def fit(self, X, y, n_iterations=4000):
        # Add dummy ones for bias weights
        X = np.insert(X, 0, 1, axis=1)

        n_samples, n_features = np.shape(X)

        # Initialize parameters between [-1/sqrt(N), 1/sqrt(N)]
        limit = 1 / math.sqrt(n_features)
        self.param = np.random.uniform(-limit, limit, (n_features, ))

        # Tune parameters for n iterations
        for i in range(n_iterations):
            # Make a new prediction
            y_pred = self.sigmoid.function(X.dot(self.param))
            if self.gradient_descent:
                # Move against the gradient of the loss function with
                # respect to the parameters to minimize the loss
                self.param -= self.learning_rate * -(y - y_pred).dot(X)
            else:
                # Make a diagonal matrix of the sigmoid gradient column vector
                diag_gradient = make_diagonal(
                    self.sigmoid.gradient(X.dot(self.param)))
                # Batch opt:
                self.param = np.linalg.pinv(X.T.dot(diag_gradient).dot(X)).dot(
                    X.T).dot(
                        diag_gradient.dot(X).dot(self.param) + y - y_pred)
示例#2
0
 def fit(self, X, y, n_iterations=4000):
     self._initialize_parameters(X)
     # Tune parameters for n iterations
     for i in range(n_iterations):
         # Make a new prediction
         y_pred = self.sigmoid(X.dot(self.param))
         if self.gradient_descent:
             # Move against the gradient of the loss function with
             # respect to the parameters to minimize the loss
             self.param -= self.learning_rate * -(y - y_pred).dot(X)
         else:
             # Make a diagonal matrix of the sigmoid gradient column vector
             diag_gradient = make_diagonal(self.sigmoid.gradient(X.dot(self.param)))
             # Batch opt:
             self.param = np.linalg.pinv(X.T.dot(diag_gradient).dot(X)).dot(X.T).dot(diag_gradient.dot(X).dot(self.param) + y - y_pred)