def prepare_model(args, device):

    # Prepare model
    config = BertConfig.from_json_file(args.bert_config_path)

    # Padding for divisibility by 8
    if config.vocab_size % 8 != 0:
        config.vocab_size += 8 - (config.vocab_size % 8)
        print('padded vocab size to: {}'.format(config.vocab_size))

    # Set some options that the config file is expected to have (but don't need to be set properly
    # at this point)
    config.pad = False
    config.unpad = False
    config.dense_seq_output = False
    config.fused_mha = False
    config.fused_gelu_bias = False
    config.fuse_qkv = False
    config.fuse_scale = False
    config.fuse_mask = False
    config.fuse_dropout = False
    config.apex_softmax = False
    config.enable_stream = False
    if config.fuse_mask == True: config.apex_softmax = True
    if config.pad == False: config.enable_stream = True
    if config.unpad == True: config.fused_mha = False

    #Load from TF checkpoint
    model = BertForPreTraining.from_pretrained(args.tf_checkpoint,
                                               from_tf=True,
                                               config=config)

    return model
def main():
    parser = argparse.ArgumentParser()

    ## Required parameters
    parser.add_argument("--train_file",
                        default=None,
                        type=str,
                        required=True,
                        help="The input train corpus.")
    parser.add_argument(
        "--bert_model",
        default=None,
        type=str,
        required=True,
        help="Bert pre-trained model selected in the list: bert-base-uncased, "
        "bert-large-uncased, bert-base-cased, bert-base-multilingual, bert-base-chinese."
    )
    parser.add_argument(
        "--output_dir",
        default=None,
        type=str,
        required=True,
        help="The output directory where the model checkpoints will be written."
    )

    ## Other parameters
    parser.add_argument(
        "--do_lower_case",
        action='store_true',
        help="Set this flag if you are using an uncased model.")
    parser.add_argument(
        "--max_seq_length",
        default=128,
        type=int,
        help=
        "The maximum total input sequence length after WordPiece tokenization. \n"
        "Sequences longer than this will be truncated, and sequences shorter \n"
        "than this will be padded.")
    parser.add_argument("--do_train",
                        action='store_true',
                        help="Whether to run training.")
    parser.add_argument("--train_batch_size",
                        default=32,
                        type=int,
                        help="Total batch size for training.")
    parser.add_argument("--eval_batch_size",
                        default=8,
                        type=int,
                        help="Total batch size for eval.")
    parser.add_argument("--learning_rate",
                        default=3e-5,
                        type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument("--num_train_epochs",
                        default=3.0,
                        type=float,
                        help="Total number of training epochs to perform.")
    parser.add_argument(
        "--warmup_proportion",
        default=0.1,
        type=float,
        help=
        "Proportion of training to perform linear learning rate warmup for. "
        "E.g., 0.1 = 10%% of training.")
    parser.add_argument("--no_cuda",
                        action='store_true',
                        help="Whether not to use CUDA when available")
    parser.add_argument(
        "--on_memory",
        action='store_true',
        help="Whether to load train samples into memory or use disk")
    parser.add_argument(
        "--do_lower_case",
        action='store_true',
        help=
        "Whether to lower case the input text. True for uncased models, False for cased models."
    )
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="local_rank for distributed training on gpus")
    parser.add_argument('--seed',
                        type=int,
                        default=42,
                        help="random seed for initialization")
    parser.add_argument(
        '--gradient_accumulation_steps',
        type=int,
        default=1,
        help=
        "Number of updates steps to accumualte before performing a backward/update pass."
    )
    parser.add_argument(
        '--fp16',
        action='store_true',
        help="Whether to use 16-bit float precision instead of 32-bit")
    parser.add_argument(
        '--loss_scale',
        type=float,
        default=0,
        help=
        "Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
        "0 (default value): dynamic loss scaling.\n"
        "Positive power of 2: static loss scaling value.\n")

    args = parser.parse_args()

    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available()
                              and not args.no_cuda else "cpu")
        n_gpu = torch.cuda.device_count()
    else:
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        n_gpu = 1
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl')
    logger.info(
        "device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".
        format(device, n_gpu, bool(args.local_rank != -1), args.fp16))

    if args.gradient_accumulation_steps < 1:
        raise ValueError(
            "Invalid gradient_accumulation_steps parameter: {}, should be >= 1"
            .format(args.gradient_accumulation_steps))

    args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps

    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

    if not args.do_train and not args.do_eval:
        raise ValueError(
            "At least one of `do_train` or `do_eval` must be True.")

    if os.path.exists(args.output_dir) and os.listdir(args.output_dir):
        raise ValueError(
            "Output directory ({}) already exists and is not empty.".format(
                args.output_dir))
    if not os.path.exists(args.output_dir):
        os.makedirs(args.output_dir)

    tokenizer = BertTokenizer.from_pretrained(args.bert_model,
                                              do_lower_case=args.do_lower_case)

    #train_examples = None
    num_train_optimization_steps = None
    if args.do_train:
        print("Loading Train Dataset", args.train_file)
        train_dataset = BERTDataset(args.train_file,
                                    tokenizer,
                                    seq_len=args.max_seq_length,
                                    corpus_lines=None,
                                    on_memory=args.on_memory)
        num_train_optimization_steps = int(
            len(train_dataset) / args.train_batch_size /
            args.gradient_accumulation_steps) * args.num_train_epochs
        if args.local_rank != -1:
            num_train_optimization_steps = num_train_optimization_steps // torch.distributed.get_world_size(
            )

    # Prepare model
    model = BertForPreTraining.from_pretrained(args.bert_model)
    if args.fp16:
        model.half()
    model.to(device)
    if args.local_rank != -1:
        try:
            from apex.parallel import DistributedDataParallel as DDP
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training."
            )
        model = DDP(model)
    elif n_gpu > 1:
        model = torch.nn.DataParallel(model)

    # Prepare optimizer
    param_optimizer = list(model.named_parameters())
    no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [{
        'params':
        [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
        'weight_decay':
        0.01
    }, {
        'params':
        [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
        'weight_decay':
        0.0
    }]

    if args.fp16:
        try:
            from apex.optimizers import FP16_Optimizer
            from apex.optimizers import FusedAdam
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training."
            )

        optimizer = FusedAdam(optimizer_grouped_parameters,
                              lr=args.learning_rate,
                              bias_correction=False,
                              max_grad_norm=1.0)
        if args.loss_scale == 0:
            optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
        else:
            optimizer = FP16_Optimizer(optimizer,
                                       static_loss_scale=args.loss_scale)

    else:
        optimizer = BertAdam(optimizer_grouped_parameters,
                             lr=args.learning_rate,
                             warmup=args.warmup_proportion,
                             t_total=num_train_optimization_steps)

    global_step = 0
    if args.do_train:
        logger.info("***** Running training *****")
        logger.info("  Num examples = %d", len(train_dataset))
        logger.info("  Batch size = %d", args.train_batch_size)
        logger.info("  Num steps = %d", num_train_optimization_steps)

        if args.local_rank == -1:
            train_sampler = RandomSampler(train_dataset)
        else:
            #TODO: check if this works with current data generator from disk that relies on next(file)
            # (it doesn't return item back by index)
            train_sampler = DistributedSampler(train_dataset)
        train_dataloader = DataLoader(train_dataset,
                                      sampler=train_sampler,
                                      batch_size=args.train_batch_size)

        model.train()
        for _ in trange(int(args.num_train_epochs), desc="Epoch"):
            tr_loss = 0
            nb_tr_examples, nb_tr_steps = 0, 0
            for step, batch in enumerate(
                    tqdm(train_dataloader, desc="Iteration")):
                batch = tuple(t.to(device) for t in batch)
                input_ids, input_mask, segment_ids, lm_label_ids, is_next = batch
                loss = model(input_ids, segment_ids, input_mask, lm_label_ids,
                             is_next)
                if n_gpu > 1:
                    loss = loss.mean()  # mean() to average on multi-gpu.
                if args.gradient_accumulation_steps > 1:
                    loss = loss / args.gradient_accumulation_steps
                if args.fp16:
                    optimizer.backward(loss)
                else:
                    loss.backward()
                tr_loss += loss.item()
                nb_tr_examples += input_ids.size(0)
                nb_tr_steps += 1
                if (step + 1) % args.gradient_accumulation_steps == 0:
                    if args.fp16:
                        # modify learning rate with special warm up BERT uses
                        # if args.fp16 is False, BertAdam is used that handles this automatically
                        lr_this_step = args.learning_rate * warmup_linear(
                            global_step / num_train_optimization_steps,
                            args.warmup_proportion)
                        for param_group in optimizer.param_groups:
                            param_group['lr'] = lr_this_step
                    optimizer.step()
                    optimizer.zero_grad()
                    global_step += 1

        # Save a trained model
        logger.info("** ** * Saving fine - tuned model ** ** * ")
        model_to_save = model.module if hasattr(
            model, 'module') else model  # Only save the model it-self
        output_model_file = os.path.join(args.output_dir, "pytorch_model.bin")
        if args.do_train:
            torch.save(model_to_save.state_dict(), output_model_file)
def main():
    parser = argparse.ArgumentParser()

    ## Required parameters
    parser.add_argument(
        "--data_dir",
        default=None,
        type=str,
        required=True,
        help=
        "The input data dir. Should contain the .tsv files (or other data files) for the task."
    )
    parser.add_argument(
        "--output_dir",
        default=None,
        type=str,
        required=True,
        help="The output directory where the model checkpoints will be written."
    )

    ## Other parameters
    parser.add_argument(
        "--bert_model",
        default='bert-base-multilingual-cased',
        type=str,
        help="Bert pre-trained model selected in the list: bert-base-uncased, "
        "bert-large-uncased, bert-base-cased, bert-large-cased, bert-base-multilingual-uncased, "
        "bert-base-multilingual-cased, bert-base-chinese.")
    parser.add_argument(
        "--max_seq_length",
        default=384,
        type=int,
        help=
        "The maximum total input sequence length after WordPiece tokenization. \n"
        "Sequences longer than this will be truncated, and sequences shorter \n"
        "than this will be padded.")
    parser.add_argument("--do_train",
                        action='store_true',
                        help="Whether to run training.")
    # parser.add_argument("--do_eval",
    #                     action='store_true',
    #                     help="Whether to run eval on the dev set.")
    parser.add_argument("--train_batch_size",
                        default=2,
                        type=int,
                        help="Total batch size for training.")
    #     parser.add_argument("--eval_batch_size",
    #                         default=2,
    #                         type=int,
    #                         help="Total batch size for eval.")
    parser.add_argument("--learning_rate",
                        default=3e-5,
                        type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument("--num_train_epochs",
                        default=3.0,
                        type=float,
                        help="Total number of training epochs to perform.")
    parser.add_argument(
        "--warmup_proportion",
        default=0.1,
        type=float,
        help=
        "Proportion of training to perform linear learning rate warmup for. "
        "E.g., 0.1 = 10%% of training.")
    parser.add_argument("--no_cuda",
                        action='store_true',
                        help="Whether not to use CUDA when available")
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="local_rank for distributed training on GPUs")
    parser.add_argument('--seed',
                        type=int,
                        default=42,
                        help="random seed for initialization")
    parser.add_argument(
        '--gradient_accumulation_steps',
        type=int,
        default=1,
        help=
        "Number of updates steps to accumualte before performing a backward/update pass."
    )
    parser.add_argument(
        '--fp16',
        action='store_true',
        help="Whether to use 16-bit float precision instead of 32-bit")
    parser.add_argument(
        '--loss_scale',
        type=float,
        default=0,
        help=
        "Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
        "0 (default value): dynamic loss scaling.\n"
        "Positive power of 2: static loss scaling value.\n")
    parser.add_argument('--visdom',
                        action='store_true',
                        help='Use visdom for loss visualization')
    parser.add_argument('--check_saved_model',
                        action='store_true',
                        help='Use visdom for loss visualization')
    parser.add_argument('--last_final_epoch',
                        type=int,
                        default=-1,
                        help="저번에 이미 최종 학습을 했고, 이에 이어서 트레이닝을 원할때 사용,\n"
                        "기존에 train_epoch를 3으로 세팅했다면, 2가 아닌 3을 입력하세요.")

    args = parser.parse_args()
    print(args)

    if args.visdom:
        import visdom
        viz = visdom.Visdom()
        # visdom을 통해서 loss를 시각화

    os.makedirs(args.output_dir, exist_ok=True)

    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available()
                              and not args.no_cuda else "cpu")
        n_gpu = torch.cuda.device_count()
    else:
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        n_gpu = 1
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl')
    logger.info(
        "device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".
        format(device, n_gpu, bool(args.local_rank != -1), args.fp16))

    if args.gradient_accumulation_steps < 1:
        raise ValueError(
            "Invalid gradient_accumulation_steps parameter: {}, should be >= 1"
            .format(args.gradient_accumulation_steps))

    args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps

    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

    if not args.do_train:
        raise ValueError(
            "Training is currently the only implemented execution option. Please set `do_train`."
        )

    if os.path.exists(args.output_dir) and os.listdir(args.output_dir):
        raise ValueError(
            "Output directory ({}) already exists and is not empty.".format(
                args.output_dir))
    if not os.path.exists(args.output_dir):
        os.makedirs(args.output_dir)

    tokenizer = BertTokenizer.from_pretrained(args.bert_model,
                                              do_lower_case=False)

    processor = DataProcessor()
    label_list = processor.get_labels()

    num_train_optimization_steps = None
    if args.do_train:
        print("Loading Train Dataset", args.data_dir)

        train_examples = processor.get_train_examples(args.data_dir)
        train_dataset = LazyDataset(train_examples, args.max_seq_length,
                                    tokenizer)
        if args.local_rank == -1:
            train_sampler = RandomSampler(train_dataset)
        else:
            train_sampler = DistributedSampler(train_dataset)

        num_train_optimization_steps = int(
            len(train_dataset) / args.train_batch_size /
            args.gradient_accumulation_steps) * args.num_train_epochs
        if args.local_rank != -1:
            num_train_optimization_steps = num_train_optimization_steps // torch.distributed.get_world_size(
            )

    # Prepare model
    loaded_epoch = -1
    saved_model_path = -1

    if args.last_final_epoch != -1:
        last_model = os.path.join(args.output_dir, WEIGHTS_NAME)
        if os.path.exists(last_model):
            saved_model_path = last_model
            loaded_epoch = args.last_final_epoch - 1

    elif args.check_saved_model:
        for epoch in range(int(args.num_train_epochs)):
            tmp = os.path.join(args.output_dir,
                               (f"weight_on_ep{epoch}_" + WEIGHTS_NAME))
            if os.path.exists(tmp):
                saved_model_path = tmp
                loaded_epoch = epoch

    if saved_model_path != -1:
        logger.info(f"Loading on saved model {saved_model_path}")
        config_file = os.path.join(args.output_dir, CONFIG_NAME)
        config = BertConfig(config_file)
        logger.info("Model config {}".format(config))
        model = BertForPreTraining(config)
        model.load_state_dict(torch.load(saved_model_path))
    else:
        loaded_epoch = -1
        model = BertForPreTraining.from_pretrained(args.bert_model)

    if args.fp16:
        model.half()
    model.to(device)
    if args.local_rank != -1:
        try:
            from apex.parallel import DistributedDataParallel as DDP
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training."
            )
        model = DDP(model)
    elif n_gpu > 1:
        model = torch.nn.DataParallel(model)

    # Prepare optimizer
    param_optimizer = list(model.named_parameters())
    no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [{
        'params':
        [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
        'weight_decay':
        0.01
    }, {
        'params':
        [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
        'weight_decay':
        0.0
    }]

    if args.fp16:
        try:
            from apex.optimizers import FP16_Optimizer
            from apex.optimizers import FusedAdam
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training."
            )

        optimizer = FusedAdam(optimizer_grouped_parameters,
                              lr=args.learning_rate,
                              bias_correction=False,
                              max_grad_norm=1.0)
        if args.loss_scale == 0:
            optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
        else:
            optimizer = FP16_Optimizer(optimizer,
                                       static_loss_scale=args.loss_scale)

    else:
        optimizer = BertAdam(optimizer_grouped_parameters,
                             lr=args.learning_rate,
                             warmup=args.warmup_proportion,
                             t_total=num_train_optimization_steps)

    if args.visdom:
        # 일단 visdom 기본 figure를 정의
        vis_title = f'Baseline on {len(train_dataset)} dataset'
        vis_legend = ['LM Loss', 'Click Loss', 'Total Loss']
        iter_plot = create_vis_plot(viz, 'Iteration', 'Loss', vis_title,
                                    vis_legend)
        epoch_plot = create_vis_plot(viz, 'Epoch', 'Loss', vis_title,
                                     vis_legend)

    # if args.do_eval:
    #     eval_examples = processor.get_dev_examples(args.data_dir)
    #
    #     logger.info("***** Running evaluation *****")
    #     logger.info("  Num examples = %d", len(eval_examples))
    #     logger.info("  Batch size = %d", args.eval_batch_size)
    #
    #     eval_data = LazyDatasetClassifier(eval_examples, label_list, args.max_seq_length, tokenizer)
    #     # Run prediction for full data
    #     """
    #     cur_tensors = (torch.tensor(f.input_ids),
    #            torch.tensor(f.input_mask),
    #            torch.tensor(f.segment_ids),
    #            torch.tensor(f.lm_label_ids),
    #            torch.tensor(f.label))
    #     """
    #     eval_sampler = SequentialSampler(eval_data)
    #     eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size)
    #     save_eval_loss = []

    global_step = 0
    if args.do_train:

        logger.info("***** Running training *****")
        logger.info("  Num examples = %d", len(train_dataset))
        logger.info("  Batch size = %d", args.train_batch_size)
        logger.info("  Num steps = %d", num_train_optimization_steps)

        train_dataloader = DataLoader(train_dataset,
                                      sampler=train_sampler,
                                      batch_size=args.train_batch_size)
        """
        cur_tensors = (torch.tensor(f.input_ids),
               torch.tensor(f.input_mask),
               torch.tensor(f.segment_ids),
               torch.tensor(f.lm_label_ids),
               torch.tensor(f.label))
        """

        save_loss = []
        save_epoch_loss = []
        save_step = int(len(train_dataloader) // 5)

        for epoch in trange((loaded_epoch + 1),
                            int(args.num_train_epochs),
                            desc="Epoch"):

            #     if args.do_eval and loaded_epoch != -1:
            #         model.eval()
            #         eval_loss, eval_accuracy = 0, 0
            #         nb_eval_steps, nb_eval_examples = 0, 0
            #
            #         for batch in tqdm(eval_dataloader, desc="Evaluating"):
            #             batch = tuple(t.to(device) for t in batch)
            #             input_ids, input_mask, segment_ids, label_ids = batch
            #
            #             with torch.no_grad():
            #                 tmp_eval_loss = model(input_ids, segment_ids, input_mask, None, label_ids)
            #                 prediction_scores, logits = model(input_ids, segment_ids, input_mask)
            #
            #             if n_gpu > 1:
            #                 tmp_eval_loss = tmp_eval_loss.mean()  # mean() to average on multi-gpu.
            #
            #             logits = logits.detach().cpu().numpy()
            #             label_ids = label_ids.to('cpu').numpy()
            #             tmp_eval_accuracy = accuracy(logits, label_ids)
            #
            #             eval_loss += tmp_eval_loss.mean().item()
            #             eval_accuracy += tmp_eval_accuracy
            #
            #             nb_eval_examples += input_ids.size(0)
            #             nb_eval_steps += 1
            #
            #         eval_loss = eval_loss / nb_eval_steps
            #         eval_accuracy = eval_accuracy / nb_eval_examples
            #         result = {'eval_loss': eval_loss,
            #                   'eval_accuracy': eval_accuracy,
            #                   'global_step': global_step}
            #
            #         save_eval_loss.append(eval_loss)
            #
            #         output_eval_file = os.path.join(args.output_dir, f"Epoch_{epoch}_eval_results.txt")
            #         with open(output_eval_file, "w") as writer:
            #             logger.info(f"***** Eval results on Epoch {epoch} *****")
            #             for key in sorted(result.keys()):
            #                 logger.info("  %s = %s", key, str(result[key]))
            #                 writer.write("%s = %s\n" % (key, str(result[key])))

            model.train()
            tr_loss = 0
            nb_tr_examples, nb_tr_steps = 0, 0
            tr_loss_ml = 0
            tr_loss_click = 0
            for step, batch in enumerate(
                    tqdm(train_dataloader, desc="Iteration")):
                batch = tuple(t.to(device) for t in batch)
                input_ids, input_mask, segment_ids, lm_label_ids, label = batch
                # if global_step == 0:
                #     print(input_ids.shape, input_mask.shape, segment_ids.shape, lm_label_ids.shape, label.shape)
                loss, loss_ml, loss_click = model(input_ids, segment_ids,
                                                  input_mask, lm_label_ids,
                                                  label)

                if n_gpu > 1:
                    loss = loss.mean()  # mean() to average on multi-gpu.
                    loss_ml = loss_ml.mean()
                    loss_click = loss_click.mean()

                if args.gradient_accumulation_steps > 1:
                    loss = loss / args.gradient_accumulation_steps
                    loss_ml = loss_ml / args.gradient_accumulation_steps
                    loss_click = loss_click / args.gradient_accumulation_steps

                if args.fp16:
                    optimizer.backward(loss)
                else:
                    loss.backward()

                tr_loss += loss.item()
                tr_loss_ml += loss_ml.item()
                tr_loss_click += loss_click.item()

                nb_tr_examples += input_ids.size(0)
                nb_tr_steps += 1
                if (step + 1) % args.gradient_accumulation_steps == 0:
                    if args.fp16:
                        # modify learning rate with special warm up BERT uses
                        # if args.fp16 is False, BertAdam is used that handles this automatically
                        lr_this_step = args.learning_rate * warmup_linear(
                            global_step / num_train_optimization_steps,
                            args.warmup_proportion)
                        for param_group in optimizer.param_groups:
                            param_group['lr'] = lr_this_step
                    optimizer.step()
                    optimizer.zero_grad()
                    global_step += 1

                if global_step != 0 and global_step % save_step == 0:
                    # 한 에포치당 5번 저장
                    logger.info(f'Saving state, iter: {global_step}')
                    model_to_save = model.module if hasattr(
                        model, 'module') else model
                    # Only save the model it-self
                    model_name = f"weight_on_{global_step}_" + WEIGHTS_NAME
                    output_model_file = os.path.join(args.output_dir,
                                                     model_name)
                    torch.save(model_to_save.state_dict(), output_model_file)
                    output_config_file = os.path.join(args.output_dir,
                                                      CONFIG_NAME)
                    with open(output_config_file, 'w') as f:
                        f.write(model_to_save.config.to_json_string())
                    print("Loss at ", global_step, loss_ml.item(),
                          loss_click.item(), loss.item())

                save_loss.append(
                    [loss_ml.item(),
                     loss_click.item(),
                     loss.item()])

                if args.visdom:
                    update_vis_plot(viz, global_step, loss_ml.item(),
                                    loss_click.item(), iter_plot, epoch_plot,
                                    'append')

            if epoch != (int(args.num_train_epochs) - 1):
                # 각 에포치가 끝날때 마다 저장
                logger.info(f'Saving state, epoch: {epoch}')
                model_to_save = model.module if hasattr(model,
                                                        'module') else model
                # Only save the model it-self
                model_name = f"weight_on_ep{epoch}_" + WEIGHTS_NAME
                output_model_file = os.path.join(args.output_dir, model_name)
                torch.save(model_to_save.state_dict(), output_model_file)
                output_config_file = os.path.join(args.output_dir, CONFIG_NAME)
                with open(output_config_file, 'w') as f:
                    f.write(model_to_save.config.to_json_string())
                print("Loss at epoch", epoch, tr_loss_ml, tr_loss_click,
                      tr_loss)

            save_epoch_loss.append([tr_loss_ml, tr_loss_click, tr_loss])
            if args.visdom:
                update_vis_plot(viz, epoch, tr_loss_ml, tr_loss_click,
                                epoch_plot, None, 'append',
                                len(train_dataset) // args.train_batch_size)

            # if args.do_eval and loaded_epoch == -1:
            #
            #     model.eval()
            #     eval_loss, eval_accuracy = 0, 0
            #     nb_eval_steps, nb_eval_examples = 0, 0
            #
            #     for batch in tqdm(eval_dataloader, desc="Evaluating"):
            #         batch = tuple(t.to(device) for t in batch)
            #         input_ids, input_mask, segment_ids, label_ids = batch
            #
            #         with torch.no_grad():
            #             tmp_eval_loss = model(input_ids, segment_ids, input_mask, None, label_ids)
            #             prediction_scores, logits = model(input_ids, segment_ids, input_mask)
            #
            #         if n_gpu > 1:
            #             tmp_eval_loss = tmp_eval_loss.mean()  # mean() to average on multi-gpu.
            #
            #         logits = logits.detach().cpu().numpy()
            #         label_ids = label_ids.to('cpu').numpy()
            #         tmp_eval_accuracy = accuracy(logits, label_ids)
            #
            #         eval_loss += tmp_eval_loss.mean().item()
            #         eval_accuracy += tmp_eval_accuracy
            #
            #         nb_eval_examples += input_ids.size(0)
            #         nb_eval_steps += 1
            #
            #     eval_loss = eval_loss / nb_eval_steps
            #     eval_accuracy = eval_accuracy / nb_eval_examples
            #     result = {'eval_loss': eval_loss,
            #               'eval_accuracy': eval_accuracy,
            #               'global_step': global_step}
            #
            #     save_eval_loss.append(eval_loss)
            #
            #     output_eval_file = os.path.join(args.output_dir, f"Epoch_{epoch}_eval_results.txt")
            #     with open(output_eval_file, "w") as writer:
            #         logger.info(f"***** Eval results on Epoch {epoch} *****")
            #         for key in sorted(result.keys()):
            #             logger.info("  %s = %s", key, str(result[key]))
            #             writer.write("%s = %s\n" % (key, str(result[key])))

        # Save a trained model
        logger.info("** ** * Saving fine - tuned model ** ** * ")
        # model_to_save = model.module if hasattr(model, 'module') else model  # Only save the model it-self
        # output_model_file = os.path.join(args.output_dir, "pytorch_model.bin")
        # if args.do_train:
        #     torch.save(model_to_save.state_dict(), output_model_file)

        save_loss = np.array(save_loss)
        save_epoch_loss = np.array(save_epoch_loss)
        np.save(os.path.join(args.output_dir, "save_loss.npy"), save_loss)
        np.save(os.path.join(args.output_dir, "save_epoch_loss.npy"),
                save_epoch_loss)

        # if args.do_eval:
        #     save_eval_loss = np.array(save_eval_loss)
        #     np.save(os.path.join(args.output_dir, "save_eval_loss.npy"), save_eval_loss)

        model_to_save = model.module if hasattr(model, 'module') else model
        # Only save the model it-self
        output_model_file = os.path.join(args.output_dir, WEIGHTS_NAME)
        torch.save(model_to_save.state_dict(), output_model_file)
        output_config_file = os.path.join(args.output_dir, CONFIG_NAME)
        with open(output_config_file, 'w') as f:
            f.write(model_to_save.config.to_json_string())
示例#4
0
corpus = load_lm_data(args.entity_dict, args.data, args.output_dir,
                      args.dataset, tokenizer)
## Training Dataset
train_iter = corpus.get_iterator('train',
                                 args.batch_size,
                                 args.max_seq_length,
                                 args.max_doc_length,
                                 device=device)

## total batch numbers and optim updating steps
total_train_steps = int(train_iter.batch_steps * args.num_train_epochs)

########################################################################################################################
# Building the model
########################################################################################################################
model = BertForPreTraining.from_pretrained(args.bert_model,
                                           entity_num=train_iter.entity_num)

args.n_all_param = sum([p.nelement() for p in model.bert.parameters()])
args.n_nonemb_param = sum(
    [p.nelement() for p in model.bert.encoder.parameters()])

logger.info('=' * 100)
for k, v in args.__dict__.items():
    logger.info('    - {} : {}'.format(k, v))
logger.info('=' * 100)
logger.info('#params = {}'.format(args.n_all_param))
logger.info('#non emb params = {}'.format(args.n_nonemb_param))

if args.fp16:
    model = model.half()
def prepare_model_and_optimizer(args, device):
    global_step = 0
    args.resume_step = 0
    checkpoint = None

    config = BertConfig.from_json_file(args.bert_config_path)
    config.fused_mha = args.fused_mha
    config.fused_gelu_bias = args.fused_gelu_bias
    config.dense_seq_output = args.dense_seq_output
    config.unpad = args.unpad
    config.pad = args.pad
    config.fuse_qkv = not args.disable_fuse_qkv
    config.fuse_scale = not args.disable_fuse_scale
    config.fuse_mask = not args.disable_fuse_mask
    config.fuse_dropout = args.enable_fuse_dropout
    config.apex_softmax = not args.disable_apex_softmax
    config.enable_stream = args.enable_stream
    if config.fuse_mask == True: config.apex_softmax = True
    if config.pad == False: config.enable_stream = True
    if config.unpad == True: config.fused_mha = False

    # Padding for divisibility by 8
    if config.vocab_size % 8 != 0:
        config.vocab_size += 8 - (config.vocab_size % 8)

    # Load from Pyt checkpoint - either given as init_checkpoint, or picked up from output_dir if found
    if args.init_checkpoint is not None or found_resume_checkpoint(args):
        # Prepare model

        model = BertForPreTraining(config)
        if args.init_checkpoint is None: # finding checkpoint in output_dir
            checkpoint_str = "phase2_ckpt_*.pt" if args.phase2 else "phase1_ckpt_*.pt"
            model_names = [f for f in glob.glob(os.path.join(args.output_dir, checkpoint_str))]
            global_step = max([int(x.split('.pt')[0].split('_')[-1].strip()) for x in model_names])
            args.resume_step = global_step #used for throughput computation

            resume_init_checkpoint = os.path.join(args.output_dir, checkpoint_str.replace("*", str(global_step)))
            print("Setting init checkpoint to %s - which is the latest in %s" %(resume_init_checkpoint, args.output_dir))
            checkpoint=torch.load(resume_init_checkpoint, map_location="cpu")
        else:
            checkpoint=torch.load(args.init_checkpoint, map_location="cpu")["model"]

        # Fused MHA requires a remapping of checkpoint parameters
        if config.fused_mha:
            checkpoint_remapped = remap_attn_parameters(checkpoint)
            model.load_state_dict(checkpoint_remapped, strict=False)
        else:
            model.load_state_dict(checkpoint, strict=True)
    else: #Load from TF Checkpoint
        model = BertForPreTraining.from_pretrained(args.init_tf_checkpoint, from_tf=True, config=config)


    model.to(device)
    param_optimizer = list(model.named_parameters())
    no_decay = ['bias', 'gamma', 'beta', 'LayerNorm']

    optimizer_grouped_parameters = [
        {'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': args.weight_decay_rate},
        {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}]

    mlperf_logger.log_event(key=mlperf_logger.constants.OPT_BASE_LR,
                            value=args.learning_rate, sync=False)
    optimizer = FusedLAMB(optimizer_grouped_parameters,
                          lr=args.learning_rate,
                          betas=(args.opt_lamb_beta_1, args.opt_lamb_beta_2))
    mlperf_logger.log_event(key='opt_epsilon', value=optimizer.defaults['eps'],
                            sync=False)
    b1, b2 = optimizer.defaults['betas']
    mlperf_logger.log_event(key='opt_lamb_beta_1', value=b1, sync=False)
    mlperf_logger.log_event(key='opt_lamb_beta_2', value=b2, sync=False)
    mlperf_logger.log_event(key='opt_lamb_weight_decay_rate',
                            value=optimizer.defaults['weight_decay'],
                            sync=False)

    if args.warmup_steps == 0:
        warmup_steps = int(args.max_steps * args.warmup_proportion)
        warmup_start = 0
    else:
        warmup_steps = args.warmup_steps
        warmup_start = args.start_warmup_step
    lr_scheduler = LinearWarmupPolyDecayScheduler(optimizer, start_warmup_steps=warmup_start, warmup_steps=warmup_steps,
                                                  total_steps=args.max_steps, end_learning_rate=0.0, degree=1.0)
    
                           
    if args.fp16:

        if args.loss_scale == 0:
            model, optimizer = amp.initialize(model, optimizer, opt_level="O2", loss_scale="dynamic")
        else:
            model, optimizer = amp.initialize(model, optimizer, opt_level="O2", loss_scale=args.loss_scale)
        amp._amp_state.loss_scalers[0]._loss_scale = float(os.getenv("INIT_LOSS_SCALE", 2**20))


    if found_resume_checkpoint(args):
        optimizer.load_state_dict(checkpoint['optimizer']) #restores m,v states (only if resuming checkpoint, not for init_checkpoint and init_tf_checkpoint for now)

        # Restore AMP master parameters          
        if args.fp16:
            optimizer._lazy_init_maybe_master_weights()
            optimizer._amp_stash.lazy_init_called = True
            optimizer.load_state_dict(checkpoint['optimizer'])
            for param, saved_param in zip(amp.master_params(optimizer), checkpoint['master params']):
                param.data.copy_(saved_param.data)

    if args.local_rank != -1:
        if not args.allreduce_post_accumulation:
            model = DDP(model, message_size=250000000, gradient_predivide_factor=torch.distributed.get_world_size())
        else:
            flat_dist_call([param.data for param in model.parameters()], torch.distributed.broadcast, (0,) )

    return model, optimizer, lr_scheduler, checkpoint, global_step
示例#6
0
def main():
    parser = argparse.ArgumentParser()

    # Required parameters
    parser.add_argument("--input_dir",
                        type=str,
                        required=True)
    parser.add_argument("--teacher_model",
                        default=None,
                        type=str,
                        required=True)
    parser.add_argument("--student_model",
                        default=None,
                        type=str,
                        required=True)
    parser.add_argument("--output_dir",
                        default=None,
                        type=str,
                        required=True)
    parser.add_argument('--vocab_file',
                        type=str,
                        default=None,
                        required=True,
                        help="Vocabulary mapping/file BERT was pretrainined on")

    # Other parameters
    parser.add_argument("--max_seq_length",
                        default=128,
                        type=int,
                        help="The maximum total input sequence length after WordPiece tokenization. \n"
                             "Sequences longer than this will be truncated, and sequences shorter \n"
                             "than this will be padded.")
    parser.add_argument("--reduce_memory",
                        action="store_true",
                        help="Store training data as on-disc memmaps to massively reduce memory usage")
    parser.add_argument("--do_eval",
                        action='store_true',
                        help="Whether to run eval on the dev set.")
    parser.add_argument("--do_lower_case",
                        action='store_true',
                        help="Set this flag if you are using an uncased model.")
    parser.add_argument("--train_batch_size",
                        default=32,
                        type=int,
                        help="Total batch size for training.")
    parser.add_argument("--eval_batch_size",
                        default=8,
                        type=int,
                        help="Total batch size for eval.")
    parser.add_argument("--learning_rate",
                        default=5e-5,
                        type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument('--weight_decay',
                        '--wd',
                        default=1e-4,
                        type=float, metavar='W',
                        help='weight decay')
    parser.add_argument("--num_train_epochs",
                        default=3.0,
                        type=float,
                        help="Total number of training epochs to perform.")
    parser.add_argument("--warmup_proportion",
                        default=0.1,
                        type=float,
                        help="Proportion of training to perform linear learning rate warmup for. "
                             "E.g., 0.1 = 10%% of training.")
    parser.add_argument("--no_cuda",
                        action='store_true',
                        help="Whether not to use CUDA when available")
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="local_rank for distributed training on gpus")
    parser.add_argument('--seed',
                        type=int,
                        default=42,
                        help="random seed for initialization")
    parser.add_argument('--gradient_accumulation_steps',
                        type=int,
                        default=1,
                        help="Number of updates steps to accumulate before performing a backward/update pass.")
    parser.add_argument('--steps_per_epoch',
                        type=int,
                        default=-1,
                        help="Number of updates steps to in one epoch.")
    parser.add_argument('--max_steps',
                        type=int,
                        default=-1,
                        help="Number of training steps.")
    parser.add_argument('--amp',
                        action='store_true',
                        default=False,
                        help="Whether to use 16-bit float precision instead of 32-bit")
    parser.add_argument('--continue_train',
                        action='store_true',
                        default=False,
                        help='Whether to train from checkpoints')
    parser.add_argument('--disable_progress_bar',
                        default=False,
                        action='store_true',
                        help='Disable tqdm progress bar')
    parser.add_argument('--max_grad_norm',
                        type=float,
                        default=1.,
                        help="Gradient Clipping threshold")

    # Additional arguments
    parser.add_argument('--eval_step',
                        type=int,
                        default=1000)

    # This is used for running on Huawei Cloud.
    parser.add_argument('--data_url',
                        type=str,
                        default="")

    #Distillation specific
    parser.add_argument('--value_state_loss',
                        action='store_true',
                        default=False)
    parser.add_argument('--hidden_state_loss',
                        action='store_true',
                        default=False)
    parser.add_argument('--use_last_layer',
                        action='store_true',
                        default=False)
    parser.add_argument('--use_kld',
                        action='store_true',
                        default=False)
    parser.add_argument('--use_cosine',
                        action='store_true',
                        default=False)
    parser.add_argument('--distill_config',
                        default="distillation_config.json",
                        type=str,
                        help="path the distillation config")
    parser.add_argument('--num_workers',
                        type=int,
                        default=4,
                        help='number of DataLoader worker processes per rank')

    args = parser.parse_args()
    logger.info('args:{}'.format(args))

    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
        n_gpu = torch.cuda.device_count()
    else:
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        n_gpu = 1
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl')

    logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s -   %(message)s',
                        datefmt='%m/%d/%Y %H:%M:%S',
                        level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN,
                        stream=sys.stdout)

    logger.info("device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".format(
        device, n_gpu, bool(args.local_rank != -1), args.amp))

    if args.gradient_accumulation_steps < 1:
        raise ValueError("Invalid gradient_accumulation_steps parameter: {}, should be >= 1".format(
            args.gradient_accumulation_steps))

    # Reference params
    author_gbs = 256
    author_steps_per_epoch = 22872
    author_epochs = 3
    author_max_steps = author_steps_per_epoch * author_epochs
    # Compute present run params
    if args.max_steps == -1 or args.steps_per_epoch == -1:
        args.steps_per_epoch = author_steps_per_epoch * author_gbs // (args.train_batch_size * get_world_size() * args.gradient_accumulation_steps)
        args.max_steps = author_max_steps * author_gbs // (args.train_batch_size * get_world_size() * args.gradient_accumulation_steps)

    #Set seed
    set_seed(args.seed, n_gpu)

    if os.path.exists(args.output_dir) and os.listdir(args.output_dir):
        raise ValueError("Output directory ({}) already exists and is not empty.".format(args.output_dir))
    if not os.path.exists(args.output_dir) and is_main_process():
        os.makedirs(args.output_dir)

    tokenizer = BertTokenizer.from_pretrained(args.teacher_model, do_lower_case=args.do_lower_case)

    teacher_model, teacher_config = BertModel.from_pretrained(args.teacher_model,
                                              distill_config=args.distill_config)

    # Required to make sure model's fwd doesn't return anything. required for DDP.
    # fwd output not being used in loss computation crashes DDP
    teacher_model.make_teacher()

    if args.continue_train:
        student_model, student_config = BertForPreTraining.from_pretrained(args.student_model,
                                                           distill_config=args.distill_config)
    else:
        student_model, student_config = BertForPreTraining.from_scratch(args.student_model, 
                                                        distill_config=args.distill_config)

    # We need a projection layer since teacher.hidden_size != student.hidden_size
    use_projection = student_config.hidden_size != teacher_config.hidden_size
    if use_projection:
        project = Project(student_config, teacher_config)
        if args.continue_train:
            project_model_file = os.path.join(args.student_model, "project.bin")
            project_ckpt = torch.load(project_model_file, map_location="cpu")
            project.load_state_dict(project_ckpt)

    distill_config = {"nn_module_names": []} #Empty list since we don't want to use nn module hooks here
    distill_hooks_student, distill_hooks_teacher = DistillHooks(distill_config), DistillHooks(distill_config)

    student_model.register_forward_hook(distill_hooks_student.child_to_main_hook)
    teacher_model.register_forward_hook(distill_hooks_teacher.child_to_main_hook)

    ## Register hooks on nn.Modules
    # student_fwd_pre_hook = student_model.register_forward_pre_hook(distill_hooks_student.register_nn_module_hook)
    # teacher_fwd_pre_hook = teacher_model.register_forward_pre_hook(distill_hooks_teacher.register_nn_module_hook)

    student_model.to(device)
    teacher_model.to(device)
    if use_projection:
        project.to(device)
    if args.local_rank != -1:
        teacher_model = torch.nn.parallel.DistributedDataParallel(
               teacher_model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=False
           )
        student_model = torch.nn.parallel.DistributedDataParallel(
               student_model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=False
           )
        if use_projection:
            project = torch.nn.parallel.DistributedDataParallel(
                   project, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=False
               )
    size = 0
    for n, p in student_model.named_parameters():
        logger.info('n: {}'.format(n))
        logger.info('p: {}'.format(p.nelement()))
        size += p.nelement()

    logger.info('Total parameters: {}'.format(size))

    # Prepare optimizer
    param_optimizer = list(student_model.named_parameters())
    if use_projection:
        param_optimizer += list(project.named_parameters())
    no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [
        {'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01},
        {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
    ]

    optimizer = FusedAdam(optimizer_grouped_parameters,
                              lr=args.learning_rate,
                              bias_correction=False)
    scheduler = LinearWarmUpScheduler(optimizer, warmup=args.warmup_proportion, total_steps=args.max_steps)    

    global_step = 0
    logging.info("***** Running training *****")
    logging.info("  Num examples = {}".format(args.train_batch_size * args.max_steps))
    logging.info("  Batch size = %d", args.train_batch_size)
    logging.info("  Num steps = %d", args.max_steps)

    # Prepare the data loader.
    if is_main_process():
        tic = time.perf_counter()
    train_dataloader = lddl.torch.get_bert_pretrain_data_loader(
        args.input_dir,
        local_rank=args.local_rank,
        vocab_file=args.vocab_file,
        data_loader_kwargs={
            'batch_size': args.train_batch_size * n_gpu,
            'num_workers': args.num_workers,
            'pin_memory': True,
        },
        base_seed=args.seed,
        log_dir=None if args.output_dir is None else os.path.join(args.output_dir, 'lddl_log'),
        log_level=logging.WARNING,
        start_epoch=0,
    )
    if is_main_process():
        print('get_bert_pretrain_data_loader took {} s!'.format(time.perf_counter() - tic))
    train_dataloader = tqdm(train_dataloader, desc="Iteration", disable=args.disable_progress_bar) if is_main_process() else train_dataloader

    tr_loss, tr_att_loss, tr_rep_loss, tr_value_loss = 0., 0., 0., 0.
    nb_tr_examples, local_step = 0, 0

    student_model.train()
    scaler = torch.cuda.amp.GradScaler()

    transformer_losses = TransformerLosses(student_config, teacher_config, device, args)
    iter_start = time.time()
    while global_step < args.max_steps:
        for batch in train_dataloader:
            if global_step >= args.max_steps:
                break

            #remove forward_pre_hook after one forward pass
            #the purpose of forward_pre_hook is to register
            #forward_hooks on nn_module_names provided in config
            # if idx == 1:
            #     student_fwd_pre_hook.remove()
            #     teacher_fwd_pre_hook.remove()
            #     # return

            # Initialize loss metrics
            if global_step % args.steps_per_epoch == 0:
                tr_loss, tr_att_loss, tr_rep_loss, tr_value_loss = 0., 0., 0., 0.
                mean_loss, mean_att_loss, mean_rep_loss, mean_value_loss = 0., 0., 0., 0.

            batch = {k: v.to(device) for k, v in batch.items()}
            input_ids, segment_ids, input_mask, lm_label_ids, is_next = batch['input_ids'], batch['token_type_ids'], batch['attention_mask'], batch['labels'], batch['next_sentence_labels']

            att_loss = 0.
            rep_loss = 0.
            value_loss = 0.
            with torch.cuda.amp.autocast(enabled=args.amp):
                student_model(input_ids, segment_ids, input_mask, None)

                # Gather student states extracted by hooks
                temp_model = unwrap_ddp(student_model)
                student_atts = flatten_states(temp_model.distill_states_dict, "attention_scores")
                student_reps = flatten_states(temp_model.distill_states_dict, "hidden_states")
                student_values = flatten_states(temp_model.distill_states_dict, "value_states")
                student_embeddings = flatten_states(temp_model.distill_states_dict, "embedding_states")
                bsz, attn_heads, seq_len, _  = student_atts[0].shape

                #No gradient for teacher training
                with torch.no_grad():
                    teacher_model(input_ids, segment_ids, input_mask)

                # Gather teacher states extracted by hooks
                temp_model = unwrap_ddp(teacher_model)
                teacher_atts = [i.detach() for i in flatten_states(temp_model.distill_states_dict, "attention_scores")]
                teacher_reps = [i.detach() for i in flatten_states(temp_model.distill_states_dict, "hidden_states")]
                teacher_values = [i.detach() for i in flatten_states(temp_model.distill_states_dict, "value_states")]
                teacher_embeddings = [i.detach() for i in flatten_states(temp_model.distill_states_dict, "embedding_states")]

                teacher_layer_num = len(teacher_atts)
                student_layer_num = len(student_atts)

                #MiniLM
                if student_config.distillation_config["student_teacher_layer_mapping"] == "last_layer":
                    if student_config.distillation_config["use_attention_scores"]:
                        student_atts = [student_atts[-1]]
                        new_teacher_atts = [teacher_atts[-1]]

                    if student_config.distillation_config["use_value_states"]:
                        student_values = [student_values[-1]]
                        new_teacher_values = [teacher_values[-1]]

                    if student_config.distillation_config["use_hidden_states"]:
                        new_teacher_reps = [teacher_reps[-1]]
                        new_student_reps = [student_reps[-1]]
                else:
                    assert teacher_layer_num % student_layer_num == 0

                    layers_per_block = int(teacher_layer_num / student_layer_num)
                    if student_config.distillation_config["use_attention_scores"]:
                        new_teacher_atts = [teacher_atts[i * layers_per_block + layers_per_block - 1]
                                            for i in range(student_layer_num)]

                    if student_config.distillation_config["use_value_states"]:
                        new_teacher_values = [teacher_values[i * layers_per_block + layers_per_block - 1]
                                    for i in range(student_layer_num)]

                    if student_config.distillation_config["use_hidden_states"]:
                        new_teacher_reps = [teacher_reps[i * layers_per_block + layers_per_block - 1]
                                    for i in range(student_layer_num)]
                        new_student_reps = student_reps

                if student_config.distillation_config["use_attention_scores"]:
                    att_loss = transformer_losses.compute_loss(student_atts, new_teacher_atts, loss_name="attention_loss")

                if student_config.distillation_config["use_hidden_states"]:
                    if use_projection:
                        rep_loss = transformer_losses.compute_loss(project(new_student_reps), new_teacher_reps, loss_name="hidden_state_loss")
                    else:
                        rep_loss = transformer_losses.compute_loss(new_student_reps, new_teacher_reps, loss_name="hidden_state_loss")

                if student_config.distillation_config["use_embedding_states"]:
                    if use_projection:
                        rep_loss += transformer_losses.compute_loss(project(student_embeddings), teacher_embeddings, loss_name="embedding_state_loss")
                    else:
                        rep_loss += transformer_losses.compute_loss(student_embeddings, teacher_embeddings, loss_name="embedding_state_loss")

                if student_config.distillation_config["use_value_states"]:
                    value_loss = transformer_losses.compute_loss(student_values, new_teacher_values, loss_name="value_state_loss")

                loss = att_loss + rep_loss + value_loss


            if args.gradient_accumulation_steps > 1:
                loss = loss / args.gradient_accumulation_steps

            tr_att_loss += att_loss.item() / args.gradient_accumulation_steps
            if student_config.distillation_config["use_hidden_states"]:
                tr_rep_loss += rep_loss.item() / args.gradient_accumulation_steps
            if student_config.distillation_config["use_value_states"]:
                tr_value_loss += value_loss.item() / args.gradient_accumulation_steps
            if args.amp:
                scaler.scale(loss).backward()
                scaler.unscale_(optimizer)
            else:
                loss.backward()

            if use_projection:
                torch.nn.utils.clip_grad_norm_(chain(student_model.parameters(), project.parameters()), args.max_grad_norm, error_if_nonfinite=False)
            else:
                torch.nn.utils.clip_grad_norm_(student_model.parameters(), args.max_grad_norm, error_if_nonfinite=False)

            tr_loss += loss.item()
            nb_tr_examples += input_ids.size(0)
            local_step += 1

            if local_step % args.gradient_accumulation_steps == 0:
                scheduler.step()
                if args.amp:
                    scaler.step(optimizer)
                    scaler.update()
                else:
                    optimizer.step()

                optimizer.zero_grad()
                global_step = optimizer.param_groups[0]["step"] if "step" in optimizer.param_groups[0] else 0

                if (global_step % args.steps_per_epoch) > 0:
                    mean_loss = tr_loss / (global_step % args.steps_per_epoch)
                    mean_att_loss = tr_att_loss / (global_step % args.steps_per_epoch)
                    mean_rep_loss = tr_rep_loss / (global_step % args.steps_per_epoch)
                    value_loss = tr_value_loss / (global_step % args.steps_per_epoch)

                if (global_step + 1) % args.eval_step == 0 and is_main_process():
                    result = {}
                    result['global_step'] = global_step
                    result['lr'] = optimizer.param_groups[0]["lr"]
                    result['loss'] = mean_loss
                    result['att_loss'] = mean_att_loss
                    result['rep_loss'] = mean_rep_loss
                    result['value_loss'] = value_loss
                    result['perf'] = (global_step + 1) * get_world_size() * args.train_batch_size * args.gradient_accumulation_steps / (time.time() - iter_start)
                    output_eval_file = os.path.join(args.output_dir, "log.txt")
                    if is_main_process():
                        with open(output_eval_file, "a") as writer:
                            logger.info("***** Eval results *****")
                            for key in sorted(result.keys()):
                                logger.info("  %s = %s", key, str(result[key]))
                                writer.write("%s = %s\n" % (key, str(result[key])))

                        # Save a trained model
                        model_name = "{}".format(WEIGHTS_NAME)

                        logging.info("** ** * Saving fine-tuned model ** ** * ")
                        # Only save the model it-self
                        model_to_save = student_model.module if hasattr(student_model, 'module') else student_model
                        if use_projection:
                            project_to_save = project.module if hasattr(project, 'module') else project

                        output_model_file = os.path.join(args.output_dir, model_name)
                        output_config_file = os.path.join(args.output_dir, CONFIG_NAME)
                        output_project_file = os.path.join(args.output_dir, "project.bin")
                        torch.save(model_to_save.state_dict(), output_model_file)
                        if use_projection:
                            torch.save(project_to_save.state_dict(), output_project_file)
                        model_to_save.config.to_json_file(output_config_file)
                        tokenizer.save_vocabulary(args.output_dir)

                        if oncloud:
                            logging.info(mox.file.list_directory(args.output_dir, recursive=True))
                            logging.info(mox.file.list_directory('.', recursive=True))
                            mox.file.copy_parallel(args.output_dir, args.data_url)
                            mox.file.copy_parallel('.', args.data_url)

    model_name = "{}".format(WEIGHTS_NAME)
    logging.info("** ** * Saving fine-tuned model ** ** * ")
    model_to_save = student_model.module if hasattr(student_model, 'module') else student_model

    if use_projection:
        project_to_save = project.module if hasattr(project, 'module') else project
        output_project_file = os.path.join(args.output_dir, "project.bin")
        if is_main_process():
            torch.save(project_to_save.state_dict(), output_project_file)

    output_model_file = os.path.join(args.output_dir, model_name)
    output_config_file = os.path.join(args.output_dir, CONFIG_NAME)

    if is_main_process():
        torch.save(model_to_save.state_dict(), output_model_file)
        model_to_save.config.to_json_file(output_config_file)
        tokenizer.save_vocabulary(args.output_dir)

    if oncloud:
        logging.info(mox.file.list_directory(args.output_dir, recursive=True))
        logging.info(mox.file.list_directory('.', recursive=True))
        mox.file.copy_parallel(args.output_dir, args.data_url)
        mox.file.copy_parallel('.', args.data_url)