def mpc_agm(a, b, prec, rnd=round_fast): """ Complex AGM. TODO: * check that convergence works as intended * optimize * select a nonarbitrary branch """ if mpc_is_infnan(a) or mpc_is_infnan(b): return fnan, fnan if mpc_zero in (a, b): return fzero, fzero if mpc_neg(a) == b: return fzero, fzero wp = prec+20 eps = mpf_shift(fone, -wp+10) while 1: a1 = mpc_shift(mpc_add(a, b, wp), -1) b1 = mpc_sqrt(mpc_mul(a, b, wp), wp) a, b = a1, b1 size = mpf_min_max([mpc_abs(a,10), mpc_abs(b,10)])[1] err = mpc_abs(mpc_sub(a, b, 10), 10) if size == fzero or mpf_lt(err, mpf_mul(eps, size)): return a
def mpc_agm(a, b, prec, rnd=round_fast): """ Complex AGM. TODO: * check that convergence works as intended * optimize * select a nonarbitrary branch """ if mpc_is_infnan(a) or mpc_is_infnan(b): return fnan, fnan if mpc_zero in (a, b): return fzero, fzero if mpc_neg(a) == b: return fzero, fzero wp = prec + 20 eps = mpf_shift(fone, -wp + 10) while 1: a1 = mpc_shift(mpc_add(a, b, wp), -1) b1 = mpc_sqrt(mpc_mul(a, b, wp), wp) a, b = a1, b1 size = sorted([mpc_abs(a, 10), mpc_abs(a, 10)], cmp=mpf_cmp)[1] err = mpc_abs(mpc_sub(a, b, 10), 10) if size == fzero or mpf_lt(err, mpf_mul(eps, size)): return a
def mpc_erf(z, prec, rnd=round_fast): re, im = z if im == fzero: return (mpf_erf(re, prec, rnd), fzero) wp = prec + 20 z2 = mpc_square(z, prec + 20) v = mpc_hyp1f1_rat((1, 2), (3, 2), mpc_neg(z2), wp, rnd) sqrtpi = mpf_sqrt(mpf_pi(wp), wp) c = mpf_rdiv_int(2, sqrtpi, wp) c = mpc_mul_mpf(z, c, wp) return mpc_mul(c, v, prec, rnd)
def mpc_erf(z, prec, rnd=round_fast): re, im = z if im == fzero: return (mpf_erf(re, prec, rnd), fzero) wp = prec + 20 z2 = mpc_mul(z, z, prec+20) v = mpc_hyp1f1_rat((1,2), (3,2), mpc_neg(z2), wp, rnd) sqrtpi = mpf_sqrt(mpf_pi(wp), wp) c = mpf_rdiv_int(2, sqrtpi, wp) c = mpc_mul_mpf(z, c, wp) return mpc_mul(c, v, prec, rnd)
def mpc_zeta(s, prec, rnd=round_fast, alt=0, force=False): re, im = s if im == fzero: return mpf_zeta(re, prec, rnd, alt), fzero # slow for large s if (not force) and mpf_gt(mpc_abs(s, 10), from_int(prec)): raise NotImplementedError wp = prec + 20 # Near pole r = mpc_sub(mpc_one, s, wp) asign, aman, aexp, abc = mpc_abs(r, 10) pole_dist = -2*(aexp+abc) if pole_dist > wp: if alt: q = mpf_ln2(wp) y = mpf_mul(q, mpf_euler(wp), wp) g = mpf_shift(mpf_mul(q, q, wp), -1) g = mpf_sub(y, g) z = mpc_mul_mpf(r, mpf_neg(g), wp) z = mpc_add_mpf(z, q, wp) return mpc_pos(z, prec, rnd) else: q = mpc_neg(mpc_div(mpc_one, r, wp)) q = mpc_add_mpf(q, mpf_euler(wp), wp) return mpc_pos(q, prec, rnd) else: wp += max(0, pole_dist) # Reflection formula. To be rigorous, we should reflect to the left of # re = 1/2 (see comments for mpf_zeta), but this leads to unnecessary # slowdown for interesting values of s if mpf_lt(re, fzero): # XXX: could use the separate refl. formula for Dirichlet eta if alt: q = mpc_sub(mpc_one, mpc_pow(mpc_two, mpc_sub(mpc_one, s, wp), wp), wp) return mpc_mul(mpc_zeta(s, wp), q, prec, rnd) # XXX: -1 should be done exactly y = mpc_sub(mpc_one, s, 10*wp) a = mpc_gamma(y, wp) b = mpc_zeta(y, wp) c = mpc_sin_pi(mpc_shift(s, -1), wp) rsign, rman, rexp, rbc = re isign, iman, iexp, ibc = im mag = max(rexp+rbc, iexp+ibc) wp2 = wp + mag pi = mpf_pi(wp+wp2) pi2 = (mpf_shift(pi, 1), fzero) d = mpc_div_mpf(mpc_pow(pi2, s, wp2), pi, wp2) return mpc_mul(a,mpc_mul(b,mpc_mul(c,d,wp),wp),prec,rnd) n = int(wp/2.54 + 5) n += int(0.9*abs(to_int(im))) d = borwein_coefficients(n) ref = to_fixed(re, wp) imf = to_fixed(im, wp) tre = MPZ_ZERO tim = MPZ_ZERO one = MPZ_ONE << wp one_2wp = MPZ_ONE << (2*wp) critical_line = re == fhalf for k in xrange(n): log = log_int_fixed(k+1, wp) # A square root is much cheaper than an exp if critical_line: w = one_2wp // sqrt_fixed((k+1) << wp, wp) else: w = to_fixed(mpf_exp(from_man_exp(-ref*log, -2*wp), wp), wp) if k & 1: w *= (d[n] - d[k]) else: w *= (d[k] - d[n]) wre, wim = mpf_cos_sin(from_man_exp(-imf * log, -2*wp), wp) tre += (w * to_fixed(wre, wp)) >> wp tim += (w * to_fixed(wim, wp)) >> wp tre //= (-d[n]) tim //= (-d[n]) tre = from_man_exp(tre, -wp, wp) tim = from_man_exp(tim, -wp, wp) if alt: return mpc_pos((tre, tim), prec, rnd) else: q = mpc_sub(mpc_one, mpc_pow(mpc_two, r, wp), wp) return mpc_div((tre, tim), q, prec, rnd)
def mpc_ei(z, prec, rnd=round_fast, e1=False): if e1: z = mpc_neg(z) a, b = z asign, aman, aexp, abc = a bsign, bman, bexp, bbc = b if b == fzero: if e1: x = mpf_neg(mpf_ei(a, prec, rnd)) if not asign: y = mpf_neg(mpf_pi(prec, rnd)) else: y = fzero return x, y else: return mpf_ei(a, prec, rnd), fzero if a != fzero: if not aman or not bman: return (fnan, fnan) wp = prec + 40 amag = aexp+abc bmag = bexp+bbc zmag = max(amag, bmag) can_use_asymp = zmag > wp if not can_use_asymp: zabsint = abs(to_int(a)) + abs(to_int(b)) can_use_asymp = zabsint > int(wp*0.693) + 20 try: if can_use_asymp: if zmag > wp: v = fone, fzero else: zre = to_fixed(a, wp) zim = to_fixed(b, wp) vre, vim = complex_ei_asymptotic(zre, zim, wp) v = from_man_exp(vre, -wp), from_man_exp(vim, -wp) v = mpc_mul(v, mpc_exp(z, wp), wp) v = mpc_div(v, z, wp) if e1: v = mpc_neg(v, prec, rnd) else: x, y = v if bsign: v = mpf_pos(x, prec, rnd), mpf_sub(y, mpf_pi(wp), prec, rnd) else: v = mpf_pos(x, prec, rnd), mpf_add(y, mpf_pi(wp), prec, rnd) return v except NoConvergence: pass #wp += 2*max(0,zmag) wp += 2*int(to_int(mpc_abs(z, 5))) zre = to_fixed(a, wp) zim = to_fixed(b, wp) vre, vim = complex_ei_taylor(zre, zim, wp) vre += euler_fixed(wp) v = from_man_exp(vre,-wp), from_man_exp(vim,-wp) if e1: u = mpc_log(mpc_neg(z),wp) else: u = mpc_log(z,wp) v = mpc_add(v, u, prec, rnd) if e1: v = mpc_neg(v) return v
def mpc_ei(z, prec, rnd=round_fast, e1=False): if e1: z = mpc_neg(z) a, b = z asign, aman, aexp, abc = a bsign, bman, bexp, bbc = b if b == fzero: if e1: x = mpf_neg(mpf_ei(a, prec, rnd)) if not asign: y = mpf_neg(mpf_pi(prec, rnd)) else: y = fzero return x, y else: return mpf_ei(a, prec, rnd), fzero if a != fzero: if not aman or not bman: return (fnan, fnan) wp = prec + 40 amag = aexp + abc bmag = bexp + bbc zmag = max(amag, bmag) can_use_asymp = zmag > wp if not can_use_asymp: zabsint = abs(to_int(a)) + abs(to_int(b)) can_use_asymp = zabsint > int(wp * 0.693) + 20 try: if can_use_asymp: if zmag > wp: v = fone, fzero else: zre = to_fixed(a, wp) zim = to_fixed(b, wp) vre, vim = complex_ei_asymptotic(zre, zim, wp) v = from_man_exp(vre, -wp), from_man_exp(vim, -wp) v = mpc_mul(v, mpc_exp(z, wp), wp) v = mpc_div(v, z, wp) if e1: v = mpc_neg(v, prec, rnd) else: x, y = v if bsign: v = mpf_pos(x, prec, rnd), mpf_sub(y, mpf_pi(wp), prec, rnd) else: v = mpf_pos(x, prec, rnd), mpf_add(y, mpf_pi(wp), prec, rnd) return v except NoConvergence: pass #wp += 2*max(0,zmag) wp += 2 * int(to_int(mpc_abs(z, 5))) zre = to_fixed(a, wp) zim = to_fixed(b, wp) vre, vim = complex_ei_taylor(zre, zim, wp) vre += euler_fixed(wp) v = from_man_exp(vre, -wp), from_man_exp(vim, -wp) if e1: u = mpc_log(mpc_neg(z), wp) else: u = mpc_log(z, wp) v = mpc_add(v, u, prec, rnd) if e1: v = mpc_neg(v) return v
def mpc_zeta(s, prec, rnd=round_fast, alt=0, force=False): re, im = s if im == fzero: return mpf_zeta(re, prec, rnd, alt), fzero # slow for large s if (not force) and mpf_gt(mpc_abs(s, 10), from_int(prec)): raise NotImplementedError wp = prec + 20 # Near pole r = mpc_sub(mpc_one, s, wp) asign, aman, aexp, abc = mpc_abs(r, 10) pole_dist = -2 * (aexp + abc) if pole_dist > wp: if alt: q = mpf_ln2(wp) y = mpf_mul(q, mpf_euler(wp), wp) g = mpf_shift(mpf_mul(q, q, wp), -1) g = mpf_sub(y, g) z = mpc_mul_mpf(r, mpf_neg(g), wp) z = mpc_add_mpf(z, q, wp) return mpc_pos(z, prec, rnd) else: q = mpc_neg(mpc_div(mpc_one, r, wp)) q = mpc_add_mpf(q, mpf_euler(wp), wp) return mpc_pos(q, prec, rnd) else: wp += max(0, pole_dist) # Reflection formula. To be rigorous, we should reflect to the left of # re = 1/2 (see comments for mpf_zeta), but this leads to unnecessary # slowdown for interesting values of s if mpf_lt(re, fzero): # XXX: could use the separate refl. formula for Dirichlet eta if alt: q = mpc_sub(mpc_one, mpc_pow(mpc_two, mpc_sub(mpc_one, s, wp), wp), wp) return mpc_mul(mpc_zeta(s, wp), q, prec, rnd) # XXX: -1 should be done exactly y = mpc_sub(mpc_one, s, 10 * wp) a = mpc_gamma(y, wp) b = mpc_zeta(y, wp) c = mpc_sin_pi(mpc_shift(s, -1), wp) rsign, rman, rexp, rbc = re isign, iman, iexp, ibc = im mag = max(rexp + rbc, iexp + ibc) wp2 = wp + mag pi = mpf_pi(wp + wp2) pi2 = (mpf_shift(pi, 1), fzero) d = mpc_div_mpf(mpc_pow(pi2, s, wp2), pi, wp2) return mpc_mul(a, mpc_mul(b, mpc_mul(c, d, wp), wp), prec, rnd) n = int(wp / 2.54 + 5) n += int(0.9 * abs(to_int(im))) d = borwein_coefficients(n) ref = to_fixed(re, wp) imf = to_fixed(im, wp) tre = MPZ_ZERO tim = MPZ_ZERO one = MPZ_ONE << wp one_2wp = MPZ_ONE << (2 * wp) critical_line = re == fhalf for k in xrange(n): log = log_int_fixed(k + 1, wp) # A square root is much cheaper than an exp if critical_line: w = one_2wp // sqrt_fixed((k + 1) << wp, wp) else: w = to_fixed(mpf_exp(from_man_exp(-ref * log, -2 * wp), wp), wp) if k & 1: w *= (d[n] - d[k]) else: w *= (d[k] - d[n]) wre, wim = mpf_cos_sin(from_man_exp(-imf * log, -2 * wp), wp) tre += (w * to_fixed(wre, wp)) >> wp tim += (w * to_fixed(wim, wp)) >> wp tre //= (-d[n]) tim //= (-d[n]) tre = from_man_exp(tre, -wp, wp) tim = from_man_exp(tim, -wp, wp) if alt: return mpc_pos((tre, tim), prec, rnd) else: q = mpc_sub(mpc_one, mpc_pow(mpc_two, r, wp), wp) return mpc_div((tre, tim), q, prec, rnd)