def prepare_model_and_optimizer(args, device):

    # Prepare model
    config = BertConfig.from_json_file(args.config_file)

    # Padding for divisibility by 8
    if config.vocab_size % 8 != 0:
        config.vocab_size += 8 - (config.vocab_size % 8)
    model = BertForPreTraining(config)

    checkpoint = None
    if not args.resume_from_checkpoint:
        global_step = 0
    else:
        if args.resume_step == -1 and not args.init_checkpoint:
            model_names = [
                f for f in os.listdir(args.output_dir) if f.endswith(".pt")
            ]
            args.resume_step = max([
                int(x.split('.pt')[0].split('_')[1].strip())
                for x in model_names
            ])

        global_step = args.resume_step if not args.init_checkpoint else 0

        if not args.init_checkpoint:
            checkpoint = torch.load(os.path.join(
                args.output_dir, "ckpt_{}.pt".format(global_step)),
                                    map_location="cpu")
        else:
            checkpoint = torch.load(args.init_checkpoint, map_location="cpu")

        model.load_state_dict(checkpoint['model'], strict=False)
        if args.phase2:
            global_step -= args.phase1_end_step
        if is_main_process():
            print("resume step from ", args.resume_step)

    model.to(device)
    param_optimizer = list(model.named_parameters())
    no_decay = ['bias', 'gamma', 'beta', 'LayerNorm']

    optimizer_grouped_parameters = [{
        'params':
        [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
        'weight_decay':
        0.01
    }, {
        'params':
        [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
        'weight_decay':
        0.0
    }]

    optimizer = FusedLAMB(optimizer_grouped_parameters, lr=args.learning_rate)
    lr_scheduler = PolyWarmUpScheduler(optimizer,
                                       warmup=args.warmup_proportion,
                                       total_steps=args.max_steps)
    if args.fp16:

        if args.loss_scale == 0:
            model, optimizer = amp.initialize(model,
                                              optimizer,
                                              opt_level="O2",
                                              loss_scale="dynamic")
        else:
            model, optimizer = amp.initialize(model,
                                              optimizer,
                                              opt_level="O2",
                                              loss_scale=args.loss_scale)
        amp._amp_state.loss_scalers[0]._loss_scale = 2**20

    if args.resume_from_checkpoint:
        if args.phase2 or args.init_checkpoint:
            keys = list(checkpoint['optimizer']['state'].keys())
            #Override hyperparameters from previous checkpoint
            for key in keys:
                checkpoint['optimizer']['state'][key]['step'] = global_step
            for iter, item in enumerate(
                    checkpoint['optimizer']['param_groups']):
                checkpoint['optimizer']['param_groups'][iter][
                    'step'] = global_step
                checkpoint['optimizer']['param_groups'][iter][
                    't_total'] = args.max_steps
                checkpoint['optimizer']['param_groups'][iter][
                    'warmup'] = args.warmup_proportion
                checkpoint['optimizer']['param_groups'][iter][
                    'lr'] = args.learning_rate
        optimizer.load_state_dict(checkpoint['optimizer'])  # , strict=False)

        # Restore AMP master parameters
        if args.fp16:
            optimizer._lazy_init_maybe_master_weights()
            optimizer._amp_stash.lazy_init_called = True
            optimizer.load_state_dict(checkpoint['optimizer'])
            for param, saved_param in zip(amp.master_params(optimizer),
                                          checkpoint['master params']):
                param.data.copy_(saved_param.data)

    if args.local_rank != -1:
        if not args.allreduce_post_accumulation:
            model = DDP(
                model,
                message_size=250000000,
                gradient_predivide_factor=torch.distributed.get_world_size())
        else:
            flat_dist_call([param.data for param in model.parameters()],
                           torch.distributed.broadcast, (0, ))
    elif args.n_gpu > 1:
        model = torch.nn.DataParallel(model)

    return model, optimizer, lr_scheduler, checkpoint, global_step
def prepare_model_and_optimizer(args, device):
    global_step = 0
    args.resume_step = 0
    checkpoint = None

    config = BertConfig.from_json_file(args.bert_config_path)
    config.fused_mha = args.fused_mha
    config.fused_gelu_bias = args.fused_gelu_bias
    config.dense_seq_output = args.dense_seq_output
    config.unpad = args.unpad
    config.pad = args.pad
    config.fuse_qkv = not args.disable_fuse_qkv
    config.fuse_scale = not args.disable_fuse_scale
    config.fuse_mask = not args.disable_fuse_mask
    config.fuse_dropout = args.enable_fuse_dropout
    config.apex_softmax = not args.disable_apex_softmax
    config.enable_stream = args.enable_stream
    if config.fuse_mask == True: config.apex_softmax = True
    if config.pad == False: config.enable_stream = True
    if config.unpad == True: config.fused_mha = False

    # Padding for divisibility by 8
    if config.vocab_size % 8 != 0:
        config.vocab_size += 8 - (config.vocab_size % 8)

    # Load from Pyt checkpoint - either given as init_checkpoint, or picked up from output_dir if found
    if args.init_checkpoint is not None or found_resume_checkpoint(args):
        # Prepare model

        model = BertForPreTraining(config)
        if args.init_checkpoint is None: # finding checkpoint in output_dir
            checkpoint_str = "phase2_ckpt_*.pt" if args.phase2 else "phase1_ckpt_*.pt"
            model_names = [f for f in glob.glob(os.path.join(args.output_dir, checkpoint_str))]
            global_step = max([int(x.split('.pt')[0].split('_')[-1].strip()) for x in model_names])
            args.resume_step = global_step #used for throughput computation

            resume_init_checkpoint = os.path.join(args.output_dir, checkpoint_str.replace("*", str(global_step)))
            print("Setting init checkpoint to %s - which is the latest in %s" %(resume_init_checkpoint, args.output_dir))
            checkpoint=torch.load(resume_init_checkpoint, map_location="cpu")
        else:
            checkpoint=torch.load(args.init_checkpoint, map_location="cpu")["model"]

        # Fused MHA requires a remapping of checkpoint parameters
        if config.fused_mha:
            checkpoint_remapped = remap_attn_parameters(checkpoint)
            model.load_state_dict(checkpoint_remapped, strict=False)
        else:
            model.load_state_dict(checkpoint, strict=True)
    else: #Load from TF Checkpoint
        model = BertForPreTraining.from_pretrained(args.init_tf_checkpoint, from_tf=True, config=config)


    model.to(device)
    param_optimizer = list(model.named_parameters())
    no_decay = ['bias', 'gamma', 'beta', 'LayerNorm']

    optimizer_grouped_parameters = [
        {'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': args.weight_decay_rate},
        {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}]

    mlperf_logger.log_event(key=mlperf_logger.constants.OPT_BASE_LR,
                            value=args.learning_rate, sync=False)
    optimizer = FusedLAMB(optimizer_grouped_parameters,
                          lr=args.learning_rate,
                          betas=(args.opt_lamb_beta_1, args.opt_lamb_beta_2))
    mlperf_logger.log_event(key='opt_epsilon', value=optimizer.defaults['eps'],
                            sync=False)
    b1, b2 = optimizer.defaults['betas']
    mlperf_logger.log_event(key='opt_lamb_beta_1', value=b1, sync=False)
    mlperf_logger.log_event(key='opt_lamb_beta_2', value=b2, sync=False)
    mlperf_logger.log_event(key='opt_lamb_weight_decay_rate',
                            value=optimizer.defaults['weight_decay'],
                            sync=False)

    if args.warmup_steps == 0:
        warmup_steps = int(args.max_steps * args.warmup_proportion)
        warmup_start = 0
    else:
        warmup_steps = args.warmup_steps
        warmup_start = args.start_warmup_step
    lr_scheduler = LinearWarmupPolyDecayScheduler(optimizer, start_warmup_steps=warmup_start, warmup_steps=warmup_steps,
                                                  total_steps=args.max_steps, end_learning_rate=0.0, degree=1.0)
    
                           
    if args.fp16:

        if args.loss_scale == 0:
            model, optimizer = amp.initialize(model, optimizer, opt_level="O2", loss_scale="dynamic")
        else:
            model, optimizer = amp.initialize(model, optimizer, opt_level="O2", loss_scale=args.loss_scale)
        amp._amp_state.loss_scalers[0]._loss_scale = float(os.getenv("INIT_LOSS_SCALE", 2**20))


    if found_resume_checkpoint(args):
        optimizer.load_state_dict(checkpoint['optimizer']) #restores m,v states (only if resuming checkpoint, not for init_checkpoint and init_tf_checkpoint for now)

        # Restore AMP master parameters          
        if args.fp16:
            optimizer._lazy_init_maybe_master_weights()
            optimizer._amp_stash.lazy_init_called = True
            optimizer.load_state_dict(checkpoint['optimizer'])
            for param, saved_param in zip(amp.master_params(optimizer), checkpoint['master params']):
                param.data.copy_(saved_param.data)

    if args.local_rank != -1:
        if not args.allreduce_post_accumulation:
            model = DDP(model, message_size=250000000, gradient_predivide_factor=torch.distributed.get_world_size())
        else:
            flat_dist_call([param.data for param in model.parameters()], torch.distributed.broadcast, (0,) )

    return model, optimizer, lr_scheduler, checkpoint, global_step
示例#3
0
def prepare_model_and_optimizer(args, device):

    # Prepare model
    config = BertConfig.from_json_file(args.config_file)

    # Padding for divisibility by 8
    if config.vocab_size % 8 != 0:
        config.vocab_size += 8 - (config.vocab_size % 8)
    model = BertForPreTraining(config)

    checkpoint = None
    if not args.resume_from_checkpoint:
        global_step = 0
    else:
        if args.resume_step == -1:
            model_names = [
                f for f in os.listdir(args.output_dir) if f.endswith(".pt")
            ]
            args.resume_step = max([
                int(x.split(".pt")[0].split("_")[1].strip())
                for x in model_names
            ])
        global_step = args.resume_step

        checkpoint = torch.load(os.path.join(args.output_dir,
                                             "ckpt_{}.pt".format(global_step)),
                                map_location="cpu")
        model.load_state_dict(checkpoint["model"], strict=False)
        if args.phase2:
            global_step -= args.phase1_end_step
        if is_main_process():
            print("resume step from ", args.resume_step)

    model.to(device)
    param_optimizer = list(model.named_parameters())
    no_decay = ["bias", "gamma", "beta", "LayerNorm"]

    optimizer_grouped_parameters = []
    names = []

    count = 1
    for n, p in param_optimizer:
        count += 1
        if not any(nd in n for nd in no_decay):
            optimizer_grouped_parameters.append({
                "params": [p],
                "weight_decay": 0.01,
                "name": n
            })
            names.append({"params": [n], "weight_decay": 0.01})
        if any(nd in n for nd in no_decay):
            optimizer_grouped_parameters.append({
                "params": [p],
                "weight_decay": 0.00,
                "name": n
            })
            names.append({"params": [n], "weight_decay": 0.00})

    optimizer = BertLAMB(optimizer_grouped_parameters,
                         lr=args.learning_rate,
                         warmup=args.warmup_proportion,
                         t_total=args.max_steps)
    if args.fp16:

        if args.loss_scale == 0:
            # optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
            model, optimizer = amp.initialize(
                model,
                optimizer,
                opt_level="O2",
                loss_scale="dynamic",
                master_weights=False if args.accumulate_into_fp16 else True,
            )
        else:
            # optimizer = FP16_Optimizer(optimizer, static_loss_scale=args.loss_scale)
            model, optimizer = amp.initialize(
                model,
                optimizer,
                opt_level="O2",
                loss_scale=args.loss_scale,
                master_weights=False if args.accumulate_into_fp16 else True,
            )
        amp._amp_state.loss_scalers[0]._loss_scale = 2**20

    if args.resume_from_checkpoint:
        if args.phase2:
            keys = list(checkpoint["optimizer"]["state"].keys())
            # Override hyperparameters from Phase 1
            for key in keys:
                checkpoint["optimizer"]["state"][key]["step"] = global_step
            for iter, item in enumerate(
                    checkpoint["optimizer"]["param_groups"]):
                checkpoint["optimizer"]["param_groups"][iter][
                    "t_total"] = args.max_steps
                checkpoint["optimizer"]["param_groups"][iter][
                    "warmup"] = args.warmup_proportion
                checkpoint["optimizer"]["param_groups"][iter][
                    "lr"] = args.learning_rate
        optimizer.load_state_dict(checkpoint["optimizer"])  # , strict=False)

        # Restore AMP master parameters
        if args.fp16:
            optimizer._lazy_init_maybe_master_weights()
            optimizer._amp_stash.lazy_init_called = True
            optimizer.load_state_dict(checkpoint["optimizer"])
            for param, saved_param in zip(amp.master_params(optimizer),
                                          checkpoint["master params"]):
                param.data.copy_(saved_param.data)

    if args.local_rank != -1:
        if not args.allreduce_post_accumulation:
            model = DDP(
                model,
                message_size=250000000,
                gradient_predivide_factor=torch.distributed.get_world_size())
        else:
            flat_dist_call([param.data for param in model.parameters()],
                           torch.distributed.broadcast, (0, ))
    elif args.n_gpu > 1:
        model = torch.nn.DataParallel(model)

    return model, optimizer, checkpoint, global_step
示例#4
0
class Trainer:
    def is_main_process(self):
        return self.team_rank == 0

    def parse_arguments(self):
        parser = argparse.ArgumentParser()

        # Required parameters
        parser.add_argument("--input_file",
                            default=None,
                            type=str,
                            required=True,
                            help="The input data file. Should be zip file "
                            "containing .hdf5 files for the task.")

        parser.add_argument("--config_file",
                            default=None,
                            type=str,
                            required=True,
                            help="The BERT model config")

        parser.add_argument("--bert_model",
                            default="bert-large-uncased",
                            type=str,
                            help="Bert pre-trained model selected in the "
                            "list: bert-base-uncased, bert-large-uncased, "
                            "bert-base-cased, bert-base-multilingual, "
                            "bert-base-chinese.")

        parser.add_argument("--output_dir",
                            default=None,
                            type=str,
                            required=True,
                            help="The output directory where the model "
                            "checkpoints will be written.")

        # Other parameters
        parser.add_argument("--max_seq_length",
                            default=512,
                            type=int,
                            help="The maximum total input sequence length "
                            "after WordPiece tokenization. \n"
                            "Sequences longer than this will be truncated, "
                            "and sequences shorter \n"
                            "than this will be padded.")
        parser.add_argument("--max_predictions_per_seq",
                            default=80,
                            type=int,
                            help="The maximum total of masked tokens in input "
                            "sequence")
        parser.add_argument("--train_batch_size",
                            default=32,
                            type=int,
                            help="Total batch size for training.")
        parser.add_argument("--learning_rate",
                            default=5e-5,
                            type=float,
                            help="The initial learning rate for Adam.")
        parser.add_argument("--max_steps",
                            default=1000,
                            type=float,
                            help="Total number of training steps to perform.")
        parser.add_argument("--warmup_proportion",
                            default=0.01,
                            type=float,
                            help="Proportion of training to perform linear "
                            "learning rate warmup for. "
                            "E.g., 0.1 = 10%% of training.")
        parser.add_argument("--local_rank",
                            type=int,
                            default=-1,
                            help="local_rank for distributed training on gpus")
        parser.add_argument('--seed',
                            type=int,
                            default=42,
                            help="random seed for initialization")
        parser.add_argument('--log_freq',
                            type=float,
                            default=50.0,
                            help='frequency of logging loss.')
        parser.add_argument('--checkpoint_activations',
                            default=False,
                            action='store_true',
                            help="Whether to use gradient checkpointing")
        parser.add_argument("--resume_from_checkpoint",
                            default=False,
                            action='store_true',
                            help="Whether to resume training from checkpoint.")
        parser.add_argument('--resume_step',
                            type=int,
                            default=-1,
                            help="Step to resume training from.")
        parser.add_argument('--num_steps_per_checkpoint',
                            type=int,
                            default=100,
                            help="Number of update steps until a model "
                            "checkpoint is saved to disk.")
        parser.add_argument('--phase2',
                            default=False,
                            action='store_true',
                            help="Whether to train with seq len 512")
        parser.add_argument('--phase1_end_step',
                            type=int,
                            default=7038,
                            help="Number of training steps in Phase1 - "
                            "seq len 128")
        parser.add_argument('--online_distillation',
                            type=str,
                            default="none",
                            choices=["none", "original", "overlap", "logit"],
                            help="Settings for online distillation")
        parser.add_argument('--burnin_steps', type=int, default=0)
        parser.add_argument('--distillation_weight', type=float, default=1)
        parser.add_argument('--distillation_loss',
                            type=str,
                            default="kl_divergence",
                            choices=["cross_entropy", "kl_divergence"])
        parser.add_argument('--distillation_steps', type=int, default=50)
        parser.add_argument('--optimizer',
                            type=str,
                            default="lamb",
                            choices=["lamb", "adam"])
        self.args = parser.parse_args()

    def setup_training(self):
        assert (torch.cuda.is_available())

        torch.cuda.set_device(self.args.local_rank)
        self.device = torch.device("cuda", self.args.local_rank)
        # Initializes the distributed backend which will take care of
        # sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl',
                                             init_method='env://')

        self.rank = torch.distributed.get_rank()
        self.size = torch.distributed.get_world_size()
        if self.args.online_distillation == "none":
            self.team = 0
            self.team_masters = [0]
            self.team_master = 0
            self.local_group = torch.distributed.new_group(
                ranks=list(range(0, self.size)))
            self.team_rank = torch.distributed.get_rank()
            self.team_size = torch.distributed.get_world_size()
        else:
            assert self.size % 2 == 0, \
                'with distillation, world size must be a multiple of 2'
            self.team = self.rank // (self.size // 2)
            self.team_masters = [0, (self.size // 2)]
            self.team_master = self.team_masters[self.team]
            self.is_team_master = (self.rank % (self.size // 2) == 0)
            local_group0 = torch.distributed.new_group(
                ranks=list(range(0, self.size // 2)))
            local_group1 = torch.distributed.new_group(
                ranks=list(range(self.size // 2, self.size)))
            self.local_groups = [local_group0, local_group1]
            self.local_group = self.local_groups[self.team]

            self.team_rank = self.rank % (self.size // 2)
            self.team_size = self.size // 2

            comm_model_group_rank0 = \
                [0] + list(range(self.team_size, self.team_size * 2))
            comm_model_group_rank1 = \
                [self.team_size] + list(range(0, self.team_size))
            self.comm_model_group_ranks = [
                comm_model_group_rank0, comm_model_group_rank1
            ]

            if self.args.online_distillation == "logit":
                for i in range(0, self.size // 2):
                    ranks = [i, i + self.size // 2]
                    grp = torch.distributed.new_group(ranks=ranks)
                    if self.rank in ranks:
                        self.equalize_data_group = grp
                # use different seeds in different teams
                self.args.data_seed = 12345
                self.args.seed += self.team * 12345
            else:
                # use different seeds in different teams
                self.args.seed += self.team * 12345

        self.args.train_batch_size //= self.team_size

        if not self.args.resume_from_checkpoint:
            chio.makedirs(self.args.output_dir, exist_ok=True)

    def prepare_model_and_optimizer(self):
        # Prepare model
        self.config = BertConfig.from_json_file(self.args.config_file)

        # Padding for divisibility by 8
        if self.config.vocab_size % 8 != 0:
            self.config.vocab_size += 8 - (self.config.vocab_size % 8)
        self.model = BertForPreTraining(self.config)
        self.another_model = BertForPreTraining(self.config)

        self.model.to(self.device)
        self.another_model.to(self.device)
        param_optimizer = list(self.model.named_parameters())
        no_decay = ['bias', 'gamma', 'beta', 'LayerNorm']

        optimizer_grouped_parameters = []
        names = []

        for n, p in param_optimizer:
            if not any(nd in n for nd in no_decay):
                optimizer_grouped_parameters.append({
                    'params': [p],
                    'weight_decay': 0.01,
                    'name': n
                })
                names.append({'params': [n], 'weight_decay': 0.01})
            if any(nd in n for nd in no_decay):
                optimizer_grouped_parameters.append({
                    'params': [p],
                    'weight_decay': 0.00,
                    'name': n
                })
                names.append({'params': [n], 'weight_decay': 0.00})

        if self.args.phase2:
            max_steps = self.args.max_steps
            tmp = max_steps * 10
            r = self.args.phase1_end_step / tmp
            lr = self.args.learning_rate * (1 - r)
        else:
            max_steps = int(self.args.max_steps / 9 * 10)
            lr = self.args.learning_rate
        if self.args.optimizer == "lamb":
            self.optimizer = BertLAMB(optimizer_grouped_parameters,
                                      lr=lr,
                                      warmup=self.args.warmup_proportion
                                      if not self.args.phase2 else -1,
                                      t_total=max_steps)
        elif self.args.optimizer == "adam":
            self.optimizer = BertAdam(optimizer_grouped_parameters,
                                      lr=lr,
                                      warmup=self.args.warmup_proportion
                                      if not self.args.phase2 else -1,
                                      t_total=max_steps)

    def prepare_snapshot(self):
        self.snapshot = Snapshot(self.args, self.model, self.another_model,
                                 self.optimizer, self.team)
        flat_dist_call([param.data for param in self.model.parameters()],
                       torch.distributed.broadcast,
                       (self.team_master, self.local_group))

    def forward(self, model, batch, calc_loss=True):
        input_ids, segment_ids, input_mask, \
            masked_lm_labels, next_sentence_labels = batch
        if calc_loss:
            return model(
                input_ids=input_ids,
                token_type_ids=segment_ids,
                attention_mask=input_mask,
                masked_lm_labels=masked_lm_labels,
                next_sentence_label=next_sentence_labels,
                checkpoint_activations=self.args.checkpoint_activations)
        else:
            return model(
                input_ids=input_ids,
                token_type_ids=segment_ids,
                attention_mask=input_mask,
                masked_lm_labels=None,
                next_sentence_label=None,
                checkpoint_activations=self.args.checkpoint_activations)

    def backward(self, loss):
        loss.backward()

    def comm_model(self):
        for i in range(2):
            root = self.comm_model_group_ranks[i][0]
            teams = set(range(root, root + self.team_size))
            if self.rank in teams:
                flat_dist_call(
                    [param.data for param in self.model.parameters()],
                    torch.distributed.broadcast, (i * self.team_size, ))
            else:
                flat_dist_call(
                    [param.data for param in self.another_model.parameters()],
                    torch.distributed.broadcast, (i * self.team_size, ))

    def all_reduce(self, overflow_buf, accum=1):
        scaler = amp.scaler.LossScaler(1.0)

        # 1. allocate an uninitialized buffer for flattened gradient
        master_grads = [
            p.grad for p in amp.master_params(self.optimizer)
            if p.grad is not None
        ]
        flat_grad_size = sum(p.numel() for p in master_grads)
        allreduce_dtype = torch.float32
        flat_raw = torch.empty(flat_grad_size,
                               device='cuda',
                               dtype=allreduce_dtype)
        # 2. combine unflattening and predivision of unscaled 'raw' gradient
        allreduced_views = apex_C.unflatten(flat_raw, master_grads)
        overflow_buf.zero_()
        amp_C.multi_tensor_scale(
            65536, overflow_buf, [master_grads, allreduced_views],
            scaler.loss_scale() / (self.team_size * accum))
        # 3. sum gradient across ranks. Because of the predivision,
        #    this averages the gradient
        torch.distributed.all_reduce(flat_raw, group=self.local_group)
        # 4. combine unscaling and unflattening of allreduced gradient
        overflow_buf.zero_()
        amp_C.multi_tensor_scale(65536, overflow_buf,
                                 [allreduced_views, master_grads],
                                 1. / scaler.loss_scale())

    def take_optimizer_step(self, global_step):
        # 1. call optimizer step function
        self.optimizer.step()
        global_step += 1
        for param in self.model.parameters():
            param.grad = None

        return global_step

    def init_dataloader(self, epoch, pool, rng=None):
        rng = rng or random
        if not self.args.resume_from_checkpoint or epoch > 0 or \
                self.args.phase2:
            with chio.open_as_container(self.args.input_file) as input_file:
                files = [f for f in input_file.list() if "training" in f]
            files.sort()
            num_files = len(files)
            rng.shuffle(files)
            f_start_id = 0
        else:
            f_start_id = self.snapshot.f_id
            files = self.snapshot.files
            self.args.resume_from_checkpoint = False
            num_files = len(files)

        if torch.distributed.is_initialized() and \
                self.team_size > num_files:
            remainder = self.team_size % num_files
            data_file = files[(f_start_id * self.team_size + self.team_rank +
                               remainder * f_start_id) % num_files]
        else:
            data_file = files[(f_start_id * self.team_size + self.team_rank) %
                              len(files)]

        return pool.submit(create_pretraining_dataset, self.args.input_file,
                           data_file, self.args.max_predictions_per_seq,
                           self.args), f_start_id, files, data_file

    def update_dataloader(self, pool, f_id, files):
        if self.team_size > len(files):
            remainder = self.team_size % len(files)
            data_file = files[(f_id * self.team_size + self.team_rank +
                               remainder * f_id) % len(files)]
        else:
            data_file = files[(f_id * self.team_size + self.team_rank) %
                              len(files)]

        dataset_future = pool.submit(create_pretraining_dataset,
                                     self.args.input_file, data_file,
                                     self.args.max_predictions_per_seq,
                                     self.args)
        return dataset_future, data_file

    def loss(self, prediction_scores, seq_relationship_score, batch):
        _, _, _, masked_lm_labels, next_sentence_labels = batch
        loss_fct = torch.nn.CrossEntropyLoss(ignore_index=-1)
        masked_lm_loss = loss_fct(
            prediction_scores.view(-1, self.config.vocab_size),
            masked_lm_labels.view(-1))
        next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2),
                                      next_sentence_labels.view(-1))
        return masked_lm_loss + next_sentence_loss

    def compute_distillation_loss(self, output, another_output, target=None):
        c = output.shape[-1]
        output = output.view(-1, c)
        another_output = another_output.view(-1, c)
        with torch.no_grad():
            if target is None:
                mask = torch.ones(len(output),
                                  1,
                                  device=output.device,
                                  dtype=output.dtype)
            else:
                mask = (target != -1).long().view(-1, 1)
        if self.args.distillation_loss == 'cross_entropy':
            other_distr = torch.softmax(another_output, dim=1)
            return -torch.sum(
                mask *
                (torch.log_softmax(output, dim=1) * other_distr)) / sum(mask)
        elif self.args.distillation_loss == 'kl_divergence':
            return torch.sum(
                mask *
                (torch.softmax(output, dim=1) *
                 (torch.log_softmax(output, dim=1) -
                  torch.log_softmax(another_output, dim=1)))) / sum(mask)
        else:
            raise ValueError('unknown distillation loss: {}'.format(
                self.args.distillation_loss))

    def train_simple(self):
        global_step = self.snapshot.global_step or 0
        if self.args.phase2:
            self.args.accum = self.args.train_batch_size // 8
            self.args.train_batch_size = 8
        else:
            self.args.accum = 1

        if self.is_main_process():
            print("SEED {}".format(self.args.seed))
            logger.info("***** Running training *****")
            # logger.info("  Num examples = %d", len(train_data))
            logger.info("  Batch size = %d", self.args.train_batch_size)
            logger.info("  Accum = %d", self.args.accum)
            print("  LR = ", self.args.learning_rate)
            print("Training. . .")

        self.model.train()
        average_loss = 0.0  # averaged loss every self.args.log_freq steps
        epoch = 0

        # Note: We loop infinitely over epochs, termination is handled via
        #       iteration count
        begin = None
        with ThreadPoolExecutor(1) as pool:
            while True:
                dataset_future, f_start_id, files, data_file = \
                    self.init_dataloader(epoch, pool)
                previous_file = data_file
                train_dataloader, _ = dataset_future.result(timeout=None)

                overflow_buf = torch.cuda.IntTensor([0])

                for f_id in range(f_start_id + 1, len(files)):
                    logger.info("file no %s file %s" % (f_id, previous_file))
                    dataset_future, data_file = \
                        self.update_dataloader(pool, f_id, files)
                    previous_file = data_file

                    it = 0
                    for batch in train_dataloader:
                        if begin is None:
                            begin = time.time()
                        it += 1
                        batch = [t.to(self.device) for t in batch]
                        loss = self.forward(self.model, batch)
                        self.backward(loss)
                        average_loss += loss.item()

                        if it % self.args.accum == 0:
                            self.all_reduce(overflow_buf, self.args.accum)
                            global_step = self.take_optimizer_step(global_step)
                            it = 0

                            if global_step % self.args.log_freq == 0:
                                divisor = self.args.log_freq * self.args.accum
                                if self.is_main_process():
                                    print(
                                        "Team: {} Step:{} Average Loss = {} ".
                                        format(self.team, global_step,
                                               average_loss / divisor))
                                average_loss = 0

                            if global_step >= self.args.max_steps or \
                                (global_step %
                                 self.args.num_steps_per_checkpoint) == 0:
                                if self.team_rank == 0:
                                    # Save a trained model
                                    logger.info("** ** Saving model ** **")
                                    self.snapshot.save(global_step, f_id,
                                                       files)

                            if global_step >= self.args.max_steps:
                                del train_dataloader
                                torch.distributed.barrier()
                                if torch.distributed.get_rank() == 0:
                                    print("Total time taken {}".format(
                                        time.time() - begin))
                                return self.args

                    del train_dataloader
                    # Make sure pool has finished and switch train_dataloader
                    # NOTE: Will block until complete
                    train_dataloader, data_file = dataset_future.result(
                        timeout=None)

                epoch += 1

    def train_online_distillation_original(self):
        global_step = self.snapshot.global_step or 0

        if self.is_main_process():
            print("SEED {}".format(self.args.seed))
            logger.info("***** Running training *****")
            # logger.info("  Num examples = %d", len(train_data))
            logger.info("  Batch size = %d", self.args.train_batch_size)
            print("  LR = ", self.args.learning_rate)
            print("  Online Distillation")
            print("Training. . .")

        self.model.train()
        average_loss = 0.0  # averaged loss every self.args.log_freq steps
        average_dloss_0 = 0.0  # averaged loss every self.args.log_freq steps
        average_dloss_1 = 0.0
        epoch = 0
        begin = None

        # Note: We loop infinitely over epochs, termination is handled via
        #       iteration count
        with ThreadPoolExecutor(1) as pool:
            while True:
                dataset_future, f_start_id, files, data_file = \
                    self.init_dataloader(epoch, pool)
                previous_file = data_file
                train_dataloader, _ = dataset_future.result(timeout=None)

                overflow_buf = torch.cuda.IntTensor([0])

                for f_id in range(f_start_id + 1, len(files)):
                    logger.info("file no %s file %s" % (f_id, previous_file))
                    dataset_future, data_file = \
                        self.update_dataloader(pool, f_id, files)
                    previous_file = data_file

                    for batch in train_dataloader:
                        if begin is None:
                            begin = time.time()
                        step = global_step
                        if self.args.phase2:
                            step += self.args.phase1_end_step
                        if step >= self.args.burnin_steps and \
                                (step % self.args.distillation_steps) == 0:
                            self.comm_model()

                        batch = [t.to(self.device) for t in batch]
                        _, _, _, masked_lm_labels, _ = batch
                        if step < self.args.burnin_steps:
                            loss = self.forward(self.model, batch)
                            dloss0 = torch.zeros(())
                            dloss1 = torch.zeros(())
                        else:
                            out0, out1 = self.forward(self.model,
                                                      batch,
                                                      calc_loss=False)
                            with torch.no_grad():
                                aout0, aout1 = self.forward(self.another_model,
                                                            batch,
                                                            calc_loss=False)
                            loss = self.loss(out0, out1, batch)
                            dloss0 = \
                                self.compute_distillation_loss(
                                    out0, aout0, masked_lm_labels.view(-1))
                            dloss1 = \
                                self.compute_distillation_loss(out1, aout1)
                            dloss = dloss0 + dloss1
                            loss = loss + \
                                self.args.distillation_weight * dloss
                        self.backward(loss)
                        self.all_reduce(overflow_buf)
                        global_step = self.take_optimizer_step(global_step)
                        average_loss += loss.item()
                        average_dloss_0 += dloss0.item()
                        average_dloss_1 += dloss1.item()

                        if global_step % self.args.log_freq == 0:
                            divisor = self.args.log_freq
                            if self.is_main_process():
                                print(
                                    "Team: {} Step:{} Average Loss = {} Average dLoss = {} {}"
                                    .format(self.team, global_step,
                                            average_loss / divisor,
                                            average_dloss_0 / divisor,
                                            average_dloss_1 / divisor))
                            average_loss = 0
                            average_dloss_0 = 0
                            average_dloss_1 = 0

                        if global_step >= self.args.max_steps or \
                            (global_step %
                             self.args.num_steps_per_checkpoint) == 0:
                            if self.team_rank == 0:
                                # Save a trained model
                                logger.info("** ** Saving model ** **")
                                self.snapshot.save(global_step, f_id, files)

                            if global_step >= self.args.max_steps:
                                del train_dataloader
                                torch.distributed.barrier()
                                if torch.distributed.get_rank() == 0:
                                    print("Total time taken {}".format(
                                        time.time() - begin))
                                return self.args

                    del train_dataloader
                    # Make sure pool has finished and switch train_dataloader
                    # NOTE: Will block until complete
                    train_dataloader, data_file = dataset_future.result(
                        timeout=None)

                epoch += 1

    def train_online_distillation_overlap(self):
        global_step = self.snapshot.global_step or 0

        main_stream = torch.cuda.Stream()
        another_model_fwd_stream = torch.cuda.Stream()
        all_reduce_stream = torch.cuda.Stream()
        distillation_stream = torch.cuda.Stream()

        fwd_event = torch.cuda.Event()
        bwd_event = torch.cuda.Event()
        another_model_fwd_event = torch.cuda.Event()
        all_reduce_event = torch.cuda.Event()
        distillation_event = torch.cuda.Event()

        if self.is_main_process():
            print("SEED {}".format(self.args.seed))
            logger.info("***** Running training *****")
            # logger.info("  Num examples = %d", len(train_data))
            logger.info("  Batch size = %d", self.args.train_batch_size)
            print("  LR = ", self.args.learning_rate)
            print("  Online Distillation")
            print("Training. . .")

        self.model.train()
        average_loss = 0.0  # averaged loss every self.args.log_freq steps
        average_dloss_0 = 0
        average_dloss_1 = 0
        epoch = 0
        begin = None

        # Note: We loop infinitely over epochs, termination is handled via
        #       iteration count
        batch = None
        another_output = None
        with ThreadPoolExecutor(1) as pool:
            while True:
                dataset_future, f_start_id, files, data_file = \
                    self.init_dataloader(epoch, pool)
                previous_file = data_file
                train_dataloader, _ = dataset_future.result(timeout=None)

                overflow_buf = torch.cuda.IntTensor([0])

                for f_id in range(f_start_id + 1, len(files)):
                    logger.info("file no %s file %s" % (f_id, previous_file))
                    dataset_future, data_file = \
                        self.update_dataloader(pool, f_id, files)
                    previous_file = data_file

                    for next_batch in train_dataloader:
                        next_batch = [t.to(self.device) for t in next_batch]
                        if batch is None:
                            batch = next_batch
                            continue
                        if begin is None:
                            begin = time.time()

                        step = global_step
                        if self.args.phase2:
                            step += self.args.phase1_end_step

                        _, _, _, masked_lm_labels, _ = batch
                        fwd_event.record()
                        distillation_event.record()
                        if step >= self.args.burnin_steps:
                            with torch.cuda.stream(distillation_stream):
                                distillation_event.wait()
                                if (step % self.args.distillation_steps) \
                                        == 0:
                                    self.comm_model()
                                distillation_event.record()

                        with torch.cuda.stream(main_stream):
                            fwd_event.wait()
                            if another_output is None:
                                loss = self.forward(self.model, batch)
                                dloss0 = torch.zeros(())
                                dloss1 = torch.zeros(())
                            else:
                                out0, out1 = self.forward(self.model,
                                                          batch,
                                                          calc_loss=False)
                                aout0, aout1 = another_output
                                loss = self.loss(out0, out1, batch)
                                dloss0 = \
                                    self.compute_distillation_loss(
                                        out0, aout0,
                                        masked_lm_labels.view(-1))
                                dloss1 = \
                                    self.compute_distillation_loss(out1,
                                                                   aout1)
                                dloss = dloss0 + dloss1

                                loss = loss + \
                                    self.args.distillation_weight * dloss
                            fwd_event.record()
                        fwd_event.wait()

                        bwd_event.record()
                        with torch.cuda.stream(main_stream):
                            bwd_event.wait()
                            self.backward(loss)
                            bwd_event.record()
                        bwd_event.wait()
                        distillation_event.wait()

                        all_reduce_event.record()
                        another_model_fwd_event.record()
                        with torch.cuda.stream(all_reduce_stream):
                            all_reduce_event.wait()
                            self.all_reduce(overflow_buf)
                            all_reduce_event.record()

                        if step >= self.args.burnin_steps:
                            with torch.cuda.stream(another_model_fwd_stream):
                                another_model_fwd_event.wait()
                                with torch.no_grad():
                                    another_output = self.forward(
                                        self.another_model,
                                        next_batch,
                                        calc_loss=False)
                                another_model_fwd_event.record()
                        all_reduce_event.wait()
                        another_model_fwd_event.wait()

                        global_step = self.take_optimizer_step(global_step)

                        average_loss += loss.item()
                        average_dloss_0 += dloss0.item()
                        average_dloss_1 += dloss1.item()
                        if global_step % self.args.log_freq == 0:
                            divisor = self.args.log_freq
                            if self.is_main_process():
                                print(
                                    "Team: {} Step:{} Average Loss = {} Average dLoss = {} {}"
                                    .format(self.team, global_step,
                                            average_loss / divisor,
                                            average_dloss_0 / divisor,
                                            average_dloss_1 / divisor))
                            average_loss = 0
                            average_dloss_0 = 0
                            average_dloss_1 = 0

                        if global_step >= self.args.max_steps or \
                            (global_step %
                             self.args.num_steps_per_checkpoint) == 0:
                            if self.team_rank == 0:
                                # Save a trained model
                                logger.info("** ** Saving model ** **")
                                self.snapshot.save(global_step, f_id, files)

                        if global_step >= self.args.max_steps:
                            del train_dataloader
                            torch.distributed.barrier()
                            if torch.distributed.get_rank() == 0:
                                print(
                                    "Total time taken {}".format(time.time() -
                                                                 begin))
                            return self.args
                        batch = next_batch

                    del train_dataloader
                    # Make sure pool has finished and switch train_dataloader
                    # NOTE: Will block until complete
                    train_dataloader, data_file = dataset_future.result(
                        timeout=None)

                epoch += 1

    def train_online_distillation_logit(self):
        global_step = self.snapshot.global_step or 0

        if self.is_main_process():
            print("SEED {}".format(self.args.seed))
            logger.info("***** Running training *****")
            # logger.info("  Num examples = %d", len(train_data))
            logger.info("  Batch size = %d", self.args.train_batch_size)
            print("  LR = ", self.args.learning_rate)
            print("  Online Distillation")
            print("Training. . .")

        self.model.train()
        average_loss = 0.0  # averaged loss every self.args.log_freq steps
        average_dloss_0 = 0.0
        average_dloss_1 = 0.0
        epoch = 0
        begin = None

        # Note: We loop infinitely over epochs, termination is handled via
        #       iteration count
        rng = random.Random(self.args.data_seed)
        cnt = 0
        with ThreadPoolExecutor(1) as pool:
            while True:
                cnt += 1

                step = global_step
                if self.args.phase2:
                    step += self.args.phase1_end_step
                if step < self.args.burnin_steps:
                    dataset_future, f_start_id, files, data_file = \
                        self.init_dataloader(epoch, pool)
                    use_same_data = False
                else:
                    torch.manual_seed(self.args.data_seed + cnt)
                    dataset_future, f_start_id, files, data_file = \
                        self.init_dataloader(epoch, pool, rng)
                    use_same_data = True
                previous_file = data_file
                train_dataloader, _ = dataset_future.result(timeout=None)

                overflow_buf = torch.cuda.IntTensor([0])

                for f_id in range(f_start_id + 1, len(files)):
                    logger.info("file no %s file %s" % (f_id, previous_file))
                    dataset_future, data_file = \
                        self.update_dataloader(pool, f_id, files)
                    previous_file = data_file

                    for batch in train_dataloader:
                        if begin is None:
                            begin = time.time()
                        step = global_step
                        if self.args.phase2:
                            step += self.args.phase1_end_step
                        if step == self.args.burnin_steps and \
                                not use_same_data:
                            break

                        batch = [t.to(self.device) for t in batch]
                        _, _, _, masked_lm_labels, _ = batch

                        aout0 = None
                        aout1 = None
                        if step < self.args.burnin_steps:
                            loss = self.forward(self.model, batch)
                            dloss0 = torch.zeros(())
                            dloss1 = torch.zeros(())
                        else:
                            out0, out1 = self.forward(self.model,
                                                      batch,
                                                      calc_loss=False)
                            mask = masked_lm_labels.view(-1)

                            c = out0.shape[-1]
                            # Send logit that are not maksed
                            dout0 = out0.view(-1, c)
                            dout0 = dout0[mask != -1]
                            with torch.no_grad():
                                aout0 = dout0.detach().clone()
                                aout1 = out1.detach().clone()
                                flat_dist_call([aout0, aout1],
                                               torch.distributed.all_reduce,
                                               (torch.distributed.ReduceOp.SUM,
                                                self.equalize_data_group))
                                aout0 = aout0 * self.size - dout0
                                aout1 = aout1 * self.size - out1
                            loss = self.loss(out0, out1, batch)
                            dloss0 = \
                                self.compute_distillation_loss(dout0, aout0)
                            dloss1 = \
                                self.compute_distillation_loss(out1, aout1)
                            dloss = dloss0 + dloss1
                            loss = loss + \
                                self.args.distillation_weight * dloss
                        self.backward(loss)

                        self.all_reduce(overflow_buf)
                        global_step = self.take_optimizer_step(global_step)

                        average_loss += loss.item()
                        average_dloss_0 += dloss0.item()
                        average_dloss_1 += dloss1.item()
                        if global_step % self.args.log_freq == 0:
                            divisor = self.args.log_freq
                            if self.is_main_process():
                                print(
                                    "Team: {} Step:{} Average Loss = {} Average dLoss = {} {}"
                                    .format(self.team, global_step,
                                            average_loss / divisor,
                                            average_dloss_0 / divisor,
                                            average_dloss_1 / divisor))
                            average_loss = 0
                            average_dloss_0 = 0
                            average_dloss_1 = 0

                        if global_step >= self.args.max_steps or \
                            (global_step %
                             self.args.num_steps_per_checkpoint) == 0:
                            if self.team_rank == 0:
                                # Save a trained model
                                logger.info("** ** Saving model ** **")
                                self.snapshot.save(global_step, f_id, files)

                        if global_step >= self.args.max_steps:
                            del train_dataloader
                            torch.distributed.barrier()
                            if torch.distributed.get_rank() == 0:
                                print(
                                    "Total time taken {}".format(time.time() -
                                                                 begin))
                            return self.args

                    del train_dataloader
                    # Make sure pool has finished and switch train_dataloader
                    # NOTE: Will block until complete
                    train_dataloader, data_file = dataset_future.result(
                        timeout=None)

                    if step == self.args.burnin_steps and not use_same_data:
                        break

                epoch += 1