def test_ica_additional(): """Test additional ICA functionality """ stop2 = 500 raw = io.Raw(raw_fname, preload=True).crop(0, stop, False).crop(1.5) picks = pick_types(raw.info, meg=True, stim=False, ecg=False, eog=False, exclude='bads') test_cov = read_cov(test_cov_name) events = read_events(event_name) picks = pick_types(raw.info, meg=True, stim=False, ecg=False, eog=False, exclude='bads') epochs = Epochs(raw, events[:4], event_id, tmin, tmax, picks=picks, baseline=(None, 0), preload=True) # for testing eog functionality picks2 = pick_types(raw.info, meg=True, stim=False, ecg=False, eog=True, exclude='bads') epochs_eog = Epochs(raw, events[:4], event_id, tmin, tmax, picks=picks2, baseline=(None, 0), preload=True) test_cov2 = deepcopy(test_cov) ica = ICA(noise_cov=test_cov2, n_components=3, max_pca_components=4, n_pca_components=4) assert_true(ica.info is None) ica.decompose_raw(raw, picks[:5]) assert_true(isinstance(ica.info, Info)) assert_true(ica.n_components_ < 5) ica = ICA(n_components=3, max_pca_components=4, n_pca_components=4) assert_raises(RuntimeError, ica.save, '') ica.decompose_raw(raw, picks=None, start=start, stop=stop2) # test warnings on bad filenames with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') ica_badname = op.join(op.dirname(tempdir), 'test-bad-name.fif.gz') ica.save(ica_badname) read_ica(ica_badname) assert_true(len(w) == 2) # test decim ica = ICA(n_components=3, max_pca_components=4, n_pca_components=4) raw_ = raw.copy() for _ in range(3): raw_.append(raw_) n_samples = raw_._data.shape[1] ica.decompose_raw(raw, picks=None, decim=3) assert_true(raw_._data.shape[1], n_samples) # test expl var ica = ICA(n_components=1.0, max_pca_components=4, n_pca_components=4) ica.decompose_raw(raw, picks=None, decim=3) assert_true(ica.n_components_ == 4) # epochs extraction from raw fit assert_raises(RuntimeError, ica.get_sources_epochs, epochs) # test reading and writing test_ica_fname = op.join(op.dirname(tempdir), 'test-ica.fif') for cov in (None, test_cov): ica = ICA(noise_cov=cov, n_components=2, max_pca_components=4, n_pca_components=4) with warnings.catch_warnings(record=True): # ICA does not converge ica.decompose_raw(raw, picks=picks, start=start, stop=stop2) sources = ica.get_sources_epochs(epochs) assert_true(ica.mixing_matrix_.shape == (2, 2)) assert_true(ica.unmixing_matrix_.shape == (2, 2)) assert_true(ica.pca_components_.shape == (4, len(picks))) assert_true(sources.shape[1] == ica.n_components_) for exclude in [[], [0]]: ica.exclude = [0] ica.save(test_ica_fname) ica_read = read_ica(test_ica_fname) assert_true(ica.exclude == ica_read.exclude) # test pick merge -- add components ica.pick_sources_raw(raw, exclude=[1]) assert_true(ica.exclude == [0, 1]) # -- only as arg ica.exclude = [] ica.pick_sources_raw(raw, exclude=[0, 1]) assert_true(ica.exclude == [0, 1]) # -- remove duplicates ica.exclude += [1] ica.pick_sources_raw(raw, exclude=[0, 1]) assert_true(ica.exclude == [0, 1]) # test basic include ica.exclude = [] ica.pick_sources_raw(raw, include=[1]) ica_raw = ica.sources_as_raw(raw) assert_true(ica.exclude == [ica_raw.ch_names.index(e) for e in ica_raw.info['bads']]) # test filtering d1 = ica_raw._data[0].copy() with warnings.catch_warnings(record=True): # dB warning ica_raw.filter(4, 20) assert_true((d1 != ica_raw._data[0]).any()) d1 = ica_raw._data[0].copy() with warnings.catch_warnings(record=True): # dB warning ica_raw.notch_filter([10]) assert_true((d1 != ica_raw._data[0]).any()) ica.n_pca_components = 2 ica.save(test_ica_fname) ica_read = read_ica(test_ica_fname) assert_true(ica.n_pca_components == ica_read.n_pca_components) # check type consistency attrs = ('mixing_matrix_ unmixing_matrix_ pca_components_ ' 'pca_explained_variance_ _pre_whitener') f = lambda x, y: getattr(x, y).dtype for attr in attrs.split(): assert_equal(f(ica_read, attr), f(ica, attr)) ica.n_pca_components = 4 ica_read.n_pca_components = 4 ica.exclude = [] ica.save(test_ica_fname) ica_read = read_ica(test_ica_fname) for attr in ['mixing_matrix_', 'unmixing_matrix_', 'pca_components_', 'pca_mean_', 'pca_explained_variance_', '_pre_whitener']: assert_array_almost_equal(getattr(ica, attr), getattr(ica_read, attr)) assert_true(ica.ch_names == ica_read.ch_names) assert_true(isinstance(ica_read.info, Info)) assert_raises(RuntimeError, ica_read.decompose_raw, raw) sources = ica.get_sources_raw(raw) sources2 = ica_read.get_sources_raw(raw) assert_array_almost_equal(sources, sources2) _raw1 = ica.pick_sources_raw(raw, exclude=[1]) _raw2 = ica_read.pick_sources_raw(raw, exclude=[1]) assert_array_almost_equal(_raw1[:, :][0], _raw2[:, :][0]) os.remove(test_ica_fname) # check scrore funcs for name, func in score_funcs.items(): if name in score_funcs_unsuited: continue scores = ica.find_sources_raw(raw, target='EOG 061', score_func=func, start=0, stop=10) assert_true(ica.n_components_ == len(scores)) # check univariate stats scores = ica.find_sources_raw(raw, score_func=stats.skew) # check exception handling assert_raises(ValueError, ica.find_sources_raw, raw, target=np.arange(1)) params = [] params += [(None, -1, slice(2), [0, 1])] # varicance, kurtosis idx params params += [(None, 'MEG 1531')] # ECG / EOG channel params for idx, ch_name in product(*params): ica.detect_artifacts(raw, start_find=0, stop_find=50, ecg_ch=ch_name, eog_ch=ch_name, skew_criterion=idx, var_criterion=idx, kurt_criterion=idx) ## score funcs epochs ## # check score funcs for name, func in score_funcs.items(): if name in score_funcs_unsuited: continue scores = ica.find_sources_epochs(epochs_eog, target='EOG 061', score_func=func) assert_true(ica.n_components_ == len(scores)) # check univariate stats scores = ica.find_sources_epochs(epochs, score_func=stats.skew) # check exception handling assert_raises(ValueError, ica.find_sources_epochs, epochs, target=np.arange(1)) # ecg functionality ecg_scores = ica.find_sources_raw(raw, target='MEG 1531', score_func='pearsonr') with warnings.catch_warnings(record=True): # filter attenuation warning ecg_events = ica_find_ecg_events(raw, sources[np.abs(ecg_scores).argmax()]) assert_true(ecg_events.ndim == 2) # eog functionality eog_scores = ica.find_sources_raw(raw, target='EOG 061', score_func='pearsonr') with warnings.catch_warnings(record=True): # filter attenuation warning eog_events = ica_find_eog_events(raw, sources[np.abs(eog_scores).argmax()]) assert_true(eog_events.ndim == 2) # Test ica fiff export ica_raw = ica.sources_as_raw(raw, start=0, stop=100) assert_true(ica_raw.last_samp - ica_raw.first_samp == 100) assert_true(len(ica_raw._filenames) == 0) # API consistency ica_chans = [ch for ch in ica_raw.ch_names if 'ICA' in ch] assert_true(ica.n_components_ == len(ica_chans)) test_ica_fname = op.join(op.abspath(op.curdir), 'test-ica_raw.fif') ica.n_components = np.int32(ica.n_components) ica_raw.save(test_ica_fname, overwrite=True) ica_raw2 = io.Raw(test_ica_fname, preload=True) assert_allclose(ica_raw._data, ica_raw2._data, rtol=1e-5, atol=1e-4) ica_raw2.close() os.remove(test_ica_fname) # Test ica epochs export ica_epochs = ica.sources_as_epochs(epochs) assert_true(ica_epochs.events.shape == epochs.events.shape) sources_epochs = ica.get_sources_epochs(epochs) assert_array_equal(ica_epochs.get_data(), sources_epochs) ica_chans = [ch for ch in ica_epochs.ch_names if 'ICA' in ch] assert_true(ica.n_components_ == len(ica_chans)) assert_true(ica.n_components_ == ica_epochs.get_data().shape[1]) assert_true(ica_epochs.raw is None) assert_true(ica_epochs.preload is True) # test float n pca components ica.pca_explained_variance_ = np.array([0.2] * 5) ica.n_components_ = 0 for ncomps, expected in [[0.3, 1], [0.9, 4], [1, 1]]: ncomps_ = _check_n_pca_components(ica, ncomps) assert_true(ncomps_ == expected)
def test_ica_additional(): """Test additional ICA functionality""" stop2 = 500 raw = io.Raw(raw_fname, preload=True).crop(0, stop, False).crop(1.5) picks = pick_types(raw.info, meg=True, stim=False, ecg=False, eog=False, exclude='bads') test_cov = read_cov(test_cov_name) events = read_events(event_name) picks = pick_types(raw.info, meg=True, stim=False, ecg=False, eog=False, exclude='bads') epochs = Epochs(raw, events[:4], event_id, tmin, tmax, picks=picks, baseline=(None, 0), preload=True) # for testing eog functionality picks2 = pick_types(raw.info, meg=True, stim=False, ecg=False, eog=True, exclude='bads') epochs_eog = Epochs(raw, events[:4], event_id, tmin, tmax, picks=picks2, baseline=(None, 0), preload=True) test_cov2 = deepcopy(test_cov) ica = ICA(noise_cov=test_cov2, n_components=3, max_pca_components=4, n_pca_components=4) assert_true(ica.info is None) with warnings.catch_warnings(record=True): ica.fit(raw, picks[:5]) assert_true(isinstance(ica.info, Info)) assert_true(ica.n_components_ < 5) ica = ICA(n_components=3, max_pca_components=4, n_pca_components=4) assert_raises(RuntimeError, ica.save, '') with warnings.catch_warnings(record=True): ica.fit(raw, picks=None, start=start, stop=stop2) # test warnings on bad filenames with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') ica_badname = op.join(op.dirname(tempdir), 'test-bad-name.fif.gz') ica.save(ica_badname) read_ica(ica_badname) assert_true(len(w) == 2) # test decim ica = ICA(n_components=3, max_pca_components=4, n_pca_components=4) raw_ = raw.copy() for _ in range(3): raw_.append(raw_) n_samples = raw_._data.shape[1] with warnings.catch_warnings(record=True): ica.fit(raw, picks=None, decim=3) assert_true(raw_._data.shape[1], n_samples) # test expl var ica = ICA(n_components=1.0, max_pca_components=4, n_pca_components=4) with warnings.catch_warnings(record=True): ica.fit(raw, picks=None, decim=3) assert_true(ica.n_components_ == 4) # epochs extraction from raw fit assert_raises(RuntimeError, ica.get_sources, epochs) # test reading and writing test_ica_fname = op.join(op.dirname(tempdir), 'test-ica.fif') for cov in (None, test_cov): ica = ICA(noise_cov=cov, n_components=2, max_pca_components=4, n_pca_components=4) with warnings.catch_warnings(record=True): # ICA does not converge ica.fit(raw, picks=picks, start=start, stop=stop2) sources = ica.get_sources(epochs).get_data() assert_true(ica.mixing_matrix_.shape == (2, 2)) assert_true(ica.unmixing_matrix_.shape == (2, 2)) assert_true(ica.pca_components_.shape == (4, len(picks))) assert_true(sources.shape[1] == ica.n_components_) for exclude in [[], [0]]: ica.exclude = [0] ica.save(test_ica_fname) ica_read = read_ica(test_ica_fname) assert_true(ica.exclude == ica_read.exclude) ica.exclude = [] ica.apply(raw, exclude=[1]) assert_true(ica.exclude == []) ica.exclude = [0, 1] ica.apply(raw, exclude=[1]) assert_true(ica.exclude == [0, 1]) ica_raw = ica.get_sources(raw) assert_true(ica.exclude == [ica_raw.ch_names.index(e) for e in ica_raw.info['bads']]) # test filtering d1 = ica_raw._data[0].copy() with warnings.catch_warnings(record=True): # dB warning ica_raw.filter(4, 20) assert_true((d1 != ica_raw._data[0]).any()) d1 = ica_raw._data[0].copy() with warnings.catch_warnings(record=True): # dB warning ica_raw.notch_filter([10]) assert_true((d1 != ica_raw._data[0]).any()) ica.n_pca_components = 2 ica.save(test_ica_fname) ica_read = read_ica(test_ica_fname) assert_true(ica.n_pca_components == ica_read.n_pca_components) # check type consistency attrs = ('mixing_matrix_ unmixing_matrix_ pca_components_ ' 'pca_explained_variance_ _pre_whitener') f = lambda x, y: getattr(x, y).dtype for attr in attrs.split(): assert_equal(f(ica_read, attr), f(ica, attr)) ica.n_pca_components = 4 ica_read.n_pca_components = 4 ica.exclude = [] ica.save(test_ica_fname) ica_read = read_ica(test_ica_fname) for attr in ['mixing_matrix_', 'unmixing_matrix_', 'pca_components_', 'pca_mean_', 'pca_explained_variance_', '_pre_whitener']: assert_array_almost_equal(getattr(ica, attr), getattr(ica_read, attr)) assert_true(ica.ch_names == ica_read.ch_names) assert_true(isinstance(ica_read.info, Info)) sources = ica.get_sources(raw)[:, :][0] sources2 = ica_read.get_sources(raw)[:, :][0] assert_array_almost_equal(sources, sources2) _raw1 = ica.apply(raw, exclude=[1]) _raw2 = ica_read.apply(raw, exclude=[1]) assert_array_almost_equal(_raw1[:, :][0], _raw2[:, :][0]) os.remove(test_ica_fname) # check scrore funcs for name, func in score_funcs.items(): if name in score_funcs_unsuited: continue scores = ica.score_sources(raw, target='EOG 061', score_func=func, start=0, stop=10) assert_true(ica.n_components_ == len(scores)) # check univariate stats scores = ica.score_sources(raw, score_func=stats.skew) # check exception handling assert_raises(ValueError, ica.score_sources, raw, target=np.arange(1)) params = [] params += [(None, -1, slice(2), [0, 1])] # varicance, kurtosis idx params params += [(None, 'MEG 1531')] # ECG / EOG channel params for idx, ch_name in product(*params): ica.detect_artifacts(raw, start_find=0, stop_find=50, ecg_ch=ch_name, eog_ch=ch_name, skew_criterion=idx, var_criterion=idx, kurt_criterion=idx) with warnings.catch_warnings(record=True): idx, scores = ica.find_bads_ecg(raw, method='ctps') assert_equal(len(scores), ica.n_components_) idx, scores = ica.find_bads_ecg(raw, method='correlation') assert_equal(len(scores), ica.n_components_) idx, scores = ica.find_bads_ecg(epochs, method='ctps') assert_equal(len(scores), ica.n_components_) assert_raises(ValueError, ica.find_bads_ecg, epochs.average(), method='ctps') assert_raises(ValueError, ica.find_bads_ecg, raw, method='crazy-coupling') idx, scores = ica.find_bads_eog(raw) assert_equal(len(scores), ica.n_components_) raw.info['chs'][raw.ch_names.index('EOG 061') - 1]['kind'] = 202 idx, scores = ica.find_bads_eog(raw) assert_true(isinstance(scores, list)) assert_equal(len(scores[0]), ica.n_components_) # check score funcs for name, func in score_funcs.items(): if name in score_funcs_unsuited: continue scores = ica.score_sources(epochs_eog, target='EOG 061', score_func=func) assert_true(ica.n_components_ == len(scores)) # check univariate stats scores = ica.score_sources(epochs, score_func=stats.skew) # check exception handling assert_raises(ValueError, ica.score_sources, epochs, target=np.arange(1)) # ecg functionality ecg_scores = ica.score_sources(raw, target='MEG 1531', score_func='pearsonr') with warnings.catch_warnings(record=True): # filter attenuation warning ecg_events = ica_find_ecg_events(raw, sources[np.abs(ecg_scores).argmax()]) assert_true(ecg_events.ndim == 2) # eog functionality eog_scores = ica.score_sources(raw, target='EOG 061', score_func='pearsonr') with warnings.catch_warnings(record=True): # filter attenuation warning eog_events = ica_find_eog_events(raw, sources[np.abs(eog_scores).argmax()]) assert_true(eog_events.ndim == 2) # Test ica fiff export ica_raw = ica.get_sources(raw, start=0, stop=100) assert_true(ica_raw.last_samp - ica_raw.first_samp == 100) assert_true(len(ica_raw._filenames) == 0) # API consistency ica_chans = [ch for ch in ica_raw.ch_names if 'ICA' in ch] assert_true(ica.n_components_ == len(ica_chans)) test_ica_fname = op.join(op.abspath(op.curdir), 'test-ica_raw.fif') ica.n_components = np.int32(ica.n_components) ica_raw.save(test_ica_fname, overwrite=True) ica_raw2 = io.Raw(test_ica_fname, preload=True) assert_allclose(ica_raw._data, ica_raw2._data, rtol=1e-5, atol=1e-4) ica_raw2.close() os.remove(test_ica_fname) # Test ica epochs export ica_epochs = ica.get_sources(epochs) assert_true(ica_epochs.events.shape == epochs.events.shape) ica_chans = [ch for ch in ica_epochs.ch_names if 'ICA' in ch] assert_true(ica.n_components_ == len(ica_chans)) assert_true(ica.n_components_ == ica_epochs.get_data().shape[1]) assert_true(ica_epochs.raw is None) assert_true(ica_epochs.preload is True) # test float n pca components ica.pca_explained_variance_ = np.array([0.2] * 5) ica.n_components_ = 0 for ncomps, expected in [[0.3, 1], [0.9, 4], [1, 1]]: ncomps_ = _check_n_pca_components(ica, ncomps) assert_true(ncomps_ == expected)
def test_ica_additional(): """Test additional functionality """ stop2 = 500 test_cov2 = deepcopy(test_cov) ica = ICA(noise_cov=test_cov2, n_components=3, max_pca_components=4, n_pca_components=4) assert_true(ica.info is None) ica.decompose_raw(raw, picks[:5]) assert_true(isinstance(ica.info, Info)) assert_true(ica.n_components_ < 5) ica = ICA(n_components=3, max_pca_components=4, n_pca_components=4) assert_raises(RuntimeError, ica.save, '') ica.decompose_raw(raw, picks=None, start=start, stop=stop2) # epochs extraction from raw fit assert_raises(RuntimeError, ica.get_sources_epochs, epochs) # test reading and writing test_ica_fname = op.join(op.dirname(tempdir), 'ica_test.fif') for cov in (None, test_cov): ica = ICA(noise_cov=cov, n_components=3, max_pca_components=4, n_pca_components=4) ica.decompose_raw(raw, picks=picks, start=start, stop=stop2) sources = ica.get_sources_epochs(epochs) assert_true(sources.shape[1] == ica.n_components_) for exclude in [[], [0]]: ica.exclude = [0] ica.save(test_ica_fname) ica_read = read_ica(test_ica_fname) assert_true(ica.exclude == ica_read.exclude) # test pick merge -- add components ica.pick_sources_raw(raw, exclude=[1]) assert_true(ica.exclude == [0, 1]) # -- only as arg ica.exclude = [] ica.pick_sources_raw(raw, exclude=[0, 1]) assert_true(ica.exclude == [0, 1]) # -- remove duplicates ica.exclude += [1] ica.pick_sources_raw(raw, exclude=[0, 1]) assert_true(ica.exclude == [0, 1]) ica_raw = ica.sources_as_raw(raw) assert_true(ica.exclude == [ica_raw.ch_names.index(e) for e in ica_raw.info['bads']]) ica.n_pca_components = 2 ica.save(test_ica_fname) ica_read = read_ica(test_ica_fname) assert_true(ica.n_pca_components == ica_read.n_pca_components) ica.n_pca_components = 4 ica_read.n_pca_components = 4 ica.exclude = [] ica.save(test_ica_fname) ica_read = read_ica(test_ica_fname) assert_true(ica.ch_names == ica_read.ch_names) assert_true(isinstance(ica_read.info, Info)) # XXX improve later assert_true(np.allclose(ica.mixing_matrix_, ica_read.mixing_matrix_, rtol=1e-16, atol=1e-32)) assert_array_equal(ica.pca_components_, ica_read.pca_components_) assert_array_equal(ica.pca_mean_, ica_read.pca_mean_) assert_array_equal(ica.pca_explained_variance_, ica_read.pca_explained_variance_) assert_array_equal(ica._pre_whitener, ica_read._pre_whitener) # assert_raises(RuntimeError, ica_read.decompose_raw, raw) sources = ica.get_sources_raw(raw) sources2 = ica_read.get_sources_raw(raw) assert_array_almost_equal(sources, sources2) _raw1 = ica.pick_sources_raw(raw, exclude=[1]) _raw2 = ica_read.pick_sources_raw(raw, exclude=[1]) assert_array_almost_equal(_raw1[:, :][0], _raw2[:, :][0]) os.remove(test_ica_fname) # check scrore funcs for name, func in score_funcs.items(): if name in score_funcs_unsuited: continue scores = ica.find_sources_raw(raw, target='EOG 061', score_func=func, start=0, stop=10) assert_true(ica.n_components_ == len(scores)) # check univariate stats scores = ica.find_sources_raw(raw, score_func=stats.skew) # check exception handling assert_raises(ValueError, ica.find_sources_raw, raw, target=np.arange(1)) params = [] params += [(None, -1, slice(2), [0, 1])] # varicance, kurtosis idx params params += [(None, 'MEG 1531')] # ECG / EOG channel params for idx, ch_name in product(*params): ica.detect_artifacts(raw, start_find=0, stop_find=50, ecg_ch=ch_name, eog_ch=ch_name, skew_criterion=idx, var_criterion=idx, kurt_criterion=idx) ## score funcs epochs ## # check score funcs for name, func in score_funcs.items(): if name in score_funcs_unsuited: continue scores = ica.find_sources_epochs(epochs_eog, target='EOG 061', score_func=func) assert_true(ica.n_components_ == len(scores)) # check univariate stats scores = ica.find_sources_epochs(epochs, score_func=stats.skew) # check exception handling assert_raises(ValueError, ica.find_sources_epochs, epochs, target=np.arange(1)) # ecg functionality ecg_scores = ica.find_sources_raw(raw, target='MEG 1531', score_func='pearsonr') ecg_events = ica_find_ecg_events(raw, sources[np.abs(ecg_scores).argmax()]) assert_true(ecg_events.ndim == 2) # eog functionality eog_scores = ica.find_sources_raw(raw, target='EOG 061', score_func='pearsonr') eog_events = ica_find_eog_events(raw, sources[np.abs(eog_scores).argmax()]) assert_true(eog_events.ndim == 2) # Test ica fiff export ica_raw = ica.sources_as_raw(raw, start=0, stop=100) assert_true(ica_raw.last_samp - ica_raw.first_samp == 100) ica_chans = [ch for ch in ica_raw.ch_names if 'ICA' in ch] assert_true(ica.n_components_ == len(ica_chans)) test_ica_fname = op.join(op.abspath(op.curdir), 'test_ica.fif') ica_raw.save(test_ica_fname) ica_raw2 = fiff.Raw(test_ica_fname, preload=True) assert_array_almost_equal(ica_raw._data, ica_raw2._data) ica_raw2.close() os.remove(test_ica_fname) # Test ica epochs export ica_epochs = ica.sources_as_epochs(epochs) assert_true(ica_epochs.events.shape == epochs.events.shape) sources_epochs = ica.get_sources_epochs(epochs) assert_array_equal(ica_epochs.get_data(), sources_epochs) ica_chans = [ch for ch in ica_epochs.ch_names if 'ICA' in ch] assert_true(ica.n_components_ == len(ica_chans)) assert_true(ica.n_components_ == ica_epochs.get_data().shape[1]) assert_true(ica_epochs.raw is None) assert_true(ica_epochs.preload == True) # regression test for plot method assert_raises(ValueError, ica.plot_sources_raw, raw, order=np.arange(50)) assert_raises(ValueError, ica.plot_sources_epochs, epochs, order=np.arange(50))
def test_ica_additional(): """Test additional functionality """ stop2 = 500 test_cov2 = deepcopy(test_cov) ica = ICA(noise_cov=test_cov2, n_components=3, max_pca_components=4, n_pca_components=4) ica.decompose_raw(raw, picks[:5]) assert_true(ica.n_components_ < 5) ica = ICA(n_components=3, max_pca_components=4, n_pca_components=4) assert_raises(RuntimeError, ica.save, '') ica.decompose_raw(raw, picks=None, start=start, stop=stop2) # epochs extraction from raw fit assert_raises(RuntimeError, ica.get_sources_epochs, epochs) # test reading and writing test_ica_fname = op.join(op.dirname(tempdir), 'ica_test.fif') for cov in (None, test_cov): ica = ICA(noise_cov=cov, n_components=3, max_pca_components=4, n_pca_components=4) ica.decompose_raw(raw, picks=picks, start=start, stop=stop2) sources = ica.get_sources_epochs(epochs) assert_true(sources.shape[1] == ica.n_components_) for exclude in [[], [0]]: ica.exclude = [0] ica.save(test_ica_fname) ica_read = read_ica(test_ica_fname) assert_true(ica.exclude == ica_read.exclude) # test pick merge -- add components ica.pick_sources_raw(raw, exclude=[1]) assert_true(ica.exclude == [0, 1]) # -- only as arg ica.exclude = [] ica.pick_sources_raw(raw, exclude=[0, 1]) assert_true(ica.exclude == [0, 1]) # -- remove duplicates ica.exclude += [1] ica.pick_sources_raw(raw, exclude=[0, 1]) assert_true(ica.exclude == [0, 1]) ica_raw = ica.sources_as_raw(raw) assert_true(ica.exclude == [ica.ch_names.index(e) for e in ica_raw.info['bads']]) ica.n_pca_components = 2 ica.save(test_ica_fname) ica_read = read_ica(test_ica_fname) assert_true(ica.n_pca_components == ica_read.n_pca_components) ica.n_pca_components = 4 ica_read.n_pca_components = 4 ica.exclude = [] ica.save(test_ica_fname) ica_read = read_ica(test_ica_fname) assert_true(ica.ch_names == ica_read.ch_names) assert_true(np.allclose(ica.mixing_matrix_, ica_read.mixing_matrix_, rtol=1e-16, atol=1e-32)) assert_array_equal(ica.pca_components_, ica_read.pca_components_) assert_array_equal(ica.pca_mean_, ica_read.pca_mean_) assert_array_equal(ica.pca_explained_variance_, ica_read.pca_explained_variance_) assert_array_equal(ica._pre_whitener, ica_read._pre_whitener) # assert_raises(RuntimeError, ica_read.decompose_raw, raw) sources = ica.get_sources_raw(raw) sources2 = ica_read.get_sources_raw(raw) assert_array_almost_equal(sources, sources2) _raw1 = ica.pick_sources_raw(raw, exclude=[1]) _raw2 = ica_read.pick_sources_raw(raw, exclude=[1]) assert_array_almost_equal(_raw1[:, :][0], _raw2[:, :][0]) os.remove(test_ica_fname) # score funcs raw, with catch since "ties preclude exact" warning # XXX this should be fixed by a future PR... with warnings.catch_warnings(True) as w: sfunc_test = [ica.find_sources_raw(raw, target='EOG 061', score_func=n, start=0, stop=10) for n, f in score_funcs.items()] # score funcs raw # check lenght of scores [assert_true(ica.n_components_ == len(scores)) for scores in sfunc_test] # check univariate stats scores = ica.find_sources_raw(raw, score_func=stats.skew) # check exception handling assert_raises(ValueError, ica.find_sources_raw, raw, target=np.arange(1)) ## score funcs epochs ## # check lenght of scores # XXX this needs to be fixed, some of the score funcs don't seem to be # suited for the testing data. with warnings.catch_warnings(True) as w: sfunc_test = [ica.find_sources_epochs(epochs_eog, target='EOG 061', score_func=n) for n, f in score_funcs.items()] # check lenght of scores [assert_true(ica.n_components_ == len(scores)) for scores in sfunc_test] # check univariat stats scores = ica.find_sources_epochs(epochs, score_func=stats.skew) # check exception handling assert_raises(ValueError, ica.find_sources_epochs, epochs, target=np.arange(1)) # ecg functionality ecg_scores = ica.find_sources_raw(raw, target='MEG 1531', score_func='pearsonr') ecg_events = ica_find_ecg_events(raw, sources[np.abs(ecg_scores).argmax()]) assert_true(ecg_events.ndim == 2) # eog functionality eog_scores = ica.find_sources_raw(raw, target='EOG 061', score_func='pearsonr') eog_events = ica_find_eog_events(raw, sources[np.abs(eog_scores).argmax()]) assert_true(eog_events.ndim == 2) # Test ica fiff export ica_raw = ica.sources_as_raw(raw, start=0, stop=100) assert_true(ica_raw.last_samp - ica_raw.first_samp == 100) ica_chans = [ch for ch in ica_raw.ch_names if 'ICA' in ch] assert_true(ica.n_components_ == len(ica_chans)) test_ica_fname = op.join(op.abspath(op.curdir), 'test_ica.fif') ica_raw.save(test_ica_fname) ica_raw2 = fiff.Raw(test_ica_fname, preload=True) assert_array_almost_equal(ica_raw._data, ica_raw2._data) ica_raw2.close() os.remove(test_ica_fname) # regression test for plot method assert_raises(ValueError, ica.plot_sources_raw, raw, order=np.arange(50)) assert_raises(ValueError, ica.plot_sources_epochs, epochs, order=np.arange(50))
def test_ica_additional(): """Test additional functionality """ stop2 = 500 test_cov2 = deepcopy(test_cov) ica = ICA(noise_cov=test_cov2, n_components=3, max_pca_components=4, n_pca_components=4) ica.decompose_raw(raw, picks[:5]) assert_true(ica.n_components_ < 5) ica = ICA(n_components=3, max_pca_components=4, n_pca_components=4) assert_raises(RuntimeError, ica.save, '') ica.decompose_raw(raw, picks=None, start=start, stop=stop2) # epochs extraction from raw fit assert_raises(RuntimeError, ica.get_sources_epochs, epochs) # test reading and writing test_ica_fname = op.join(op.dirname(tempdir), 'ica_test.fif') for cov in (None, test_cov): ica = ICA(noise_cov=cov, n_components=3, max_pca_components=4, n_pca_components=4) ica.decompose_raw(raw, picks=picks, start=start, stop=stop2) sources = ica.get_sources_epochs(epochs) assert_true(sources.shape[1] == ica.n_components_) for exclude in [[], [0]]: ica.exclude = [0] ica.save(test_ica_fname) ica_read = read_ica(test_ica_fname) assert_true(ica.exclude == ica_read.exclude) # test pick merge -- add components ica.pick_sources_raw(raw, exclude=[1]) assert_true(ica.exclude == [0, 1]) # -- only as arg ica.exclude = [] ica.pick_sources_raw(raw, exclude=[0, 1]) assert_true(ica.exclude == [0, 1]) # -- remove duplicates ica.exclude += [1] ica.pick_sources_raw(raw, exclude=[0, 1]) assert_true(ica.exclude == [0, 1]) ica_raw = ica.sources_as_raw(raw) assert_true( ica.exclude == [ica_raw.ch_names.index(e) for e in ica_raw.info['bads']]) ica.n_pca_components = 2 ica.save(test_ica_fname) ica_read = read_ica(test_ica_fname) assert_true(ica.n_pca_components == ica_read.n_pca_components) ica.n_pca_components = 4 ica_read.n_pca_components = 4 ica.exclude = [] ica.save(test_ica_fname) ica_read = read_ica(test_ica_fname) assert_true(ica.ch_names == ica_read.ch_names) assert_true( np.allclose(ica.mixing_matrix_, ica_read.mixing_matrix_, rtol=1e-16, atol=1e-32)) assert_array_equal(ica.pca_components_, ica_read.pca_components_) assert_array_equal(ica.pca_mean_, ica_read.pca_mean_) assert_array_equal(ica.pca_explained_variance_, ica_read.pca_explained_variance_) assert_array_equal(ica._pre_whitener, ica_read._pre_whitener) # assert_raises(RuntimeError, ica_read.decompose_raw, raw) sources = ica.get_sources_raw(raw) sources2 = ica_read.get_sources_raw(raw) assert_array_almost_equal(sources, sources2) _raw1 = ica.pick_sources_raw(raw, exclude=[1]) _raw2 = ica_read.pick_sources_raw(raw, exclude=[1]) assert_array_almost_equal(_raw1[:, :][0], _raw2[:, :][0]) os.remove(test_ica_fname) # check scrore funcs for name, func in score_funcs.items(): if name in score_funcs_unsuited: continue scores = ica.find_sources_raw(raw, target='EOG 061', score_func=func, start=0, stop=10) assert_true(ica.n_components_ == len(scores)) # check univariate stats scores = ica.find_sources_raw(raw, score_func=stats.skew) # check exception handling assert_raises(ValueError, ica.find_sources_raw, raw, target=np.arange(1)) params = [] params += [(None, -1, slice(2), [0, 1])] # varicance, kurtosis idx params params += [(None, 'MEG 1531')] # ECG / EOG channel params for idx, ch_name in product(*params): ica.detect_artifacts(raw, start_find=0, stop_find=50, ecg_ch=ch_name, eog_ch=ch_name, skew_criterion=idx, var_criterion=idx, kurt_criterion=idx) ## score funcs epochs ## # check score funcs for name, func in score_funcs.items(): if name in score_funcs_unsuited: continue scores = ica.find_sources_epochs(epochs_eog, target='EOG 061', score_func=func) assert_true(ica.n_components_ == len(scores)) # check univariate stats scores = ica.find_sources_epochs(epochs, score_func=stats.skew) # check exception handling assert_raises(ValueError, ica.find_sources_epochs, epochs, target=np.arange(1)) # ecg functionality ecg_scores = ica.find_sources_raw(raw, target='MEG 1531', score_func='pearsonr') ecg_events = ica_find_ecg_events(raw, sources[np.abs(ecg_scores).argmax()]) assert_true(ecg_events.ndim == 2) # eog functionality eog_scores = ica.find_sources_raw(raw, target='EOG 061', score_func='pearsonr') eog_events = ica_find_eog_events(raw, sources[np.abs(eog_scores).argmax()]) assert_true(eog_events.ndim == 2) # Test ica fiff export ica_raw = ica.sources_as_raw(raw, start=0, stop=100) assert_true(ica_raw.last_samp - ica_raw.first_samp == 100) ica_chans = [ch for ch in ica_raw.ch_names if 'ICA' in ch] assert_true(ica.n_components_ == len(ica_chans)) test_ica_fname = op.join(op.abspath(op.curdir), 'test_ica.fif') ica_raw.save(test_ica_fname) ica_raw2 = fiff.Raw(test_ica_fname, preload=True) assert_array_almost_equal(ica_raw._data, ica_raw2._data) ica_raw2.close() os.remove(test_ica_fname) # Test ica epochs export ica_epochs = ica.sources_as_epochs(epochs) assert_true(ica_epochs.events.shape == epochs.events.shape) sources_epochs = ica.get_sources_epochs(epochs) assert_array_equal(ica_epochs.get_data(), sources_epochs) ica_chans = [ch for ch in ica_epochs.ch_names if 'ICA' in ch] assert_true(ica.n_components_ == len(ica_chans)) assert_true(ica.n_components_ == ica_epochs.get_data().shape[1]) assert_true(ica_epochs.raw is None) assert_true(ica_epochs.preload == True) # regression test for plot method assert_raises(ValueError, ica.plot_sources_raw, raw, order=np.arange(50)) assert_raises(ValueError, ica.plot_sources_epochs, epochs, order=np.arange(50))