示例#1
0
def mpf_atan(x, prec, rnd=round_fast):
    sign, man, exp, bc = x
    if not man:
        if x == fzero: return fzero
        if x == finf: return atan_inf(0, prec, rnd)
        if x == fninf: return atan_inf(1, prec, rnd)
        return fnan
    mag = exp + bc
    # Essentially infinity
    if mag > prec+20:
        return atan_inf(sign, prec, rnd)
    # Essentially ~ x
    if -mag > prec+20:
        return mpf_perturb(x, 1-sign, prec, rnd)
    wp = prec + 30 + abs(mag)
    # For large x, use atan(x) = pi/2 - atan(1/x)
    if mag >= 2:
        x = mpf_rdiv_int(1, x, wp)
        reciprocal = True
    else:
        reciprocal = False
    t = to_fixed(x, wp)
    if sign:
        t = -t
    if wp < ATAN_TAYLOR_PREC:
        a = atan_taylor(t, wp)
    else:
        a = atan_newton(t, wp)
    if reciprocal:
        a = ((pi_fixed(wp)>>1)+1) - a
    if sign:
        a = -a
    return from_man_exp(a, -wp, prec, rnd)
示例#2
0
def mpf_atan(x, prec, rnd=round_fast):
    sign, man, exp, bc = x
    if not man:
        if x == fzero: return fzero
        if x == finf: return atan_inf(0, prec, rnd)
        if x == fninf: return atan_inf(1, prec, rnd)
        return fnan
    mag = exp + bc
    # Essentially infinity
    if mag > prec+20:
        return atan_inf(sign, prec, rnd)
    # Essentially ~ x
    if -mag > prec+20:
        return mpf_perturb(x, 1-sign, prec, rnd)
    wp = prec + 30 + abs(mag)
    # For large x, use atan(x) = pi/2 - atan(1/x)
    if mag >= 2:
        x = mpf_rdiv_int(1, x, wp)
        reciprocal = True
    else:
        reciprocal = False
    t = to_fixed(x, wp)
    if sign:
        t = -t
    if wp < ATAN_TAYLOR_PREC:
        a = atan_taylor(t, wp)
    else:
        a = atan_newton(t, wp)
    if reciprocal:
        a = ((pi_fixed(wp)>>1)+1) - a
    if sign:
        a = -a
    return from_man_exp(a, -wp, prec, rnd)
示例#3
0
 def __rdiv__(s, t):
     prec, rounding = prec_rounding
     if isinstance(t, int_types):
         return make_mpf(mpf_rdiv_int(t, s._mpf_, prec, rounding))
     t = mpf_convert_lhs(t)
     if t is NotImplemented:
         return t
     return t / s
示例#4
0
 def __rdiv__(s, t):
     prec, rounding = prec_rounding
     if isinstance(t, int_types):
         return make_mpf(mpf_rdiv_int(t, s._mpf_, prec, rounding))
     t = mpf_convert_lhs(t)
     if t is NotImplemented:
         return t
     return t / s
示例#5
0
def mpc_erf(z, prec, rnd=round_fast):
    re, im = z
    if im == fzero:
        return (mpf_erf(re, prec, rnd), fzero)
    wp = prec + 20
    z2 = mpc_mul(z, z, prec+20)
    v = mpc_hyp1f1_rat((1,2), (3,2), mpc_neg(z2), wp, rnd)
    sqrtpi = mpf_sqrt(mpf_pi(wp), wp)
    c = mpf_rdiv_int(2, sqrtpi, wp)
    c = mpc_mul_mpf(z, c, wp)
    return mpc_mul(c, v, prec, rnd)
示例#6
0
def mpc_erf(z, prec, rnd=round_fast):
    re, im = z
    if im == fzero:
        return (mpf_erf(re, prec, rnd), fzero)
    wp = prec + 20
    z2 = mpc_square(z, prec + 20)
    v = mpc_hyp1f1_rat((1, 2), (3, 2), mpc_neg(z2), wp, rnd)
    sqrtpi = mpf_sqrt(mpf_pi(wp), wp)
    c = mpf_rdiv_int(2, sqrtpi, wp)
    c = mpc_mul_mpf(z, c, wp)
    return mpc_mul(c, v, prec, rnd)
示例#7
0
def mpc_nthroot_fixed(a, b, n, prec):
    # a, b signed integers at fixed precision prec
    start = 50
    a1 = int(rshift(a, prec - n*start))
    b1 = int(rshift(b, prec - n*start))
    try:
        r = (a1 + 1j * b1)**(1.0/n)
        re = r.real
        im = r.imag
        # XXX: workaround bug in gmpy
        if abs(re) < 0.1: re = 0
        if abs(im) < 0.1: im = 0
        re = MP_BASE(re)
        im = MP_BASE(im)
    except OverflowError:
        a1 = from_int(a1, start)
        b1 = from_int(b1, start)
        fn = from_int(n)
        nth = mpf_rdiv_int(1, fn, start)
        re, im = mpc_pow((a1, b1), (nth, fzero), start)
        re = to_int(re)
        im = to_int(im)
    extra = 10
    prevp = start
    extra1 = n
    for p in giant_steps(start, prec+extra):
        # this is slow for large n, unlike int_pow_fixed
        re2, im2 = complex_int_pow(re, im, n-1)
        re2 = rshift(re2, (n-1)*prevp - p - extra1)
        im2 = rshift(im2, (n-1)*prevp - p - extra1)
        r4 = (re2*re2 + im2*im2) >> (p + extra1)
        ap = rshift(a, prec - p)
        bp = rshift(b, prec - p)
        rec = (ap * re2 + bp * im2) >> p
        imc = (-ap * im2 + bp * re2) >> p
        reb = (rec << p) // r4
        imb = (imc << p) // r4
        re = (reb + (n-1)*lshift(re, p-prevp))//n
        im = (imb + (n-1)*lshift(im, p-prevp))//n
        prevp = p
    return re, im
示例#8
0
def mpc_nthroot_fixed(a, b, n, prec):
    # a, b signed integers at fixed precision prec
    start = 50
    a1 = int(rshift(a, prec - n * start))
    b1 = int(rshift(b, prec - n * start))
    try:
        r = (a1 + 1j * b1)**(1.0 / n)
        re = r.real
        im = r.imag
        # XXX: workaround bug in gmpy
        if abs(re) < 0.1: re = 0
        if abs(im) < 0.1: im = 0
        re = MP_BASE(re)
        im = MP_BASE(im)
    except OverflowError:
        a1 = from_int(a1, start)
        b1 = from_int(b1, start)
        fn = from_int(n)
        nth = mpf_rdiv_int(1, fn, start)
        re, im = mpc_pow((a1, b1), (nth, fzero), start)
        re = to_int(re)
        im = to_int(im)
    extra = 10
    prevp = start
    extra1 = n
    for p in giant_steps(start, prec + extra):
        # this is slow for large n, unlike int_pow_fixed
        re2, im2 = complex_int_pow(re, im, n - 1)
        re2 = rshift(re2, (n - 1) * prevp - p - extra1)
        im2 = rshift(im2, (n - 1) * prevp - p - extra1)
        r4 = (re2 * re2 + im2 * im2) >> (p + extra1)
        ap = rshift(a, prec - p)
        bp = rshift(b, prec - p)
        rec = (ap * re2 + bp * im2) >> p
        imc = (-ap * im2 + bp * re2) >> p
        reb = (rec << p) // r4
        imb = (imc << p) // r4
        re = (reb + (n - 1) * lshift(re, p - prevp)) // n
        im = (imb + (n - 1) * lshift(im, p - prevp)) // n
        prevp = p
    return re, im
示例#9
0
def nthroot_fixed(y, n, prec, exp1):
    start = 50
    try:
        y1 = rshift(y, prec - n*start)
        r = MP_BASE(y1**(1.0/n))
    except OverflowError:
        y1 = from_int(y1, start)
        fn = from_int(n)
        fn = mpf_rdiv_int(1, fn, start)
        r = mpf_pow(y1, fn, start)
        r = to_int(r)
    extra = 10
    extra1 = n
    prevp = start
    for p in giant_steps(start, prec+extra):
        pm, pe = int_pow_fixed(r, n-1, prevp)
        r2 = rshift(pm, (n-1)*prevp - p - pe - extra1)
        B = lshift(y, 2*p-prec+extra1)//r2
        r = (B + (n-1) * lshift(r, p-prevp))//n
        prevp = p
    return r
示例#10
0
def nthroot_fixed(y, n, prec, exp1):
    start = 50
    try:
        y1 = rshift(y, prec - n*start)
        r = MP_BASE(int(y1**(1.0/n)))
    except OverflowError:
        y1 = from_int(y1, start)
        fn = from_int(n)
        fn = mpf_rdiv_int(1, fn, start)
        r = mpf_pow(y1, fn, start)
        r = to_int(r)
    extra = 10
    extra1 = n
    prevp = start
    for p in giant_steps(start, prec+extra):
        pm, pe = int_pow_fixed(r, n-1, prevp)
        r2 = rshift(pm, (n-1)*prevp - p - pe - extra1)
        B = lshift(y, 2*p-prec+extra1)//r2
        r = (B + (n-1) * lshift(r, p-prevp))//n
        prevp = p
    return r
示例#11
0
文件: libmpc.py 项目: vks/sympy
def mpc_nthroot(z, n, prec, rnd=round_fast):
    """
    Complex n-th root.

    Use Newton method as in the real case when it is faster,
    otherwise use z**(1/n)
    """
    a, b = z
    if a[0] == 0 and b == fzero:
        re = mpf_nthroot(a, n, prec, rnd)
        return (re, fzero)
    if n < 2:
        if n == 0:
            return mpc_one
        if n == 1:
            return mpc_pos((a, b), prec, rnd)
        if n == -1:
            return mpc_div(mpc_one, (a, b), prec, rnd)
        inverse = mpc_nthroot((a, b), -n, prec + 5, reciprocal_rnd[rnd])
        return mpc_div(mpc_one, inverse, prec, rnd)
    if n <= 20:
        prec2 = int(1.2 * (prec + 10))
        asign, aman, aexp, abc = a
        bsign, bman, bexp, bbc = b
        pf = mpc_abs((a, b), prec)
        if pf[-2] + pf[-1] > -10 and pf[-2] + pf[-1] < prec:
            af = to_fixed(a, prec2)
            bf = to_fixed(b, prec2)
            re, im = mpc_nthroot_fixed(af, bf, n, prec2)
            extra = 10
            re = from_man_exp(re, -prec2 - extra, prec2, rnd)
            im = from_man_exp(im, -prec2 - extra, prec2, rnd)
            return re, im
    fn = from_int(n)
    prec2 = prec + 10 + 10
    nth = mpf_rdiv_int(1, fn, prec2)
    re, im = mpc_pow((a, b), (nth, fzero), prec2, rnd)
    re = normalize(re[0], re[1], re[2], re[3], prec, rnd)
    im = normalize(im[0], im[1], im[2], im[3], prec, rnd)
    return re, im
示例#12
0
def mpc_nthroot(z, n, prec, rnd=round_fast):
    """
    Complex n-th root.

    Use Newton method as in the real case when it is faster,
    otherwise use z**(1/n)
    """
    a, b = z
    if a[0] == 0 and b == fzero:
        re = mpf_nthroot(a, n, prec, rnd)
        return (re, fzero)
    if n < 2:
        if n == 0:
            return mpc_one
        if n == 1:
            return mpc_pos((a, b), prec, rnd)
        if n == -1:
            return mpc_div(mpc_one, (a, b), prec, rnd)
        inverse = mpc_nthroot((a, b), -n, prec+5, reciprocal_rnd[rnd])
        return mpc_div(mpc_one, inverse, prec, rnd)
    if n <= 20:
        prec2 = int(1.2 * (prec + 10))
        asign, aman, aexp, abc = a
        bsign, bman, bexp, bbc = b
        pf = mpc_abs((a,b), prec)
        if pf[-2] + pf[-1] > -10  and pf[-2] + pf[-1] < prec:
            af = to_fixed(a, prec2)
            bf = to_fixed(b, prec2)
            re, im = mpc_nthroot_fixed(af, bf, n, prec2)
            extra = 10
            re = from_man_exp(re, -prec2-extra, prec2, rnd)
            im = from_man_exp(im, -prec2-extra, prec2, rnd)
            return re, im
    fn = from_int(n)
    prec2 = prec+10 + 10
    nth = mpf_rdiv_int(1, fn, prec2)
    re, im = mpc_pow((a, b), (nth, fzero), prec2, rnd)
    re = normalize(re[0], re[1], re[2], re[3], prec, rnd)
    im = normalize(im[0], im[1], im[2], im[3], prec, rnd)
    return re, im
示例#13
0
    if a[0] == 0 and b == fzero:
        re = mpf_nthroot(a, n, prec, rnd)
        return (re, fzero)
    if n < 2:
        if n == 0:
            return mpc_one
        if n == 1:
            return mpc_pos((a, b), prec, rnd)
        if n == -1:
            return mpc_div(mpc_one, (a, b), prec, rnd)
        inverse = mpc_nthroot((a, b), -n, prec+5, reciprocal_rnd[rnd])
        return mpc_div(mpc_one, inverse, prec, rnd)
    if n > 20:
        fn = from_int(n)
        prec2 = prec+10
        nth = mpf_rdiv_int(1, fn, prec2)
        re, im = mpc_pow((a, b), (nth, fzero), prec2, rnd)
        re = normalize(re[0], re[1], re[2], re[3], prec, rnd)
        im = normalize(im[0], im[1], im[2], im[3], prec, rnd)
        return re, im
    prec2 = int(1.2 * (prec + 10))
    asign, aman, aexp, abc = a
    bsign, bman, bexp, bbc = b
    af = to_fixed(a, prec2)
    bf = to_fixed(b, prec2)
    re, im = mpc_nthroot_fixed(af, bf, n, prec2)
    extra = 10
    re = from_man_exp(re, -prec2-extra, prec2, rnd)
    im = from_man_exp(im, -prec2-extra, prec2, rnd)
    return re, im
示例#14
0
def mpf_nthroot(s, n, prec, rnd=round_fast):
    """nth-root of a positive number

    Use the Newton method when faster, otherwise use x**(1/n)
    """
    sign, man, exp, bc = s
    if sign:
        raise ComplexResult("nth root of a negative number")
    if not man:
        if s == fnan:
            return fnan
        if s == fzero:
            if n > 0:
                return fzero
            if n == 0:
                return fone
            return finf
        # Infinity
        if not n:
            return fnan
        if n < 0:
            return fzero
        return finf
    flag_inverse = False
    if n < 2:
        if n == 0:
            return fone
        if n == 1:
            return mpf_pos(s, prec, rnd)
        if n == -1:
            return mpf_div(fone, s, prec, rnd)
        # n < 0
        rnd = reciprocal_rnd[rnd]
        flag_inverse = True
        extra_inverse = 5
        prec += extra_inverse
        n = -n
    if n > 20 and (n >= 20000 or prec < int(233 + 28.3 * n**0.62)):
        prec2 = prec + 10
        fn = from_int(n)
        nth = mpf_rdiv_int(1, fn, prec2)
        r = mpf_pow(s, nth, prec2, rnd)
        s = normalize(r[0], r[1], r[2], r[3], prec, rnd)
        if flag_inverse:
            return mpf_div(fone, s, prec-extra_inverse, rnd)
        else:
            return s
    # Convert to a fixed-point number with prec2 bits.
    prec2 = prec + 2*n - (prec%n)
    # a few tests indicate that
    # for 10 < n < 10**4 a bit more precision is needed
    if n > 10:
        prec2 += prec2//10
        prec2 = prec2 - prec2%n
    # Mantissa may have more bits than we need. Trim it down.
    shift = bc - prec2
    # Adjust exponents to make prec2 and exp+shift multiples of n.
    sign1 = 0
    es = exp+shift
    if es < 0:
        sign1 = 1
        es = -es
    if sign1:
        shift += es%n
    else:
        shift -= es%n
    man = rshift(man, shift)
    extra = 10
    exp1 = ((exp+shift-(n-1)*prec2)//n) - extra
    rnd_shift = 0
    if flag_inverse:
        if rnd == 'u' or rnd == 'c':
            rnd_shift = 1
    else:
        if rnd == 'd' or rnd == 'f':
            rnd_shift = 1
    man = nthroot_fixed(man+rnd_shift, n, prec2, exp1)
    s = from_man_exp(man, exp1, prec, rnd)
    if flag_inverse:
        return mpf_div(fone, s, prec-extra_inverse, rnd)
    else:
        return s
示例#15
0
def mpf_bernoulli(n, prec, rnd=None):
    """Computation of Bernoulli numbers (numerically)"""
    if n < 2:
        if n < 0:
            raise ValueError("Bernoulli numbers only defined for n >= 0")
        if n == 0:
            return fone
        if n == 1:
            return mpf_neg(fhalf)
    # For odd n > 1, the Bernoulli numbers are zero
    if n & 1:
        return fzero
    # If precision is extremely high, we can save time by computing
    # the Bernoulli number at a lower precision that is sufficient to
    # obtain the exact fraction, round to the exact fraction, and
    # convert the fraction back to an mpf value at the original precision
    if prec > BERNOULLI_PREC_CUTOFF and prec > bernoulli_size(n) * 1.1 + 1000:
        p, q = bernfrac(n)
        return from_rational(p, q, prec, rnd or round_floor)
    if n > MAX_BERNOULLI_CACHE:
        return mpf_bernoulli_huge(n, prec, rnd)
    wp = prec + 30
    # Reuse nearby precisions
    wp += 32 - (prec & 31)
    cached = bernoulli_cache.get(wp)
    if cached:
        numbers, state = cached
        if n in numbers:
            if not rnd:
                return numbers[n]
            return mpf_pos(numbers[n], prec, rnd)
        m, bin, bin1 = state
        if n - m > 10:
            return mpf_bernoulli_huge(n, prec, rnd)
    else:
        if n > 10:
            return mpf_bernoulli_huge(n, prec, rnd)
        numbers = {0: fone}
        m, bin, bin1 = state = [2, MP_BASE(10), MP_ONE]
        bernoulli_cache[wp] = (numbers, state)
    while m <= n:
        #print m
        case = m % 6
        # Accurately estimate size of B_m so we can use
        # fixed point math without using too much precision
        szbm = bernoulli_size(m)
        s = 0
        sexp = max(0, szbm) - wp
        if m < 6:
            a = MP_ZERO
        else:
            a = bin1
        for j in xrange(1, m // 6 + 1):
            usign, uman, uexp, ubc = u = numbers[m - 6 * j]
            if usign:
                uman = -uman
            s += lshift(a * uman, uexp - sexp)
            # Update inner binomial coefficient
            j6 = 6 * j
            a *= ((m - 5 - j6) * (m - 4 - j6) * (m - 3 - j6) * (m - 2 - j6) *
                  (m - 1 - j6) * (m - j6))
            a //= ((4 + j6) * (5 + j6) * (6 + j6) * (7 + j6) * (8 + j6) *
                   (9 + j6))
        if case == 0: b = mpf_rdiv_int(m + 3, f3, wp)
        if case == 2: b = mpf_rdiv_int(m + 3, f3, wp)
        if case == 4: b = mpf_rdiv_int(-m - 3, f6, wp)
        s = from_man_exp(s, sexp, wp)
        b = mpf_div(mpf_sub(b, s, wp), from_int(bin), wp)
        numbers[m] = b
        m += 2
        # Update outer binomial coefficient
        bin = bin * ((m + 2) * (m + 3)) // (m * (m - 1))
        if m > 6:
            bin1 = bin1 * ((2 + m) * (3 + m)) // ((m - 7) * (m - 6))
        state[:] = [m, bin, bin1]
示例#16
0
def mpf_nthroot(s, n, prec, rnd=round_fast):
    """nth-root of a positive number

    Use the Newton method when faster, otherwise use x**(1/n)
    """
    sign, man, exp, bc = s
    if sign:
        raise ComplexResult("nth root of a negative number")
    if not man:
        if s == fnan:
            return fnan
        if s == fzero:
            if n > 0:
                return fzero
            if n == 0:
                return fone
            return finf
        # Infinity
        if not n:
            return fnan
        if n < 0:
            return fzero
        return finf
    flag_inverse = False
    if n < 2:
        if n == 0:
            return fone
        if n == 1:
            return mpf_pos(s, prec, rnd)
        if n == -1:
            return mpf_div(fone, s, prec, rnd)
        # n < 0
        rnd = reciprocal_rnd[rnd]
        flag_inverse = True
        extra_inverse = 5
        prec += extra_inverse
        n = -n
    if n > 20 and (n >= 20000 or prec < int(233 + 28.3 * n**0.62)):
        prec2 = prec + 10
        fn = from_int(n)
        nth = mpf_rdiv_int(1, fn, prec2)
        r = mpf_pow(s, nth, prec2, rnd)
        s = normalize(r[0], r[1], r[2], r[3], prec, rnd)
        if flag_inverse:
            return mpf_div(fone, s, prec-extra_inverse, rnd)
        else:
            return s
    # Convert to a fixed-point number with prec2 bits.
    prec2 = prec + 2*n - (prec%n)
    # a few tests indicate that
    # for 10 < n < 10**4 a bit more precision is needed
    if n > 10:
        prec2 += prec2//10
        prec2 = prec2 - prec2%n
    # Mantissa may have more bits than we need. Trim it down.
    shift = bc - prec2
    # Adjust exponents to make prec2 and exp+shift multiples of n.
    sign1 = 0
    es = exp+shift
    if es < 0:
      sign1 = 1
      es = -es
    if sign1:
      shift += es%n
    else:
      shift -= es%n
    man = rshift(man, shift)
    extra = 10
    exp1 = ((exp+shift-(n-1)*prec2)//n) - extra
    rnd_shift = 0
    if flag_inverse:
        if rnd == 'u' or rnd == 'c':
            rnd_shift = 1
    else:
        if rnd == 'd' or rnd == 'f':
            rnd_shift = 1
    man = nthroot_fixed(man+rnd_shift, n, prec2, exp1)
    s = from_man_exp(man, exp1, prec, rnd)
    if flag_inverse:
        return mpf_div(fone, s, prec-extra_inverse, rnd)
    else:
        return s
示例#17
0
def mpf_bernoulli(n, prec, rnd=None):
    """Computation of Bernoulli numbers (numerically)"""
    if n < 2:
        if n < 0:
            raise ValueError("Bernoulli numbers only defined for n >= 0")
        if n == 0:
            return fone
        if n == 1:
            return mpf_neg(fhalf)
    # For odd n > 1, the Bernoulli numbers are zero
    if n & 1:
        return fzero
    # If precision is extremely high, we can save time by computing
    # the Bernoulli number at a lower precision that is sufficient to
    # obtain the exact fraction, round to the exact fraction, and
    # convert the fraction back to an mpf value at the original precision
    if prec > BERNOULLI_PREC_CUTOFF and prec > bernoulli_size(n)*1.1 + 1000:
        p, q = bernfrac(n)
        return from_rational(p, q, prec, rnd or round_floor)
    if n > MAX_BERNOULLI_CACHE:
        return mpf_bernoulli_huge(n, prec, rnd)
    wp = prec + 30
    # Reuse nearby precisions
    wp += 32 - (prec & 31)
    cached = bernoulli_cache.get(wp)
    if cached:
        numbers, state = cached
        if n in numbers:
            if not rnd:
                return numbers[n]
            return mpf_pos(numbers[n], prec, rnd)
        m, bin, bin1 = state
        if n - m > 10:
            return mpf_bernoulli_huge(n, prec, rnd)
    else:
        if n > 10:
            return mpf_bernoulli_huge(n, prec, rnd)
        numbers = {0:fone}
        m, bin, bin1 = state = [2, MPZ(10), MPZ_ONE]
        bernoulli_cache[wp] = (numbers, state)
    while m <= n:
        #print m
        case = m % 6
        # Accurately estimate size of B_m so we can use
        # fixed point math without using too much precision
        szbm = bernoulli_size(m)
        s = 0
        sexp = max(0, szbm)  - wp
        if m < 6:
            a = MPZ_ZERO
        else:
            a = bin1
        for j in xrange(1, m//6+1):
            usign, uman, uexp, ubc = u = numbers[m-6*j]
            if usign:
                uman = -uman
            s += lshift(a*uman, uexp-sexp)
            # Update inner binomial coefficient
            j6 = 6*j
            a *= ((m-5-j6)*(m-4-j6)*(m-3-j6)*(m-2-j6)*(m-1-j6)*(m-j6))
            a //= ((4+j6)*(5+j6)*(6+j6)*(7+j6)*(8+j6)*(9+j6))
        if case == 0: b = mpf_rdiv_int(m+3, f3, wp)
        if case == 2: b = mpf_rdiv_int(m+3, f3, wp)
        if case == 4: b = mpf_rdiv_int(-m-3, f6, wp)
        s = from_man_exp(s, sexp, wp)
        b = mpf_div(mpf_sub(b, s, wp), from_int(bin), wp)
        numbers[m] = b
        m += 2
        # Update outer binomial coefficient
        bin = bin * ((m+2)*(m+3)) // (m*(m-1))
        if m > 6:
            bin1 = bin1 * ((2+m)*(3+m)) // ((m-7)*(m-6))
        state[:] = [m, bin, bin1]
    return numbers[n]
示例#18
0
    if a[0] == 0 and b == fzero:
        re = mpf_nthroot(a, n, prec, rnd)
        return (re, fzero)
    if n < 2:
        if n == 0:
            return mpc_one
        if n == 1:
            return mpc_pos((a, b), prec, rnd)
        if n == -1:
            return mpc_div(mpc_one, (a, b), prec, rnd)
        inverse = mpc_nthroot((a, b), -n, prec + 5, reciprocal_rnd[rnd])
        return mpc_div(mpc_one, inverse, prec, rnd)
    if n > 20:
        fn = from_int(n)
        prec2 = prec + 10
        nth = mpf_rdiv_int(1, fn, prec2)
        re, im = mpc_pow((a, b), (nth, fzero), prec2, rnd)
        re = normalize(re[0], re[1], re[2], re[3], prec, rnd)
        im = normalize(im[0], im[1], im[2], im[3], prec, rnd)
        return re, im
    prec2 = int(1.2 * (prec + 10))
    asign, aman, aexp, abc = a
    bsign, bman, bexp, bbc = b
    af = to_fixed(a, prec2)
    bf = to_fixed(b, prec2)
    re, im = mpc_nthroot_fixed(af, bf, n, prec2)
    extra = 10
    re = from_man_exp(re, -prec2 - extra, prec2, rnd)
    im = from_man_exp(im, -prec2 - extra, prec2, rnd)
    return re, im