示例#1
0
    def _detect_outliers_core(self, imgfile, motionfile, runidx, cwd=None):
        """
        Core routine for detecting outliers
        """
        if not cwd:
            cwd = os.getcwd()
        # read in motion parameters
        mc_in = np.loadtxt(motionfile)
        mc = deepcopy(mc_in)
        if self.inputs.parameter_source == 'SPM':
            pass
        elif self.inputs.parameter_source == 'FSL':
            mc = mc[:, [3, 4, 5, 0, 1, 2]]
        elif self.inputs.parameter_source == 'Siemens':
            Exception("Siemens PACE format not implemented yet")
        else:
            Exception("Unknown source for movement parameters")

        if self.inputs.use_norm:
            # calculate the norm of the motion parameters
            normval = self._calc_norm(mc, self.inputs.use_differences[0])
            tidx = find_indices(normval > self.inputs.norm_threshold)
            ridx = find_indices(normval < 0)
        else:
            if self.inputs.use_differences[0]:
                mc = np.concatenate((np.zeros((1, 6)), np.diff(mc_in, n=1, axis=0)), axis=0)
            traval = mc[:, 0:3]  # translation parameters (mm)
            rotval = mc[:, 3:6]  # rotation parameters (rad)
            tidx = find_indices(np.sum(abs(traval) > self.inputs.translation_threshold, 1) > 0)
            ridx = find_indices(np.sum(abs(rotval) > self.inputs.rotation_threshold, 1) > 0)

        # read in functional image
        if isinstance(imgfile, str):
            nim = load(imgfile)
        elif isinstance(imgfile, list):
            if len(imgfile) == 1:
                nim = load(imgfile[0])
            else:
                images = [load(f) for f in imgfile]
                nim = funcs.concat_images(images)

        # compute global intensity signal
        (x, y, z, timepoints) = nim.get_shape()

        data = nim.get_data()
        g = np.zeros((timepoints, 1))
        masktype = self.inputs.mask_type
        if  masktype == 'spm_global':  # spm_global like calculation
            intersect_mask = self.inputs.intersect_mask
            if intersect_mask:
                mask = np.ones((x, y, z), dtype=bool)
                for t0 in range(timepoints):
                    vol = data[:, :, :, t0]
                    mask = mask * (vol > (self._nanmean(vol) / 8))
                for t0 in range(timepoints):
                    vol = data[:, :, :, t0]
                    g[t0] = self._nanmean(vol[mask])
                if len(find_indices(mask)) < (np.prod((x, y, z)) / 10):
                    intersect_mask = False
                    g = np.zeros((timepoints, 1))
            if not intersect_mask:
                for t0 in range(timepoints):
                    vol = data[:, :, :, t0]
                    mask = vol > (self._nanmean(vol) / 8)
                    g[t0] = self._nanmean(vol[mask])
        elif masktype == 'file':  # uses a mask image to determine intensity
            mask = load(self.inputs.mask_file).get_data()
            mask = mask > 0.5
            for t0 in range(timepoints):
                vol = data[:, :, :, t0]
                g[t0] = self._nanmean(vol[mask])
        elif masktype == 'thresh':  # uses a fixed signal threshold
            for t0 in range(timepoints):
                vol = data[:, :, :, t0]
                mask = vol > self.inputs.mask_threshold
                g[t0] = self._nanmean(vol[mask])
        else:
            mask = np.ones((x, y, z))
            g = self._nanmean(data[mask > 0, :], 1)

        # compute normalized intensity values
        gz = signal.detrend(g, axis=0)       # detrend the signal
        if self.inputs.use_differences[1]:
            gz = np.concatenate((np.zeros((1, 1)), np.diff(gz, n=1, axis=0)), axis=0)
        gz = (gz - np.mean(gz)) / np.std(gz)    # normalize the detrended signal
        iidx = find_indices(abs(gz) > self.inputs.zintensity_threshold)

        outliers = np.unique(np.union1d(iidx, np.union1d(tidx, ridx)))
        artifactfile, intensityfile, statsfile, normfile, plotfile = self._get_output_filenames(imgfile, cwd)

        # write output to outputfile
        np.savetxt(artifactfile, outliers, fmt='%d', delimiter=' ')
        np.savetxt(intensityfile, g, fmt='%.2f', delimiter=' ')
        if self.inputs.use_norm:
            np.savetxt(normfile, normval, fmt='%.4f', delimiter=' ')

        if isdefined(self.inputs.save_plot) and self.inputs.save_plot:
            fig = plt.figure()
            if isdefined(self.inputs.use_norm) and self.inputs.use_norm:
                plt.subplot(211)
            else:
                plt.subplot(311)
            self._plot_outliers_with_wave(gz, iidx, 'Intensity')
            if isdefined(self.inputs.use_norm) and self.inputs.use_norm:
                plt.subplot(212)
                self._plot_outliers_with_wave(normval, np.union1d(tidx, ridx), 'Norm (mm)')
            else:
                diff = ''
                if self.inputs.use_differences[0]:
                    diff = 'diff'
                plt.subplot(312)
                self._plot_outliers_with_wave(traval, tidx, 'Translation (mm)' + diff)
                plt.subplot(313)
                self._plot_outliers_with_wave(rotval, ridx, 'Rotation (rad)' + diff)
            plt.savefig(plotfile)
            plt.close(fig)

        motion_outliers = np.union1d(tidx, ridx)
        stats = [{'motion_file': motionfile,
                  'functional_file': imgfile},
                 {'common_outliers': len(np.intersect1d(iidx, motion_outliers)),
                  'intensity_outliers': len(np.setdiff1d(iidx, motion_outliers)),
                  'motion_outliers': len(np.setdiff1d(motion_outliers, iidx)),
                  },
                 {'motion': [{'using differences': self.inputs.use_differences[0]},
                              {'mean': np.mean(mc_in, axis=0).tolist(),
                               'min': np.min(mc_in, axis=0).tolist(),
                               'max': np.max(mc_in, axis=0).tolist(),
                               'std': np.std(mc_in, axis=0).tolist()},
                              ]},
                 {'intensity': [{'using differences': self.inputs.use_differences[1]},
                                 {'mean': np.mean(gz, axis=0).tolist(),
                                  'min': np.min(gz, axis=0).tolist(),
                                  'max': np.max(gz, axis=0).tolist(),
                                  'std': np.std(gz, axis=0).tolist()},
                                 ]},
                 ]
        if self.inputs.use_norm:
            stats.insert(3, {'motion_norm': {'mean': np.mean(normval, axis=0).tolist(),
                                             'min': np.min(normval, axis=0).tolist(),
                                             'max': np.max(normval, axis=0).tolist(),
                                             'std': np.std(normval, axis=0).tolist(),
                                    }})
        save_json(statsfile, stats)
示例#2
0
    def _detect_outliers_core(self, imgfile, motionfile, runidx, cwd=None):
        """
        Core routine for detecting outliers
        """
        if not cwd:
            cwd = os.getcwd()
        # read in motion parameters
        mc_in = np.loadtxt(motionfile)
        mc = deepcopy(mc_in)
        if self.inputs.parameter_source == 'SPM':
            pass
        elif self.inputs.parameter_source == 'FSL':
            mc = mc[:,[3,4,5,0,1,2]]
        elif self.inputs.parameter_source == 'Siemens':
            Exception("Siemens PACE format not implemented yet")
        else:
            Exception("Unknown source for movement parameters")
            
        if self.inputs.use_norm:
            # calculate the norm of the motion parameters
            normval = self._calc_norm(mc,self.inputs.use_differences[0])
            tidx = find_indices(normval>self.inputs.norm_threshold)
            ridx = find_indices(normval<0)
        else:
            if self.inputs.use_differences[0]:
                mc = np.concatenate( (np.zeros((1,6)),np.diff(mc_in,n=1,axis=0)) , axis=0)
            traval = mc[:,0:3]  # translation parameters (mm)
            rotval = mc[:,3:6]  # rotation parameters (rad)
            tidx = find_indices(np.sum(abs(traval)>self.inputs.translation_threshold,1)>0)
            ridx = find_indices(np.sum(abs(rotval)>self.inputs.rotation_threshold,1)>0)

        # read in functional image
        if isinstance(imgfile,str):
            nim = load(imgfile)
        elif isinstance(imgfile,list):
            if len(imgfile) == 1:
                nim = load(imgfile[0])
            else:
                images = [load(f) for f in imgfile]
                nim = funcs.concat_images(images)

        # compute global intensity signal
        (x,y,z,timepoints) = nim.get_shape()

        data = nim.get_data()
        g = np.zeros((timepoints,1))
        masktype = self.inputs.mask_type
        if  masktype == 'spm_global':  # spm_global like calculation
            intersect_mask = self.inputs.intersect_mask
            if intersect_mask:
                mask = np.ones((x,y,z),dtype=bool)
                for t0 in range(timepoints):
                    vol   = data[:,:,:,t0]
                    mask  = mask*(vol>(self._nanmean(vol)/8))
                for t0 in range(timepoints):
                    vol   = data[:,:,:,t0]                    
                    g[t0] = self._nanmean(vol[mask])
                if len(find_indices(mask))<(np.prod((x,y,z))/10):
                    intersect_mask = False
                    g = np.zeros((timepoints,1))
            if not intersect_mask:
                for t0 in range(timepoints):
                    vol   = data[:,:,:,t0]
                    mask  = vol>(self._nanmean(vol)/8)
                    g[t0] = self._nanmean(vol[mask])
        elif masktype == 'file': # uses a mask image to determine intensity
            mask = load(self.inputs.mask_file).get_data()
            mask = mask>0.5
            for t0 in range(timepoints):
                vol = data[:,:,:,t0]
                g[t0] = self._nanmean(vol[mask])
        elif masktype == 'thresh': # uses a fixed signal threshold
            for t0 in range(timepoints):
                vol   = data[:,:,:,t0]
                mask  = vol>self.inputs.mask_threshold
                g[t0] = self._nanmean(vol[mask])
        else:
            mask = np.ones((x,y,z))
            g = self._nanmean(data[mask>0,:],1)

        # compute normalized intensity values
        gz = signal.detrend(g,axis=0)       # detrend the signal
        if self.inputs.use_differences[1]:
            gz = np.concatenate( (np.zeros((1,1)),np.diff(gz,n=1,axis=0)) , axis=0)
        gz = (gz-np.mean(gz))/np.std(gz)    # normalize the detrended signal
        iidx = find_indices(abs(gz)>self.inputs.zintensity_threshold)

        outliers = np.unique(np.union1d(iidx,np.union1d(tidx,ridx)))
        artifactfile,intensityfile,statsfile,normfile = self._get_output_filenames(imgfile,cwd)
        
        # write output to outputfile
        np.savetxt(artifactfile, outliers, fmt='%d', delimiter=' ')
        np.savetxt(intensityfile, g, fmt='%.2f', delimiter=' ')
        if self.inputs.use_norm:
            np.savetxt(normfile, normval, fmt='%.4f', delimiter=' ')

        file = open(statsfile,'w')
        file.write("Stats for:\n")
        file.write("Motion file: %s\n" % motionfile)
        file.write("Functional file: %s\n" % imgfile)
        file.write("Motion:\n")
        file.write("Number of Motion Outliers: %d\n"%len(np.union1d(tidx,ridx)))
        file.write("Motion (original):\n")
        file.write( ''.join(('mean: ',str(np.mean(mc_in,axis=0)),'\n')))
        file.write( ''.join(('min: ',str(np.min(mc_in,axis=0)),'\n')))
        file.write( ''.join(('max: ',str(np.max(mc_in,axis=0)),'\n')))
        file.write( ''.join(('std: ',str(np.std(mc_in,axis=0)),'\n')))
        if self.inputs.use_norm:
            if self.inputs.use_differences[0]:
                file.write("Motion (norm-differences):\n")
            else:
                file.write("Motion (norm):\n")
            file.write( ''.join(('mean: ',str(np.mean(normval,axis=0)),'\n')))
            file.write( ''.join(('min: ',str(np.min(normval,axis=0)),'\n')))
            file.write( ''.join(('max: ',str(np.max(normval,axis=0)),'\n')))
            file.write( ''.join(('std: ',str(np.std(normval,axis=0)),'\n')))
        elif self.inputs.use_differences[0]:
            file.write("Motion (differences):\n")
            file.write( ''.join(('mean: ',str(np.mean(mc,axis=0)),'\n')))
            file.write( ''.join(('min: ',str(np.min(mc,axis=0)),'\n')))
            file.write( ''.join(('max: ',str(np.max(mc,axis=0)),'\n')))
            file.write( ''.join(('std: ',str(np.std(mc,axis=0)),'\n')))
        if self.inputs.use_differences[1]:
            file.write("Normalized intensity:\n")
        else:
            file.write("Intensity:\n")
        file.write("Number of Intensity Outliers: %d\n"%len(iidx))
        file.write( ''.join(('min: ',str(np.min(gz,axis=0)),'\n')))
        file.write( ''.join(('max: ',str(np.max(gz,axis=0)),'\n')))
        file.write( ''.join(('mean: ',str(np.mean(gz,axis=0)),'\n')))
        file.write( ''.join(('std: ',str(np.std(gz,axis=0)),'\n')))
        file.close()
示例#3
0
    def _detect_outliers_core(self, imgfile, motionfile, runidx, cwd=None):
        """
        Core routine for detecting outliers
        """
        if not cwd:
            cwd = os.getcwd()
        # read in motion parameters
        mc_in = np.loadtxt(motionfile)
        mc = deepcopy(mc_in)
        if self.inputs.parameter_source == 'SPM':
            pass
        elif self.inputs.parameter_source == 'FSL':
            mc = mc[:, [3, 4, 5, 0, 1, 2]]
        elif self.inputs.parameter_source == 'Siemens':
            Exception("Siemens PACE format not implemented yet")
        else:
            Exception("Unknown source for movement parameters")

        if self.inputs.use_norm:
            # calculate the norm of the motion parameters
            normval = self._calc_norm(mc, self.inputs.use_differences[0])
            tidx = find_indices(normval > self.inputs.norm_threshold)
            ridx = find_indices(normval < 0)
        else:
            if self.inputs.use_differences[0]:
                mc = np.concatenate((np.zeros((1, 6)), np.diff(mc_in, n=1, axis=0)), axis=0)
            traval = mc[:, 0:3]  # translation parameters (mm)
            rotval = mc[:, 3:6]  # rotation parameters (rad)
            tidx = find_indices(np.sum(abs(traval) > self.inputs.translation_threshold, 1) > 0)
            ridx = find_indices(np.sum(abs(rotval) > self.inputs.rotation_threshold, 1) > 0)

        # read in functional image
        if isinstance(imgfile, str):
            nim = load(imgfile)
        elif isinstance(imgfile, list):
            if len(imgfile) == 1:
                nim = load(imgfile[0])
            else:
                images = [load(f) for f in imgfile]
                nim = funcs.concat_images(images)

        # compute global intensity signal
        (x, y, z, timepoints) = nim.get_shape()

        data = nim.get_data()
        g = np.zeros((timepoints, 1))
        masktype = self.inputs.mask_type
        if  masktype == 'spm_global':  # spm_global like calculation
            intersect_mask = self.inputs.intersect_mask
            if intersect_mask:
                mask = np.ones((x, y, z), dtype=bool)
                for t0 in range(timepoints):
                    vol = data[:, :, :, t0]
                    mask = mask * (vol > (self._nanmean(vol) / 8))
                for t0 in range(timepoints):
                    vol = data[:, :, :, t0]
                    g[t0] = self._nanmean(vol[mask])
                if len(find_indices(mask)) < (np.prod((x, y, z)) / 10):
                    intersect_mask = False
                    g = np.zeros((timepoints, 1))
            if not intersect_mask:
                for t0 in range(timepoints):
                    vol = data[:, :, :, t0]
                    mask = vol > (self._nanmean(vol) / 8)
                    g[t0] = self._nanmean(vol[mask])
        elif masktype == 'file':  # uses a mask image to determine intensity
            mask = load(self.inputs.mask_file).get_data()
            mask = mask > 0.5
            for t0 in range(timepoints):
                vol = data[:, :, :, t0]
                g[t0] = self._nanmean(vol[mask])
        elif masktype == 'thresh':  # uses a fixed signal threshold
            for t0 in range(timepoints):
                vol = data[:, :, :, t0]
                mask = vol > self.inputs.mask_threshold
                g[t0] = self._nanmean(vol[mask])
        else:
            mask = np.ones((x, y, z))
            g = self._nanmean(data[mask > 0, :], 1)

        # compute normalized intensity values
        gz = signal.detrend(g, axis=0)       # detrend the signal
        if self.inputs.use_differences[1]:
            gz = np.concatenate((np.zeros((1, 1)), np.diff(gz, n=1, axis=0)), axis=0)
        gz = (gz - np.mean(gz)) / np.std(gz)    # normalize the detrended signal
        iidx = find_indices(abs(gz) > self.inputs.zintensity_threshold)

        outliers = np.unique(np.union1d(iidx, np.union1d(tidx, ridx)))
        artifactfile, intensityfile, statsfile, normfile, plotfile = self._get_output_filenames(imgfile, cwd)

        # write output to outputfile
        np.savetxt(artifactfile, outliers, fmt='%d', delimiter=' ')
        np.savetxt(intensityfile, g, fmt='%.2f', delimiter=' ')
        if self.inputs.use_norm:
            np.savetxt(normfile, normval, fmt='%.4f', delimiter=' ')

        if isdefined(self.inputs.save_plot) and self.inputs.save_plot:
            import matplotlib.pyplot as plt
            fig = plt.figure()
            if isdefined(self.inputs.use_norm) and self.inputs.use_norm:
                plt.subplot(211)
            else:
                plt.subplot(311)
            self._plot_outliers_with_wave(gz, iidx, 'Intensity')
            if isdefined(self.inputs.use_norm) and self.inputs.use_norm:
                plt.subplot(212)
                self._plot_outliers_with_wave(normval, np.union1d(tidx, ridx), 'Norm (mm)')
            else:
                diff = ''
                if self.inputs.use_differences[0]:
                    diff = 'diff'
                plt.subplot(312)
                self._plot_outliers_with_wave(traval, tidx, 'Translation (mm)' + diff)
                plt.subplot(313)
                self._plot_outliers_with_wave(rotval, ridx, 'Rotation (rad)' + diff)
            plt.savefig(plotfile)
            plt.close(fig)

        motion_outliers = np.union1d(tidx, ridx)
        stats = [{'motion_file': motionfile,
                  'functional_file': imgfile},
                 {'common_outliers': len(np.intersect1d(iidx, motion_outliers)),
                  'intensity_outliers': len(np.setdiff1d(iidx, motion_outliers)),
                  'motion_outliers': len(np.setdiff1d(motion_outliers, iidx)),
                  },
                 {'motion': [{'using differences': self.inputs.use_differences[0]},
                              {'mean': np.mean(mc_in, axis=0).tolist(),
                               'min': np.min(mc_in, axis=0).tolist(),
                               'max': np.max(mc_in, axis=0).tolist(),
                               'std': np.std(mc_in, axis=0).tolist()},
                              ]},
                 {'intensity': [{'using differences': self.inputs.use_differences[1]},
                                 {'mean': np.mean(gz, axis=0).tolist(),
                                  'min': np.min(gz, axis=0).tolist(),
                                  'max': np.max(gz, axis=0).tolist(),
                                  'std': np.std(gz, axis=0).tolist()},
                                 ]},
                 ]
        if self.inputs.use_norm:
            stats.insert(3, {'motion_norm': {'mean': np.mean(normval, axis=0).tolist(),
                                             'min': np.min(normval, axis=0).tolist(),
                                             'max': np.max(normval, axis=0).tolist(),
                                             'std': np.std(normval, axis=0).tolist(),
                                    }})
        save_json(statsfile, stats)