collection = rs.ResultsCollection(conf, path, summarizers) for i, partitioner in enumerate(partitioners): ds = load_dataset(path, subj, task_, **conf) ds.sa['memory_evidence'] = np.ones_like(ds.targets, dtype=np.int) ds.sa.memory_evidence[ds.sa.stim == 'N'] = -1 ds.sa.memory_evidence = ds.sa.memory_evidence * ds.sa.evidence ds.targets = [str(ii) for ii in ds.sa.memory_evidence] conf['label_dropped'] = '0' conf['label_included'] = ','.join([str(n) for n in np.array([-5,-3,-1,1,3,5])]) ds = preprocess_dataset(ds, task_, **conf) ds.targets = np.float_(ds.targets) ds.targets = (ds.targets - np.mean(ds.targets))/np.std(ds.targets) cv = CrossValidation(slsim.RegressionMeasure(), partitioner, #NFoldPartitioner(cvtype=1), errorfx=None ) kwa = dict(voxel_indices=Sphere(3)) queryengine = IndexQueryEngine(**kwa) sl = Searchlight(cv, queryengine=queryengine) map_ = sl(ds)
count_ = 1 else: # decision field_ = 'decision' conf['label_dropped'] = 'FIX0' conf['label_included'] = 'NEW'+ev+','+'OLD'+ev count_ = 5 ds.targets = np.core.defchararray.add(np.array(ds.sa[field_].value, dtype=np.str), np.array(ds.sa.evidence,dtype= np.str)) ''' ds.targets = ds.sa.memory_status conf['label_dropped'] = 'None' conf['label_included'] = 'all' ds = preprocess_dataset(ds, data_type, **conf) count_ = 1 field_ = 'memory' balanc = Balancer(count=count_, apply_selection=True, limit=None) gen = balanc.generate(ds) cv_storage = StoreResults() clf = LinearCSVMC(C=1) # This is used for the sklearn crossvalidation y = np.zeros_like(ds.targets, dtype=np.int_) y[ds.targets == ds.uniquetargets[0]] = 1 # We needs to modify the chunks in order to use sklearn ds.chunks = np.arange(len(ds.chunks))