0_d.png",
                                     data_name="BaseDetailSepration"))
        Nd_32F, A_8U = loadNormal(
            self.characterResultFile("N_d_smooth.png",
                                     data_name="BaseDetailSepration"))
        Nb_32F, A_8U = loadNormal(
            self.characterResultFile("N_b_smooth.png",
                                     data_name="BaseDetailSepration"))

        W_32F = np.array(Nb_32F[:, :, 2])
        W_32F = W_32F
        W_32F[W_32F < 0.95] = 0.0

        L = lightEstimation(I_32F, N0_32F, A_8U)
        # L = lightEstimationByVoting(I_32F, N0_32F, A_8U)

        L_txt = 0.01 * np.int32(100 * L)

        L_img = lightSphere(L)

        fig, axes = plt.subplots(figsize=(11, 5))
        font_size = 15
        fig.subplots_adjust(left=0.05,
                            right=0.95,
                            top=0.9,
                            hspace=0.12,
                            wspace=0.05)
        fig.suptitle(self.name(), fontsize=font_size)

        num_rows = 1
        num_cols = 4
        plot_grid = SubplotGrid(num_rows, num_cols)

        plot_grid.showImage(C0_8U, r'$C$')
        plot_grid.showImage(normalToColor(N0_32F, A_8U), r'$N$')
        plot_grid.showImage(setAlpha(C0_32F, W_32F), r'$Nd_z$')
        plot_grid.showImage(
            L_img, r'$L: [%s, %s, %s]$' % (L_txt[0], L_txt[1], L_txt[2]))

        showMaximize()
    def __init__(self, C_32F, I_32F=None):
        self._C_32F = C_32F

        I0_32F = luminance(C_32F)
        self._I0_32F = I0_32F
        if I_32F is None:
            I_32F = np.array(I0_32F)

        self._I_32F = I_32F

        self._compute()
示例#9
0
 def _computeBaseDetalSeparation(self):
     sigma_space, sigma_range = self._parameters[
         "sigmaSpace"], self._parameters["sigmaRange"]
     C0_32F = self._C0_32F
     I_32F = luminance(C0_32F)
     B_b, D_b = baseDetailSeparationBilateral(
         I_32F,
         sigma_space=sigma_space.value(),
         sigma_range=sigma_range.value())
     self._D = D_b
     self._N_b = bumpNormal(B_b, scale=1.0, sigma=1.0)
     self._N_d = bumpNormal(D_b, scale=1.0, sigma=1.0)
     self._view.render(D_b)
def errorTable():
    colormap_files = colorMapFiles()
    num_colormap_files = len(colormap_files)
    M_errors = np.zeros((num_colormap_files))

    for mi, colormap_file in enumerate(colormap_files):
        M_32F = loadColorMap(colormap_file)
        C_32F = M_32F.reshape(1, len(M_32F), 3)

        I_32F = np.linspace(0.0, 1.0, len(M_32F))
        I_32F = I_32F.reshape(C_32F.shape[:2])
        reflectance = LambertReflectanceEstimation(C_32F, I_32F)
        Ml = reflectance.shading(I_32F)[0, :, :]

        I0_32F = luminance(C_32F)
        IL_32F = luminance(Ml.reshape(1, -1, 3))

        I_min, I_max = np.min(I0_32F), np.max(I0_32F)

        M_error = normVectors(M_32F - Ml)

        #M_errors[mi] = np.mean(M_error) / (I_max - I_min)

        # M_errors[mi] = computeGradientDistance(M_32F, Ml) / (I_max - I_min)

        #M_errors[mi] = np.linalg.norm(I0_32F - IL_32F) / (I_max - I_min)

        M_errors[mi] = np.mean(M_error) / (I_max - I_min)

        # M_errors[mi] = np.linalg.norm(M_32F - Ml) / (I_max - I_min)
        # M_errors[mi] = compareHist(M_32F, Ml)

    file_path = shapeResultFile("ReflectanceEstimation", "ReflectanceError", file_ext=".npy")
    np.save(file_path, M_errors)

    plt.plot(M_errors)
    plt.show()
    def _runLayer(self, layer_file):
        C0_8U = loadRGBA(layer_file)

        if C0_8U is None:
            return

        A_8U = alpha(C0_8U)

        if A_8U is None:
            return

        C0_32F = to32F(rgb(C0_8U))
        I_32F = luminance(C0_32F)

        N0_32F, A_8U = loadNormal(self.characterResultFile("N0_d.png", data_name="BaseDetailSepration"))
        Nd_32F, A_8U = loadNormal(self.characterResultFile("N_d_smooth.png", data_name="BaseDetailSepration"))
        Nb_32F, A_8U = loadNormal(self.characterResultFile("N_b_smooth.png", data_name="BaseDetailSepration"))

        W_32F = np.array(Nb_32F[:, :, 2])
        W_32F = W_32F
        W_32F[W_32F < 0.95] = 0.0

        L = lightEstimation(I_32F, N0_32F, A_8U)
        # L = lightEstimationByVoting(I_32F, N0_32F, A_8U)

        L_txt = 0.01 * np.int32(100 * L)

        L_img = lightSphere(L)

        fig, axes = plt.subplots(figsize=(11, 5))
        font_size = 15
        fig.subplots_adjust(left=0.05, right=0.95, top=0.9, hspace=0.12, wspace=0.05)
        fig.suptitle(self.name(), fontsize=font_size)

        num_rows = 1
        num_cols = 4
        plot_grid = SubplotGrid(num_rows, num_cols)

        plot_grid.showImage(C0_8U, r'$C$')
        plot_grid.showImage(normalToColor(N0_32F, A_8U), r'$N$')
        plot_grid.showImage(setAlpha(C0_32F, W_32F), r'$Nd_z$')
        plot_grid.showImage(L_img, r'$L: [%s, %s, %s]$' %(L_txt[0], L_txt[1], L_txt[2]))

        showMaximize()
示例#12
0
    def _runImp(self):
        normal_data = loadNormal(self._data_file)

        if normal_data is None:
            return

        N0_32F, A_8U = normal_data
        A_32F = to32F(A_8U)

        L = normalizeVector(np.array([-0.2, 0.4, 0.7]))

        C0_32F = LambertShader().diffuseShading(L, N0_32F)
        I_32F = luminance(C0_32F)

        br_field = BrightnessField(I_32F, sigma=5.0)
        I_smooth_32F = br_field.smoothBrightness()
        dI = br_field.brightnessDifference()
        gx, gy = br_field.gradients()

        N_32F = br_field.field()

        fig, axes = plt.subplots(figsize=(11, 5))
        font_size = 15
        fig.subplots_adjust(left=0.05,
                            right=0.95,
                            top=0.9,
                            hspace=0.12,
                            wspace=0.05)
        fig.suptitle(self.name(), fontsize=font_size)

        num_rows = 2
        num_cols = 4
        plot_grid = SubplotGrid(num_rows, num_cols)
        plot_grid.showImage(I_32F, r'$I$')
        plot_grid.showColorMap(dI, r'$dI$')
        plot_grid.showColorMap(gx, r'$gx$')
        plot_grid.showColorMap(gy, r'$gy$')

        plot_grid.showImage(normalToColor(N_32F, A_8U), r'$N$')
        plot_grid.showImage(N_32F[:, :, 2], r'$N_z$')

        showMaximize()
    def _compute(self):
        C0_8U = self._image
        C0_32F = to32F(rgb(C0_8U))
        Lab_32F = rgb2Lab(C0_32F)
        I_32F = luminance(C0_32F)

        h, w = I_32F.shape[:2]
        edge_mask = np.zeros((h, w), dtype=np.uint8)

        #E_32F = DoG(Lab_32F, sigma=7.0)

        #         E_32F[E_32F > 0.0] = 0.0
        #         E_32F = - E_32F
        #         E_32F /= np.max(E_32F)
        #         th_contour = 0.05
        #         for ci in xrange(3):
        #             edge_area = E_32F[:, :, ci] > th_contour
        #             edge_mask[edge_area] = 255

        E_32F = DoG(I_32F, sigma=3.0)
        h, w = E_32F.shape[:2]
        E_norm = -np.array(E_32F)
        E_norm[E_norm < 0.0] = 0.0

        th_contour = 0.1
        edge_area = E_norm > th_contour * np.max(E_norm)
        edge_mask[edge_area] = 255
        self._edge_mask = edge_mask

        labels = np.array(edge_mask)

        mask = np.ones((h + 2, w + 2), dtype=np.uint8)
        mask[1:-1, 1:-1] = self._edge_mask

        for label in xrange(1, 3):
            regionSeeds = np.where(self._edge_mask == 0)
            if len(regionSeeds[0]) == 0:
                break
            p = (regionSeeds[1][0], regionSeeds[0][0])
            cv2.floodFill(labels, mask, p, label)
            self._edge_mask[labels == label] = label
        self._labels = labels
    def _compute(self):
        C0_8U = self._image
        C0_32F = to32F(rgb(C0_8U))
        Lab_32F = rgb2Lab(C0_32F)
        I_32F = luminance(C0_32F)

        h, w = I_32F.shape[:2]
        edge_mask = np.zeros((h, w), dtype=np.uint8)

        # E_32F = DoG(Lab_32F, sigma=7.0)

        #         E_32F[E_32F > 0.0] = 0.0
        #         E_32F = - E_32F
        #         E_32F /= np.max(E_32F)
        #         th_contour = 0.05
        #         for ci in xrange(3):
        #             edge_area = E_32F[:, :, ci] > th_contour
        #             edge_mask[edge_area] = 255

        E_32F = DoG(I_32F, sigma=3.0)
        h, w = E_32F.shape[:2]
        E_norm = -np.array(E_32F)
        E_norm[E_norm < 0.0] = 0.0

        th_contour = 0.1
        edge_area = E_norm > th_contour * np.max(E_norm)
        edge_mask[edge_area] = 255
        self._edge_mask = edge_mask

        labels = np.array(edge_mask)

        mask = np.ones((h + 2, w + 2), dtype=np.uint8)
        mask[1:-1, 1:-1] = self._edge_mask

        for label in xrange(1, 3):
            regionSeeds = np.where(self._edge_mask == 0)
            if len(regionSeeds[0]) == 0:
                break
            p = (regionSeeds[1][0], regionSeeds[0][0])
            cv2.floodFill(labels, mask, p, label)
            self._edge_mask[labels == label] = label
        self._labels = labels
示例#15
0
    def _runColorMap(self, colormap_file, Ng_32F, N0_32F, A_8U):
        M_32F = loadColorMap(colormap_file)

        L0 = normalizeVector(np.array([-0.2, 0.3, 0.6]))
        L0_img = lightSphere(L0)
        L0_txt = 0.01 * np.int32(100 * L0)

        C0_32F = ColorMapShader(M_32F).diffuseShading(L0, Ng_32F)
        I_32F = luminance(C0_32F)

        L = lightEstimation(I_32F, N0_32F, A_8U)

        L_txt = 0.01 * np.int32(100 * L)
        L_img = lightSphere(L)

        fig, axes = plt.subplots(figsize=(11, 5))
        font_size = 15
        fig.subplots_adjust(left=0.05,
                            right=0.95,
                            top=0.9,
                            hspace=0.12,
                            wspace=0.05)
        fig.suptitle(self.name(), fontsize=font_size)

        num_rows = 1
        num_cols = 4
        plot_grid = SubplotGrid(num_rows, num_cols)

        plot_grid.showImage(setAlpha(C0_32F, A_8U),
                            r'Input image: $\mathbf{c}$',
                            font_size=font_size)
        plot_grid.showImage(normalToColor(N0_32F, A_8U),
                            r'Initial normal: $\mathbf{N}_0$')
        plot_grid.showImage(
            L0_img, r'Ground trugh light: $L_g = (%s, %s, %s)$' %
            (L0_txt[0], L0_txt[1], L0_txt[2]))
        plot_grid.showImage(
            L_img, r'Estimated light: $L = (%s, %s, %s)$' %
            (L_txt[0], L_txt[1], L_txt[2]))

        showMaximize()
示例#16
0
    def _interpolateNormalImage(self, N0_32F, W_32F, A_8U):
        constraints = []
        constraints.append(image_constraints.laplacianConstraints(w_c=0.1))
        constraints.append(image_constraints.normalConstraints(W_32F, N0_32F, w_c=3.0))
        L = normalizeVector(np.array([-0.2, 0.3, 0.7]))
        I_32F = luminance(to32F(rgb(self._image)))
        I_min, I_max = np.min(I_32F), np.max(I_32F)

        I_32F = (I_32F - I_min) / (I_max - I_min)

        # constraints.append(image_constraints.brightnessConstraints(L, I_32F, w_c=0.5))
        constraints.append(image_constraints.silhouetteConstraints(A_8U, w_c=0.8))

        solver_iter = image_solver.solveIterator(constraints,
                                                 [postNormalize(th=0.0)])

        N_32F = np.array(N0_32F)
        N_32F = image_solver.solveMG(N_32F, solver_iter, iterations=10)
        N_32F = image_constraints.NxyToNz(N_32F)

        return N_32F
    def _runImp(self):
        normal_data = loadNormal(self._data_file)

        if normal_data is None:
            return

        N0_32F, A_8U = normal_data
        A_32F = to32F(A_8U)

        L = normalizeVector(np.array([-0.2, 0.4, 0.7]))

        C0_32F = LambertShader().diffuseShading(L, N0_32F)
        I_32F = luminance(C0_32F)

        br_field = BrightnessField(I_32F, sigma=5.0)
        I_smooth_32F = br_field.smoothBrightness()
        dI = br_field.brightnessDifference()
        gx, gy = br_field.gradients()

        N_32F = br_field.field()

        fig, axes = plt.subplots(figsize=(11, 5))
        font_size = 15
        fig.subplots_adjust(left=0.05, right=0.95, top=0.9, hspace=0.12, wspace=0.05)
        fig.suptitle(self.name(), fontsize=font_size)

        num_rows = 2
        num_cols = 4
        plot_grid = SubplotGrid(num_rows, num_cols)
        plot_grid.showImage(I_32F, r'$I$')
        plot_grid.showColorMap(dI, r'$dI$')
        plot_grid.showColorMap(gx, r'$gx$')
        plot_grid.showColorMap(gy, r'$gy$')

        plot_grid.showImage(normalToColor(N_32F, A_8U), r'$N$')
        plot_grid.showImage(N_32F[:, :, 2], r'$N_z$')

        showMaximize()
    def _runImp(self):
        normal_data = loadNormal(self._data_file)

        if normal_data is None:
            return

        N0_32F, A_8U = normal_data
        A_32F = to32F(A_8U)

        L = normalizeVector(np.array([-0.2, 0.3, 0.7]))

        #C0_32F = ToonShader().diffuseShading(L, N0_32F)
        C0_32F = LambertShader().diffuseShading(L, N0_32F)
        I0_32F = luminance(C0_32F)

        I0_low_32F = cv2.resize(I0_32F, (256, 256))
        A_low_8U = cv2.resize(A_8U, I0_low_32F.shape)

        D_32F = depthFromGradient(I0_low_32F, A_low_8U)
        D_32F = cv2.resize(D_32F, I0_32F.shape)
        N_32F = depthToNormal(D_32F)

        self._view.setRGBAD(setAlpha(C0_32F, A_32F), D_32F)
    def _runImp(self):
        normal_data = loadNormal(self._data_file)

        if normal_data is None:
            return

        N0_32F, A_8U = normal_data
        A_32F = to32F(A_8U)

        L = normalizeVector(np.array([-0.2, 0.3, 0.7]))

        #C0_32F = ToonShader().diffuseShading(L, N0_32F)
        C0_32F = LambertShader().diffuseShading(L, N0_32F)
        I0_32F = luminance(C0_32F)

        I0_low_32F = cv2.resize(I0_32F, (256, 256))
        A_low_8U = cv2.resize(A_8U, I0_low_32F.shape)

        D_32F = depthFromGradient(I0_low_32F, A_low_8U)
        D_32F = cv2.resize(D_32F, I0_32F.shape)
        N_32F = depthToNormal(D_32F)

        self._view.setRGBAD(setAlpha(C0_32F, A_32F), D_32F)
示例#20
0
    def _runLayer(self, layer_file):
        C0_8U = loadRGBA(layer_file)

        if C0_8U is None:
            return

        A_8U = alpha(C0_8U)

        if A_8U is None:
            return

        A_32F = to32F(A_8U)

        C0_32F = to32F(rgb(C0_8U))
        I0_32F = luminance(C0_32F)

        initial_normals = ["N_lumo.png", "N0_d.png"]

        layer_name = os.path.splitext(os.path.basename(layer_file))[0]

        for initial_normal in initial_normals:
            N0_32F, AN_8U = loadNormal(self.characterResultFile(initial_normal, data_name="BaseDetailSepration"))
            N_32F, L, C_32F, M = self._runSFS(C0_32F, A_8U, N0_32F, AN_8U)

            L_img = lightSphere(L)

            M_img = M.mapImage()

            fig, axes = plt.subplots(figsize=(11, 5))
            font_size = 15
            fig.subplots_adjust(left=0.02, right=0.98, top=0.9, hspace=0.12, wspace=0.02)
            fig.suptitle(self.name(), fontsize=font_size)

            num_rows = 1
            num_cols = 4
            plot_grid = SubplotGrid(num_rows, num_cols)

            plot_grid.showImage(normalToColor(N0_32F, A_8U), r'Initial Normal: $N_0$')
            plot_grid.showImage(normalToColor(N_32F, A_8U), r'Estimated Normal: $N$')
            plot_grid.showImage(C0_8U, r'Shading: $C_0$')
            plot_grid.showImage(setAlpha(C_32F, A_32F), r'Recovered Shading: $C$')

            out_file_path = self.characterResultFile("ToonSFS" + initial_normal, layer_name=layer_name)
            plt.savefig(out_file_path)

            N_trim = trim(N_32F, A_8U)
            N0_trim = trim(N0_32F, A_8U)
            C0_trim = trim(C0_32F, A_8U)
            A_trim = trim(A_8U, A_8U)


            out_file_path = self.characterResultFile(initial_normal, layer_name=layer_name)
            saveNormal(out_file_path, N_trim, A_trim)

            images = self._relightingImages(N_trim, A_trim, M)

            initial_normal_name = os.path.splitext(initial_normal)[0]
            video_name = "Relighting" + initial_normal_name + ".wmv"
            out_file_path = self.characterResultFile(video_name, layer_name=layer_name)
            saveVideo(out_file_path, images)

            images = self._relightingOffsetImages(L, C0_trim, N0_trim, A_trim, M)
            video_name = "RelightingOffset" + initial_normal_name + ".wmv"
            out_file_path = self.characterResultFile(video_name, layer_name=layer_name)
            saveVideo(out_file_path, images)
示例#21
0
    def _runImp(self):
        normal_data = loadNormal(self._data_file)

        if normal_data is None:
            return

        N0_32F, A_8U = normal_data
        A_32F = to32F(A_8U)
        N0_32F = trim(N0_32F, A_8U)
        A_32F = trim(A_32F, A_8U)
        A_8U = trim(A_8U, A_8U)

        L = normalizeVector(np.array([0.5, -0.2, 0.7]))
        C0_32F = ToonShader().diffuseShading(L, N0_32F)
        I0_32F = luminance(C0_32F)

        I_min, I_max = np.min(I0_32F), np.max(I0_32F)
        I_scale = (I0_32F - I_min) / (I_max - I_min)
        I_L = cv2.Laplacian(cv2.GaussianBlur(I_scale, (0, 0), 31.0), cv2.CV_32F, ksize=1)

        I_L_avg = np.average(np.abs(I_L))

        Ix = cv2.Sobel(I0_32F, cv2.CV_64F, 1, 0, ksize=1)
        Ix = cv2.GaussianBlur(Ix, (0, 0), 3.0)
        Ixx = cv2.Sobel(Ix, cv2.CV_64F, 1, 0, ksize=1)
        Ixx = cv2.GaussianBlur(Ixx, (0, 0), 5.0)
        Iy = -cv2.Sobel(I0_32F, cv2.CV_64F, 0, 1, ksize=1)
        Iy = cv2.GaussianBlur(Iy, (0, 0), 3.0)
        Iyy = -cv2.Sobel(Iy, cv2.CV_64F, 0, 1, ksize=1)
        Iyy = cv2.GaussianBlur(Iyy, (0, 0), 5.0)

        fig, axes = plt.subplots(figsize=(11, 5))
        font_size = 15
        fig.subplots_adjust(left=0.05, right=0.95, top=0.9, hspace=0.12, wspace=0.05)
        fig.suptitle(self.name(), fontsize=font_size)

        num_rows = 2
        num_cols = 5
        plot_grid = SubplotGrid(num_rows, num_cols)

        Nx = cv2.Sobel(N0_32F[:, :, 0], cv2.CV_64F, 1, 0, ksize=1)
        Nx = cv2.GaussianBlur(Nx, (0, 0), 3.0)
        Nxx = cv2.Sobel(Nx, cv2.CV_64F, 1, 0, ksize=1)
        Nxx = cv2.GaussianBlur(Nxx, (0, 0), 5.0)
        Ny = -cv2.Sobel(N0_32F[:, :, 1], cv2.CV_64F, 0, 1, ksize=1)
        Ny = cv2.GaussianBlur(Ny, (0, 0), 3.0)
        Nyy = -cv2.Sobel(Ny, cv2.CV_64F, 0, 1, ksize=1)
        Nyy = cv2.GaussianBlur(Nyy, (0, 0), 5.0)
        Nz_L = cv2.Laplacian(cv2.GaussianBlur(N0_32F[:, :, 2], (0, 0), 5.0), cv2.CV_32F, ksize=5)

        Nz_L_avg = np.average(np.abs(Nz_L))

        Nz_L *= 1.0 / Nz_L_avg

        I_L *= 1.0 / I_L_avg

        print I_L_avg, Nz_L_avg

        Nz_L = np.clip(Nz_L, -5.0, 5.0)
        I_L = np.clip(I_L, -5.0, 5.0)

        plot_grid.showColorMap(N0_32F[:, :, 0], r'$N_{x}$', v_min=-0.01, v_max=0.01)
        plot_grid.showColorMap(N0_32F[:, :, 1], r'$N_{y}$', v_min=-0.01, v_max=0.01)
        plot_grid.showColorMap(Nx, r'$N_{xx}$', v_min=-0.01, v_max=0.01)
        plot_grid.showColorMap(Ny, r'$N_{yy}$', v_min=-0.01, v_max=0.01)
        plot_grid.showColorMap(Nz_L, r'$Nz_L$')
        #plot_grid.showColorMap(Nx + Ny, r'$N_{xx} + N_{yy}$', v_min=-0.01, v_max=0.01)

#         Ixx[Ixx>0] = 1.0
#         Ixx[Ixx<0] = -1.0
#         Iyy[Iyy>0] = 1.0
#         Iyy[Iyy<0] = -1.0
        plot_grid.showColorMap(-Ix, r'$I_{x}$', v_min=-0.001, v_max=0.001)
        plot_grid.showColorMap(-Iy, r'$I_{y}$', v_min=-0.001, v_max=0.001)
        plot_grid.showColorMap(-Ixx, r'$I_{xx}$', v_min=-0.001, v_max=0.001)
        plot_grid.showColorMap(-Iyy, r'$I_{yy}$', v_min=-0.001, v_max=0.001)
        plot_grid.showColorMap(I_L, r'$I_L$')
        #plot_grid.showColorMap(-Ixx - Iyy, r'$I_{xx} + I_{yy}$', v_min=-0.01, v_max=0.01)
        #plot_grid.showColorMap(Iy, r'$I_{y}$')

        showMaximize()
示例#22
0
    def _runLayer(self, layer_file):
        C0_8U = loadRGBA(layer_file)

        if C0_8U is None:
            return

        A_8U = alpha(C0_8U)

        if A_8U is None:
            return

        A_32F = to32F(A_8U)

        C0_32F = to32F(rgb(C0_8U))
        I0_32F = luminance(C0_32F)

        initial_normals = ["N_lumo.png", "N0_d.png"]

        layer_name = os.path.splitext(os.path.basename(layer_file))[0]

        for initial_normal in initial_normals:
            N0_32F, AN_8U = loadNormal(
                self.characterResultFile(initial_normal,
                                         data_name="BaseDetailSepration"))
            N_32F, L, C_32F, M = self._runSFS(C0_32F, A_8U, N0_32F, AN_8U)

            L_img = lightSphere(L)

            M_img = M.mapImage()

            fig, axes = plt.subplots(figsize=(11, 5))
            font_size = 15
            fig.subplots_adjust(left=0.02,
                                right=0.98,
                                top=0.9,
                                hspace=0.12,
                                wspace=0.02)
            fig.suptitle(self.name(), fontsize=font_size)

            num_rows = 1
            num_cols = 4
            plot_grid = SubplotGrid(num_rows, num_cols)

            plot_grid.showImage(normalToColor(N0_32F, A_8U),
                                r'Initial Normal: $N_0$')
            plot_grid.showImage(normalToColor(N_32F, A_8U),
                                r'Estimated Normal: $N$')
            plot_grid.showImage(C0_8U, r'Shading: $C_0$')
            plot_grid.showImage(setAlpha(C_32F, A_32F),
                                r'Recovered Shading: $C$')

            out_file_path = self.characterResultFile("ToonSFS" +
                                                     initial_normal,
                                                     layer_name=layer_name)
            plt.savefig(out_file_path)

            N_trim = trim(N_32F, A_8U)
            N0_trim = trim(N0_32F, A_8U)
            C0_trim = trim(C0_32F, A_8U)
            A_trim = trim(A_8U, A_8U)

            out_file_path = self.characterResultFile(initial_normal,
                                                     layer_name=layer_name)
            saveNormal(out_file_path, N_trim, A_trim)

            images = self._relightingImages(N_trim, A_trim, M)

            initial_normal_name = os.path.splitext(initial_normal)[0]
            video_name = "Relighting" + initial_normal_name + ".wmv"
            out_file_path = self.characterResultFile(video_name,
                                                     layer_name=layer_name)
            saveVideo(out_file_path, images)

            images = self._relightingOffsetImages(L, C0_trim, N0_trim, A_trim,
                                                  M)
            video_name = "RelightingOffset" + initial_normal_name + ".wmv"
            out_file_path = self.characterResultFile(video_name,
                                                     layer_name=layer_name)
            saveVideo(out_file_path, images)
def lightEstimationFigure():
    target_colormaps = [23, 0, 6, 22, 4, 12]
    target_shapes = ["Raptor", "Man", "Blob1", "OctaFlower", "Pulley", "Cone"]
    colormap_files = [colorMapFile(cmap_id) for cmap_id in target_colormaps]
    shape_names = target_shapes

    num_rows = len(shape_names) + 1
    num_cols = len(colormap_files) + 1

    w = 10
    h = w * num_rows / num_cols

    fig, axes = plt.subplots(figsize=(w, h))
    font_size = 15
    fig.subplots_adjust(left=0.02, right=0.98, top=0.98, bottom=0.02, hspace=0.05, wspace=0.05)
    fig.suptitle("", fontsize=font_size)

    plot_grid = SubplotGrid(num_rows, num_cols)

    Lg = normalizeVector(np.array([-0.2, 0.3, 0.6]))
    Lg_img = lightSphere(Lg)

    plot_grid.showImage(Lg_img, "")

    Ms = []

    for colormap_file in colormap_files:
        M_32F = loadColorMap(colormap_file)
        Cs_32F = colorMapSphere(Lg, M_32F)

        plot_grid.showImage(Cs_32F, "")

        Ms.append(M_32F)

    L_errors = np.zeros((num_rows, num_cols))

    for si, shape_name in enumerate(shape_names):
        Ng_data = shapeFile(shape_name)

        Ng_data = loadNormal(Ng_data)
        Ng_32F, A_8U = Ng_data

        N0_file = shapeResultFile(result_name="InitialNormal", data_name=shape_name)
        N0_data = loadNormal(N0_file)
        N0_32F, A_8U = N0_data

        plot_grid.showImage(normalToColor(Ng_32F, A_8U), "")

        for mi, M_32F in enumerate(Ms):
            C0_32F = ColorMapShader(M_32F).diffuseShading(Lg, Ng_32F)
            I_32F = luminance(C0_32F)

            L = lightEstimation(I_32F, N0_32F, A_8U)
            L_errors[si, mi] = angleError(Lg, L)

            L_img = lightSphereColorMap(L, v=L_errors[si, mi], v_min=0, v_max=40)

            plot_grid.showImage(L_img, "")

    L_error_min, L_error_max = np.min(L_errors), np.max(L_errors)

    file_path = shapeResultFile("LightEstimation", "LightEstimationError")
    fig.savefig(file_path, transparent=True)
示例#24
0
 def _computeBrightness(self, C_32F):
     return luminance(np.float32(C_32F))
示例#25
0
    def _runImp(self):
        normal_data = loadNormal(self._data_file)

        if normal_data is None:
            return

        N0_32F, A_8U = normal_data
        A_32F = to32F(A_8U)
        N0_32F = trim(N0_32F, A_8U)
        A_32F = trim(A_32F, A_8U)
        A_8U = trim(A_8U, A_8U)

        L = normalizeVector(np.array([0.5, -0.2, 0.7]))
        C0_32F = ToonShader().diffuseShading(L, N0_32F)
        I0_32F = luminance(C0_32F)

        I_min, I_max = np.min(I0_32F), np.max(I0_32F)
        I_scale = (I0_32F - I_min) / (I_max - I_min)
        I_L = cv2.Laplacian(cv2.GaussianBlur(I_scale, (0, 0), 31.0), cv2.CV_32F, ksize=1)

        I_L_avg = np.average(np.abs(I_L))

        Ix = cv2.Sobel(I0_32F, cv2.CV_64F, 1, 0, ksize=1)
        Ix = cv2.GaussianBlur(Ix, (0, 0), 3.0)
        Ixx = cv2.Sobel(Ix, cv2.CV_64F, 1, 0, ksize=1)
        Ixx = cv2.GaussianBlur(Ixx, (0, 0), 5.0)
        Iy = -cv2.Sobel(I0_32F, cv2.CV_64F, 0, 1, ksize=1)
        Iy = cv2.GaussianBlur(Iy, (0, 0), 3.0)
        Iyy = -cv2.Sobel(Iy, cv2.CV_64F, 0, 1, ksize=1)
        Iyy = cv2.GaussianBlur(Iyy, (0, 0), 5.0)

        fig, axes = plt.subplots(figsize=(11, 5))
        font_size = 15
        fig.subplots_adjust(left=0.05, right=0.95, top=0.9, hspace=0.12, wspace=0.05)
        fig.suptitle(self.name(), fontsize=font_size)

        num_rows = 2
        num_cols = 5
        plot_grid = SubplotGrid(num_rows, num_cols)

        Nx = cv2.Sobel(N0_32F[:, :, 0], cv2.CV_64F, 1, 0, ksize=1)
        Nx = cv2.GaussianBlur(Nx, (0, 0), 3.0)
        Nxx = cv2.Sobel(Nx, cv2.CV_64F, 1, 0, ksize=1)
        Nxx = cv2.GaussianBlur(Nxx, (0, 0), 5.0)
        Ny = -cv2.Sobel(N0_32F[:, :, 1], cv2.CV_64F, 0, 1, ksize=1)
        Ny = cv2.GaussianBlur(Ny, (0, 0), 3.0)
        Nyy = -cv2.Sobel(Ny, cv2.CV_64F, 0, 1, ksize=1)
        Nyy = cv2.GaussianBlur(Nyy, (0, 0), 5.0)
        Nz_L = cv2.Laplacian(cv2.GaussianBlur(N0_32F[:, :, 2], (0, 0), 5.0), cv2.CV_32F, ksize=5)

        Nz_L_avg = np.average(np.abs(Nz_L))

        Nz_L *= 1.0 / Nz_L_avg

        I_L *= 1.0 / I_L_avg

        print I_L_avg, Nz_L_avg

        Nz_L = np.clip(Nz_L, -5.0, 5.0)
        I_L = np.clip(I_L, -5.0, 5.0)

        plot_grid.showColorMap(N0_32F[:, :, 0], r"$N_{x}$", v_min=-0.01, v_max=0.01)
        plot_grid.showColorMap(N0_32F[:, :, 1], r"$N_{y}$", v_min=-0.01, v_max=0.01)
        plot_grid.showColorMap(Nx, r"$N_{xx}$", v_min=-0.01, v_max=0.01)
        plot_grid.showColorMap(Ny, r"$N_{yy}$", v_min=-0.01, v_max=0.01)
        plot_grid.showColorMap(Nz_L, r"$Nz_L$")
        # plot_grid.showColorMap(Nx + Ny, r'$N_{xx} + N_{yy}$', v_min=-0.01, v_max=0.01)

        #         Ixx[Ixx>0] = 1.0
        #         Ixx[Ixx<0] = -1.0
        #         Iyy[Iyy>0] = 1.0
        #         Iyy[Iyy<0] = -1.0
        plot_grid.showColorMap(-Ix, r"$I_{x}$", v_min=-0.001, v_max=0.001)
        plot_grid.showColorMap(-Iy, r"$I_{y}$", v_min=-0.001, v_max=0.001)
        plot_grid.showColorMap(-Ixx, r"$I_{xx}$", v_min=-0.001, v_max=0.001)
        plot_grid.showColorMap(-Iyy, r"$I_{yy}$", v_min=-0.001, v_max=0.001)
        plot_grid.showColorMap(I_L, r"$I_L$")
        # plot_grid.showColorMap(-Ixx - Iyy, r'$I_{xx} + I_{yy}$', v_min=-0.01, v_max=0.01)
        # plot_grid.showColorMap(Iy, r'$I_{y}$')

        showMaximize()
    def _loadImage(self):
        C0_32F = self._C0_32F
        I_32F = luminance(C0_32F)

        self._view.render(I_32F)
        return
示例#27
0
    def _loadImage(self):
        C0_32F = self._C0_32F
        I_32F = luminance(C0_32F)

        self._view.render(I_32F)
        return