示例#1
0
def test_sp_voronoi():
    nnodes = 100

    np.random.seed(0)
    x = np.random.rand(nnodes)
    np.random.seed(1)
    y = np.random.rand(nnodes)
    mg = VoronoiDelaunayGrid(x, y)

    np.random.seed(2)
    z = mg.add_field('node', 'topographic__elevation',
                     np.random.rand(nnodes) / 10000., copy=False)

    fr = FlowRouter(mg)
    spe = StreamPowerEroder(mg, os.path.join(_THIS_DIR,
                                             'drive_sp_params_voronoi.txt'))

    for i in range(10):
        z[mg.core_nodes] += 0.01
        fr.route_flow()
        spe.erode(mg, 1.)

    z_tg = np.array([4.35994902e-05,   2.59262318e-06,   5.49662478e-05,
                     4.36094902e-05,   4.20367802e-05,   2.16664196e-03,
                     1.23484520e-02,   4.07654109e-02,   5.69974645e-02,
                     4.71086393e-02,   5.55056467e-02,   5.53655860e-02,
                     4.87984556e-02,   6.62132007e-02,   7.33132951e-02,
                     6.10003971e-02,   8.53975293e-05,   4.90709812e-02,
                     7.84728490e-02,   8.26091298e-02,   5.05246090e-05,
                     3.69289510e-02,   7.56743264e-02,   2.52850671e-02,
                     6.80517443e-02,   5.96745309e-05,   3.86335644e-02,
                     4.12526935e-02,   7.78476139e-02,   7.18165632e-02,
                     7.62359762e-02,   6.65702961e-02,   9.04684278e-02,
                     7.37203974e-02,   9.16862054e-02,   4.11168411e-02,
                     4.36498947e-02,   9.04430763e-02,   1.42123575e-02,
                     8.02734138e-02,   8.34895711e-02,   4.51564589e-02,
                     6.47124169e-02,   9.52317640e-02,   6.01917122e-05,
                     7.11667309e-02,   8.00463179e-02,   9.40668605e-02,
                     9.33247720e-02,   7.34011920e-02,   7.30924467e-02,
                     6.21387674e-02,   9.66278589e-02,   8.64266637e-02,
                     9.06100497e-02,   7.19991365e-02,   1.07162442e-02,
                     8.68685360e-02,   7.40515066e-02,   2.73264483e-02,
                     9.55406046e-02,   6.01817121e-05,   3.28663723e-02,
                     8.60706344e-02,   9.56285286e-02,   4.24741937e-02,
                     5.64139004e-03,   8.72373392e-02,   9.04304841e-02,
                     8.83708170e-02,   5.04000439e-05,   6.47845229e-02,
                     8.77304766e-02,   4.40894724e-02,   8.08029139e-02,
                     4.52732792e-02,   6.35806712e-02,   6.71004941e-02,
                     7.32682350e-02,   4.88067087e-02,   2.14920377e-02,
                     2.55509418e-06,   8.25346959e-02,   8.12610977e-02,
                     3.75778123e-02,   2.20818912e-02,   2.45940192e-02,
                     4.43365163e-02,   4.93255141e-02,   6.23517572e-02,
                     5.99594648e-02,   4.17977098e-06,   4.96450779e-02,
                     3.72952724e-02,   2.26332108e-03,   1.69925430e-02,
                     1.99835635e-02,   6.61481327e-05,   1.70477133e-05,
                     8.81652236e-05]  )

    assert_array_almost_equal(mg.at_node['topographic__elevation'], z_tg)
示例#2
0
def test_sp_voronoi():
    nnodes = 100

    np.random.seed(0)
    x = np.random.rand(nnodes)
    np.random.seed(1)
    y = np.random.rand(nnodes)
    mg = VoronoiDelaunayGrid(x, y)

    np.random.seed(2)
    z = mg.add_field('node', 'topographic__elevation',
                     np.random.rand(nnodes) / 10000., copy=False)

    fr = FlowRouter(mg)
    spe = StreamPowerEroder(mg, os.path.join(_THIS_DIR,
                                             'drive_sp_params_voronoi.txt'))

    for i in range(10):
        z[mg.core_nodes] += 0.01
        fr.route_flow()
        spe.erode(mg, 1.)

    z_tg = np.array([4.35994902e-05,   2.59262318e-06,   5.49662478e-05,
                     6.56738615e-03,   4.20367802e-05,   1.21371424e-02,
                     2.16596169e-02,   4.73320898e-02,   6.00389761e-02,
                     5.22007356e-02,   5.37507115e-02,   5.95794752e-02,
                     5.29862904e-02,   6.76465914e-02,   7.31720024e-02,
                     6.18730861e-02,   8.53975293e-05,   5.32189275e-02,
                     7.34302556e-02,   8.07385044e-02,   5.05246090e-05,
                     4.08940657e-02,   7.39971005e-02,   3.31915602e-02,
                     6.72650419e-02,   5.96745309e-05,   4.72752445e-02,
                     3.60359567e-02,   7.59432065e-02,   7.24461985e-02,
                     7.80305760e-02,   4.93866869e-02,   8.69642467e-02,
                     7.21627626e-02,   8.96368291e-02,   4.65142080e-02,
                     6.07720217e-02,   8.83372939e-02,   2.35887558e-02,
                     7.97616193e-02,   8.35615355e-02,   4.61809032e-02,
                     6.34634214e-02,   9.25711770e-02,   4.11717225e-03,
                     7.24493623e-02,   7.97908053e-02,   9.10375623e-02,
                     9.13155023e-02,   7.10567915e-02,   7.35271752e-02,
                     6.13091341e-02,   9.45498463e-02,   8.48532386e-02,
                     8.82702021e-02,   7.14969941e-02,   2.22640943e-02,
                     8.53311932e-02,   7.49161159e-02,   3.48837223e-02,
                     9.30132692e-02,   6.01817121e-05,   3.87455443e-02,
                     8.44673586e-02,   9.35213577e-02,   6.76075824e-02,
                     1.58614508e-02,   8.51346837e-02,   8.83645680e-02,
                     8.69944117e-02,   5.04000439e-05,   5.02319084e-02,
                     8.63882765e-02,   5.00991880e-02,   7.65156630e-02,
                     5.07591983e-02,   6.54909962e-02,   6.91505342e-02,
                     7.33358371e-02,   5.30109890e-02,   2.99074601e-02,
                     2.55509418e-06,   8.21523907e-02,   8.09368483e-02,
                     4.35073025e-02,   3.04096109e-02,   3.26298627e-02,
                     4.92259177e-02,   5.48690358e-02,   6.44732130e-02,
                     6.28133567e-02,   4.17977098e-06,   5.37149677e-02,
                     4.32828136e-02,   1.30559903e-02,   2.62405261e-02,
                     2.86079272e-02,   6.61481327e-05,   1.70477133e-05,
                     8.81652236e-05])

    assert_array_almost_equal(mg.at_node['topographic__elevation'], z_tg)
示例#3
0
def test_sp_voronoi():
    nnodes = 100

    np.random.seed(0)
    x = np.random.rand(nnodes)
    np.random.seed(1)
    y = np.random.rand(nnodes)
    mg = VoronoiDelaunayGrid(x, y)

    np.random.seed(2)
    z = mg.add_field('node',
                     'topographic__elevation',
                     np.random.rand(nnodes) / 10000.,
                     copy=False)

    fr = FlowRouter(mg)
    spe = StreamPowerEroder(
        mg, os.path.join(_THIS_DIR, 'drive_sp_params_voronoi.txt'))

    for i in range(10):
        z[mg.core_nodes] += 0.01
        fr.route_flow()
        spe.erode(mg, 1.)

    z_tg = np.array([
        4.35994902e-05, 2.59262318e-06, 5.49662478e-05, 4.36094902e-05,
        4.20367802e-05, 2.16664196e-03, 1.23484520e-02, 4.07654109e-02,
        5.69974645e-02, 4.71086393e-02, 5.55056467e-02, 5.53655860e-02,
        4.87984556e-02, 6.62132007e-02, 7.33132951e-02, 6.10003971e-02,
        8.53975293e-05, 4.90709812e-02, 7.84728490e-02, 8.26091298e-02,
        5.05246090e-05, 3.69289510e-02, 7.56743264e-02, 2.52850671e-02,
        6.80517443e-02, 5.96745309e-05, 3.86335644e-02, 4.12526935e-02,
        7.78476139e-02, 7.18165632e-02, 7.62359762e-02, 6.65702961e-02,
        9.04684278e-02, 7.37203974e-02, 9.16862054e-02, 4.11168411e-02,
        4.36498947e-02, 9.04430763e-02, 1.42123575e-02, 8.02734138e-02,
        8.34895711e-02, 4.51564589e-02, 6.47124169e-02, 9.52317640e-02,
        6.01917122e-05, 7.11667309e-02, 8.00463179e-02, 9.40668605e-02,
        9.33247720e-02, 7.34011920e-02, 7.30924467e-02, 6.21387674e-02,
        9.66278589e-02, 8.64266637e-02, 9.06100497e-02, 7.19991365e-02,
        1.07162442e-02, 8.68685360e-02, 7.40515066e-02, 2.73264483e-02,
        9.55406046e-02, 6.01817121e-05, 3.28663723e-02, 8.60706344e-02,
        9.56285286e-02, 4.24741937e-02, 5.64139004e-03, 8.72373392e-02,
        9.04304841e-02, 8.83708170e-02, 5.04000439e-05, 6.47845229e-02,
        8.77304766e-02, 4.40894724e-02, 8.08029139e-02, 4.52732792e-02,
        6.35806712e-02, 6.71004941e-02, 7.32682350e-02, 4.88067087e-02,
        2.14920377e-02, 2.55509418e-06, 8.25346959e-02, 8.12610977e-02,
        3.75778123e-02, 2.20818912e-02, 2.45940192e-02, 4.43365163e-02,
        4.93255141e-02, 6.23517572e-02, 5.99594648e-02, 4.17977098e-06,
        4.96450779e-02, 3.72952724e-02, 2.26332108e-03, 1.69925430e-02,
        1.99835635e-02, 6.61481327e-05, 1.70477133e-05, 8.81652236e-05
    ])

    assert_array_almost_equal(mg.at_node['topographic__elevation'], z_tg)
示例#4
0
def test_voronoi_from_dict():
    x = [0, 0.1, 0.2, 0.3, 1, 1.1, 1.2, 1.3, 2, 2.1, 2.2, 2.3]
    y = [0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3]
    params = {
        "x": x,
        "y": y,
        "axis_name": ("spam", "eggs"),
        "axis_units": ("smoot", "parsec"),
        "xy_of_reference": (12345, 678910),
    }

    mg = VoronoiDelaunayGrid.from_dict(params)
    assert mg.axis_units == ("smoot", "parsec")
    assert mg.axis_name == ("spam", "eggs")
    assert mg.xy_of_reference == (12345, 678910)

    true_x = np.array([0.0, 1.0, 2.0, 0.1, 1.1, 2.1, 0.2, 1.2, 2.2, 0.3, 1.3, 2.3])
    true_y = np.array([0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 2.0, 2.0, 2.0, 3.0, 3.0, 3.0])
    true_nodes_at_node = np.array(
        [
            [1, 3, -1, -1, -1, -1],
            [2, 4, 3, 0, -1, -1],
            [5, 4, 1, -1, -1, -1],
            [4, 6, 0, 1, -1, -1],
            [5, 7, 6, 3, 1, 2],
            [8, 7, 4, 2, -1, -1],
            [7, 9, 3, 4, -1, -1],
            [8, 10, 9, 6, 4, 5],
            [11, 10, 7, 5, -1, -1],
            [10, 6, 7, -1, -1, -1],
            [11, 9, 7, 8, -1, -1],
            [10, 8, -1, -1, -1, -1],
        ]
    )
    assert_array_equal(mg.node_x, true_x)
    assert_array_equal(mg.node_y, true_y)
    assert_array_equal(mg.adjacent_nodes_at_node, true_nodes_at_node)
示例#5
0
def test_voronoi_from_dict():
    x = [0.0, 0.1, 0.2, 0.3, 1.0, 1.1, 1.2, 1.3, 2.0, 2.1, 2.2, 2.3]
    y = [0.0, 1.0, 2.0, 3.0, 0.0, 1.0, 2.0, 3.0, 0.0, 1.0, 2.0, 3.0]
    params = {
        "x": x,
        "y": y,
        "xy_axis_name": ("spam", "eggs"),
        "xy_axis_units": ("smoot", "parsec"),
        "xy_of_reference": (12345, 678910),
    }

    mg = VoronoiDelaunayGrid.from_dict(params)
    assert mg.axis_units == ("smoot", "parsec")
    assert mg.axis_name == ("spam", "eggs")
    assert mg.xy_of_reference == (12345, 678910)

    true_x = np.array([0.0, 1.0, 2.0, 0.1, 1.1, 2.1, 0.2, 1.2, 2.2, 0.3, 1.3, 2.3])
    true_y = np.array([0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 2.0, 2.0, 2.0, 3.0, 3.0, 3.0])
    true_nodes_at_node = np.array(
        [
            [1, 3, -1, -1, -1, -1],
            [2, 4, 3, 0, -1, -1],
            [5, 4, 1, -1, -1, -1],
            [4, 6, 0, 1, -1, -1],
            [5, 7, 6, 3, 1, 2],
            [8, 7, 4, 2, -1, -1],
            [7, 9, 3, 4, -1, -1],
            [8, 10, 9, 6, 4, 5],
            [11, 10, 7, 5, -1, -1],
            [10, 6, 7, -1, -1, -1],
            [11, 9, 7, 8, -1, -1],
            [10, 8, -1, -1, -1, -1],
        ]
    )
    assert_array_equal(mg.x_of_node, true_x)
    assert_array_equal(mg.y_of_node, true_y)
    assert_array_equal(mg.adjacent_nodes_at_node, true_nodes_at_node)
示例#6
0
from landlab import VoronoiDelaunayGrid  # , RasterModelGrid
from landlab.components.flow_routing.route_flow_dn import FlowRouter
from landlab.components.stream_power.stream_power import StreamPowerEroder
from landlab.plot.imshow import imshow_node_grid
import numpy as np
from matplotlib.pyplot import figure, show

nnodes = 10000

x, y = np.random.rand(nnodes), np.random.rand(nnodes)
mg = VoronoiDelaunayGrid(x,y)
#mg = RasterModelGrid(4,5)

z = mg.add_field('node', 'topographic__elevation', np.random.rand(nnodes)/10000., copy=False)

fr = FlowRouter(mg)
spe = StreamPowerEroder(mg, 'drive_sp_params_voronoi.txt')

for i in xrange(100):
    z[mg.core_nodes] += 0.01
    fr.route_flow()
    spe.erode(mg, 1.)

imshow_node_grid(mg, 'topographic__elevation')

show()
示例#7
0
def test_not_implemented_voroni():
    x = [0, 0.1, 0.2, 0.3, 1, 1.1, 1.2, 1.3, 2, 2.1, 2.2, 2.3]
    y = [0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3]
    vmg = VoronoiDelaunayGrid(x, y)
    with pytest.raises(NotImplementedError):
        flow_direction_dinf.flow_directions_dinf(vmg)
示例#8
0
import numpy as np
from matplotlib.pyplot import show
from six.moves import range

from landlab import VoronoiDelaunayGrid
from landlab.components import FlowAccumulator, StreamPowerEroder
from landlab.plot.imshow import imshow_node_grid

nnodes = 10000

x, y = np.random.rand(nnodes), np.random.rand(nnodes)
mg = VoronoiDelaunayGrid(x, y)

z = mg.add_field("node",
                 "topographic__elevation",
                 np.random.rand(nnodes) / 10000.,
                 copy=False)

fr = FlowAccumulator(mg)
spe = StreamPowerEroder(mg, "drive_sp_params_voronoi.txt")

for i in range(100):
    z[mg.core_nodes] += 0.01
    fr.run_one_step()
    spe.erode(mg, 1.)

imshow_node_grid(mg, "topographic__elevation")

show()
示例#9
0
        items={
            "grid_element": np.array([["node"], ["link"]]),
            "element_id": np.array([[1], [3]]),
        },
        data_vars={"mean_elevation": (["time"], np.array([100]))},
        attrs=["not a dict"],
    )
# Should return except AttributeError:
#                 raise TypeError(('Attributes (attrs) passed to DataRecord'
#                                 'must be a dictionary'))
#
# test bad loc and id:
rmg = RasterModelGrid((3, 3))
hmg = HexModelGrid(3, 2, 1.0)
radmg = RadialModelGrid(num_shells=1, dr=1.0, xy_of_center=(0.0, 0.0))
vdmg = VoronoiDelaunayGrid(np.random.rand(25), np.random.rand(25))
my_items_bad_loc = {
    "grid_element": np.array(["node", "bad_loc"]),
    "element_id": np.array([1, 3]),
}
my_items_bad_loc2 = {"grid_element": "bad_loc", "element_id": np.array([1, 3])}
my_items_bad_loc3 = {
    "grid_element": np.array(["node", "node", "node"]),
    "element_id": np.array([1, 3]),
}
my_items_bad_id = {
    "grid_element": np.array(["node", "link"]),
    "element_id": np.array([1, 300]),
}
my_items_bad_id2 = {
    "grid_element": np.array(["node", "link"]),
示例#10
0
#
# We can create **grid** objects with the following lines of code.

# In[ ]:

import numpy as np
from landlab import RasterModelGrid, VoronoiDelaunayGrid, HexModelGrid
# a square-cell raster, 3 rows x 4 columns, unit spacing
smg = RasterModelGrid((3, 4), 1.)
rmg = RasterModelGrid((3, 4), (1., 2.))  # a rectangular-cell raster
hmg = HexModelGrid(3, 4, 1.)
# ^a hexagonal grid with 3 rows, 4 columns from the base row, & node spacing of
# 1.
x = np.random.rand(100) * 100.
y = np.random.rand(100) * 100.
vmg = VoronoiDelaunayGrid(x, y)
# ^a Voronoi-cell grid with 100 randomly positioned nodes within a 100.x100.
# square

# All these various `ModelGrid` objects contains various data items (known as
# *attributes*). These include, for example: * number nodes and links in the
# grid * *x* and *y* coordinates of each each node * starting ("tail") and
# ending ("head") node IDs of each link * IDs of links that are active * IDs of
# core nodes * etc.
#
# From here on we'll focus on the square raster grid as its geometry is a bit
# easier to think through, but all of the following applies to all grid types.
#
# ## Understanding the topology of Landlab grids
#
# All grids consist of two interlocked sets of *points* joined by *lines*
示例#11
0
import numpy as np
from matplotlib.pyplot import show
from six.moves import range

from landlab import VoronoiDelaunayGrid
from landlab.components import FlowAccumulator, StreamPowerEroder
from landlab.plot.imshow import imshow_grid

nnodes = 10000

x, y = np.random.rand(nnodes), np.random.rand(nnodes)
mg = VoronoiDelaunayGrid(x, y)

z = mg.add_field(
    "node", "topographic__elevation", np.random.rand(nnodes) / 10000., copy=False
)

fr = FlowAccumulator(mg)
spe = StreamPowerEroder(mg, "drive_sp_params_voronoi.txt")

for i in range(100):
    z[mg.core_nodes] += 0.01
    fr.run_one_step()
    spe.erode(mg, 1.)

imshow_grid(mg, "topographic__elevation")

show()
示例#12
0
def test_misc():
    grid = RasterModelGrid((3, 3))

    # test bad dimension:
    with pytest.raises(ValueError):
        DataRecord(
            grid,
            time=[0.0],
            data_vars={"mean_elev": (["time"], [100.0]), "test": (["bad_dim"], [12])},
        )
    # should return ValueError('Data variable dimensions must be time and/or'
    #                              'item_id')
    # test bad time format:
    with pytest.raises(TypeError):
        DataRecord(grid=grid, time="bad_time")
    # should return TypeError: Time must be a list or an array of length 1

    # test bad datavars format:
    with pytest.raises(TypeError):
        DataRecord(grid, time=[0.0], data_vars=["not a dict"])
    # should return TypeError(('Data variables (data_vars) passed to'
    #                                 ' DataRecord must be a dictionary (see '
    #                                 'documentation for valid structure)'))

    # test bad items format:
    with pytest.raises(TypeError):
        DataRecord(
            grid,
            time=[0.0],
            items=["not a dict"],
            data_vars={"mean_elevation": (["time"], np.array([100]))},
            attrs={"time_units": "y"},
        )
    # Should return TypeError(('You must provide an ''items'' dictionary '
    #                                 '(see documentation for required format)'))
    #
    with pytest.raises(TypeError):
        """Test bad items keys"""
        DataRecord(
            grid,
            time=[0.0],
            items={
                "grid_element": np.array([["node"], ["link"]]),
                "bad_key": np.array([[1], [3]]),
            },
            data_vars={"mean_elevation": (["time"], np.array([100]))},
            attrs={"time_units": "y"},
        )
    # Should return TypeError(('You must provide an ''items'' dictionary '
    #                                  '(see documentation for required format)'))
    with pytest.raises(TypeError):
        """Test bad attrs"""
        DataRecord(
            grid,
            time=[0.0],
            items={
                "grid_element": np.array([["node"], ["link"]]),
                "element_id": np.array([[1], [3]]),
            },
            data_vars={"mean_elevation": (["time"], np.array([100]))},
            attrs=["not a dict"],
        )
    # Should return except AttributeError:
    #                 raise TypeError(('Attributes (attrs) passed to DataRecord'
    #                                 'must be a dictionary'))
    #
    # test bad loc and id:
    rmg = RasterModelGrid((3, 3))
    hmg = HexModelGrid((3, 2), spacing=1.0)
    radmg = RadialModelGrid(n_rings=1, nodes_in_first_ring=5, xy_of_center=(0.0, 0.0))
    vdmg = VoronoiDelaunayGrid(np.random.rand(25), np.random.rand(25))
    my_items_bad_loc = {
        "grid_element": np.array(["node", "bad_loc"]),
        "element_id": np.array([1, 3]),
    }
    my_items_bad_loc2 = {"grid_element": "bad_loc", "element_id": np.array([1, 3])}
    my_items_bad_loc3 = {
        "grid_element": np.array(["node", "node", "node"]),
        "element_id": np.array([1, 3]),
    }
    my_items_bad_id = {
        "grid_element": np.array(["node", "link"]),
        "element_id": np.array([1, 300]),
    }
    my_items_bad_id2 = {
        "grid_element": np.array(["node", "link"]),
        "element_id": np.array([1, -300]),
    }
    my_items_bad_id3 = {
        "grid_element": np.array(["node", "link"]),
        "element_id": np.array([1, 2.0]),
    }
    my_items_bad_id4 = {
        "grid_element": np.array(["node", "link"]),
        "element_id": np.array([1, 2, 3]),
    }
    with pytest.raises(ValueError):
        DataRecord(rmg, items=my_items_bad_loc)
    with pytest.raises(ValueError):
        DataRecord(hmg, items=my_items_bad_loc)
    with pytest.raises(ValueError):
        DataRecord(radmg, items=my_items_bad_loc)
    with pytest.raises(ValueError):
        DataRecord(vdmg, items=my_items_bad_loc)
    # should return ValueError(('One or more of the grid elements provided is/are'
    #                             ' not permitted location for this grid type.'))
    with pytest.raises(ValueError):
        DataRecord(rmg, items=my_items_bad_loc2)
    # should return ValueError: Location provided: bad_loc is not a permitted
    #  location for this grid type.
    with pytest.raises(ValueError):
        DataRecord(rmg, items=my_items_bad_loc3)
    # should return ValueError(('grid_element passed to DataRecord must be '
    #  ' the same length as the number of items or 1.'))
    with pytest.raises(ValueError):
        DataRecord(rmg, items=my_items_bad_id)
    with pytest.raises(ValueError):
        DataRecord(hmg, items=my_items_bad_id)
    with pytest.raises(ValueError):
        DataRecord(radmg, items=my_items_bad_id)
    with pytest.raises(ValueError):
        DataRecord(vdmg, items=my_items_bad_id)
    # should return ValueError(('An item residing at ' + at + ' has an '
    #  'element_id larger than the number of'+ at + 'on the grid.'))
    with pytest.raises(ValueError):
        DataRecord(rmg, items=my_items_bad_id2)
    #  should return ValueError(('An item residing at ' + at + ' has '
    # 'an element id below zero. This is not permitted.'))
    with pytest.raises(ValueError):
        DataRecord(rmg, items=my_items_bad_id3)
    # should return ValueError(('You have passed a non-integer element_id to '
    #                              'DataRecord, this is not permitted.'))
    with pytest.raises(ValueError):
        DataRecord(rmg, items=my_items_bad_id4)