示例#1
0
def fit_lenscale(df, lenscalepool):
    """searches over the lenscales in lenscale pool for the ls that best
    predicts drilling behavior given the samples in the trial for each
    trial (row) in the df"""
    print 'workerid: ' + df.workerid.iat[0]
    X = np.linspace(0, 1, 1028)
    trialFits = [get_experimentError(df, lenscale, X)
                   for lenscale in lenscalepool]
    trialFits = np.asarray(trialFits)
    xerr = trialFits[:,:,0]
    mu_xerr_byLenscale = xerr.mean(axis=1)
    iBestLen = mu_xerr_byLenscale.argmin()
    fit_lenscale = lenscalepool[iBestLen]
    return fit_lenscale
示例#2
0
def single_exp_err(df, lenscale):
    print 'workerid: ' + df.workerid.iat[0]
    X = np.linspace(0, 1, 1028)
    expfits = get_experimentError(df, lenscale, X)
    return expfits[:, 0].mean()