def correlateRatingsTags(Ratings, Group='FullDirTrees'):
    import numpy.oldnumeric.mlab as MLab
    DirectionGivers = '(EDA|EMWC|KLS|KXP|TJS|WLH)'
    Routes = '.*'
    Envs = '.*'
    Suffix = 'Dirs_\d.txt$'
    Directions = DirectionCorpusReader('_'.join(
        [DirectionGivers, Envs, Routes, Suffix]))

    CFDist = LearnCondDist(Directions,
                           list(Directions.items(Group)),
                           Start='DIRECTIONS',
                           verbose=1)
    TagOrder = [
        tag.symbol() for tag in CFDist.conditions()
        if not (tag.symbol().endswith('_P') or tag.symbol().endswith('_N')
                or tag.symbol().endswith('_V'))
    ]
    TagOrder.sort()
    results = {}
    for item in Directions.items(Group):
        dirID = item.split('-')[1]
        if not Ratings.has_key(dirID):
            print 'Skipping', dirID
            continue
        TagCounts = {}
        DirModel = LearnCondDist(Directions, [item], Start='DIRECTIONS')
        for nonterm in DirModel.conditions():
            tag = nonterm.symbol()
            #print nonterm, [DirModel[nonterm].count(s) for s in DirModel[nonterm].samples()]
            if tag in TagOrder:
                TagCounts[tag] = MLab.sum([
                    DirModel[nonterm].count(s)
                    for s in DirModel[nonterm].samples()
                ])
        TraitList = [
            Ratings[dirID][2], Ratings[dirID][3], Ratings[dirID][4],
            Ratings[dirID][5], Ratings[dirID][6] + Ratings[dirID][7]
        ]
        for TagName in TagOrder:
            if TagCounts.has_key(TagName):
                TraitList.append(TagCounts[TagName])
            else:
                TraitList.append(0)
        results[dirID] = TraitList
        #print dirID, TraitList
    for k in Ratings.keys():
        if not results.has_key(k):
            results[k] = [0] * (len(TagOrder) + 5)  # Number of ratings used
    return results, TagOrder
def correlateRatingsTags(Ratings,Group='FullDirTrees'):
    import numpy.oldnumeric.mlab as MLab
    DirectionGivers = '(EDA|EMWC|KLS|KXP|TJS|WLH)'
    Routes = '.*'
    Envs = '.*'
    Suffix = 'Dirs_\d.txt$'
    Directions = DirectionCorpusReader('_'.join([DirectionGivers,Envs,Routes,Suffix]))

    CFDist = LearnCondDist(Directions, list(Directions.items(Group)), Start='DIRECTIONS',verbose=1)
    TagOrder = [tag.symbol() for tag in CFDist.conditions()
                if not (tag.symbol().endswith('_P') or tag.symbol().endswith('_N') or tag.symbol().endswith('_V'))]
    TagOrder.sort()
    results = {}
    for item in Directions.items(Group):
        dirID = item.split('-')[1]
        if not Ratings.has_key(dirID):
            print 'Skipping', dirID;
            continue
        TagCounts = {}
        DirModel = LearnCondDist(Directions, [item], Start='DIRECTIONS')
        for nonterm in DirModel.conditions():
            tag = nonterm.symbol()
            #print nonterm, [DirModel[nonterm].count(s) for s in DirModel[nonterm].samples()]
            if tag in TagOrder:
                TagCounts[tag] = MLab.sum([DirModel[nonterm].count(s) for s in DirModel[nonterm].samples()])
        TraitList = [Ratings[dirID][2], Ratings[dirID][3], Ratings[dirID][4],
                     Ratings[dirID][5], Ratings[dirID][6]+Ratings[dirID][7]]
        for TagName in TagOrder:
            if TagCounts.has_key(TagName):
                TraitList.append(TagCounts[TagName])
            else: TraitList.append(0)
        results[dirID] = TraitList
        #print dirID, TraitList
    for k in Ratings.keys():
        if not results.has_key(k):
            results[k] = [0] * (len(TagOrder)+5) # Number of ratings used
    return results, TagOrder
示例#3
0
def rosen(x):  # The Rosenbrock function
    return MLab.sum(100.0*(x[1:]-x[:-1]**2.0)**2.0 + (1-x[:-1])**2.0)