def __init__(self, network_params=None): logger.info("Testeo de NeuralNetwork con datos de Combined Cycle Power Plant") # Datos logger.info("Cargando datos...") data = load_ccpp() dataset = LocalLabeledDataSet(data) self.train, self.valid, self.test = dataset.split_data([.5, .3, .2]) self.valid = self.valid.collect() # Modelo if network_params is None: network_params = NetworkParameters(units_layers=[4, 30, 1], activation='ReLU', classification=False, seed=123) self.model = NeuralNetwork(network_params) # Seteo a mano self.model.set_l1(5e-7) self.model.set_l2(3e-4) self.model.set_dropout_ratios([0.0, 0.0])
def __init__(self, network_params=None): logger.info( "Testeo de NeuralNetwork con datos de Combined Cycle Power Plant") # Datos logger.info("Cargando datos...") data = load_ccpp() dataset = LocalLabeledDataSet(data) self.train, self.valid, self.test = dataset.split_data([.5, .3, .2]) self.valid = self.valid.collect() # Modelo if network_params is None: network_params = NetworkParameters(units_layers=[4, 30, 1], activation='ReLU', classification=False, seed=123) self.model = NeuralNetwork(network_params) # Seteo a mano self.model.set_l1(5e-7) self.model.set_l2(3e-4) self.model.set_dropout_ratios([0.0, 0.0])
from learninspy.core.model import NeuralNetwork, NetworkParameters from learninspy.core.optimization import OptimizerParameters from learninspy.core.stops import criterion from learninspy.utils.data import LocalLabeledDataSet, load_ccpp from learninspy.utils.evaluation import RegressionMetrics from learninspy.utils.plots import plot_fitting from learninspy.utils.fileio import get_logger import os logger = get_logger(name='learninspy-demo_ccpp') # -- 1.a) Carga de datos logger.info("Cargando datos de Combined Cycle Power Plant ...") dataset = load_ccpp() dataset = LocalLabeledDataSet(dataset) rows, cols = dataset.shape logger.info("Dimension de datos: %i x %i", rows, cols) train, valid, test = dataset.split_data([0.5, 0.3, 0.2]) # Particiono en conjuntos # -- 1.b) Normalización """ std = StandardScaler() std.fit(train) train = std.transform(train) valid = std.transform(valid) test = std.transform(test) """
from learninspy.core.model import NeuralNetwork, NetworkParameters from learninspy.core.optimization import OptimizerParameters from learninspy.core.stops import criterion from learninspy.utils.data import LocalLabeledDataSet, load_ccpp from learninspy.utils.evaluation import RegressionMetrics from learninspy.utils.plots import plot_fitting from learninspy.utils.fileio import get_logger import os logger = get_logger(name='learninspy-demo_ccpp') # -- 1.a) Carga de datos logger.info("Cargando datos de Combined Cycle Power Plant ...") dataset = load_ccpp() dataset = LocalLabeledDataSet(dataset) rows, cols = dataset.shape logger.info("Dimension de datos: %i x %i", rows, cols) train, valid, test = dataset.split_data([0.5, 0.3, 0.2]) # Particiono en conjuntos # -- 1.b) Normalización """ std = StandardScaler() std.fit(train) train = std.transform(train) valid = std.transform(valid) test = std.transform(test) """ # -- 2) Selección de parámetros