def imsave_al(image, im, path): dic = oib.image_info(im) if dic['time_interval'] == None: t = 0 else: t = float(dic['time_interval']) sx = (1 / float(dic['xsize'])) filename = [ os.path.splitext(filename)[0] for filename in os.listdir(path) if filename.endswith(('.nd2')) ] filename i = 0 for img in image: i += 1 filename_save = (path + '/' + ('%s%i' % (filename[0], i)) + '.tif') filename_save if os.path.isfile(filename_save) == True: print 'the file already exist' else: tifffile.imsave(filename_save, img.transpose(0, 1, 4, 2, 3), imagej=True, resolution=(sx, sx), metadata={ 'mode': 'color', 'finterval': t, 'unit': 'micron' })
def align(im, warp_matrix): dic = oib.image_info(im) x = int(dic['frame_size_x']) y = int(dic['frame_size_y']) c = int(dic['channels']) z = int(dic['z_steps']) t = int(dic['time_frames']) with bioformats.ImageReader(im, perform_init=True) as rdr: image = np.empty([t, z, y, x, c], np.uint16) for c in range(c): image[:, :, :, :, c] = rdr.read(c=1, rescale=False) image[:, :, :, :, c] = cv2.warpAffine( (rdr.read(c=0, rescale=False)), warp_matrix, (y, x), flags=cv2.INTER_LINEAR + cv2.WARP_INVERSE_MAP) for t in range(t): image[t, :, :, :, c] = cv2.warpAffine( (rdr.read(t=t, z=0, c=0, rescale=False)), warp_matrix, (y, x), flags=cv2.INTER_LINEAR + cv2.WARP_INVERSE_MAP) for z in range(z): image[:, z, :, :, c] = cv2.warpAffine( (rdr.read(z=z, c=0, rescale=False)), warp_matrix, (y, x), flags=cv2.INTER_LINEAR + cv2.WARP_INVERSE_MAP) return image
def align(im, warp_matrix): dic = oib.image_info(im) x = int(dic['frame_size_x']) y = int(dic['frame_size_y']) c = int(dic['channels']) z = int(dic['z_steps']) t = int(dic['time_frames']) with bioformats.ImageReader(im, perform_init=True) as rdr: image = np.empty([t,z,y,x,c], np.uint16) for c in range(c): image[:,:,:,:,c] = rdr.read(c=1, rescale=False) image[:,:,:,:,c] = cv2.warpAffine((rdr.read(c=0, rescale=False)), warp_matrix, (y,x), flags=cv2.INTER_LINEAR + cv2.WARP_INVERSE_MAP) for t in range(t): image[t,:,:,:,c] = cv2.warpAffine((rdr.read(t=t, z=0, c=0, rescale=False)), warp_matrix, (y,x), flags=cv2.INTER_LINEAR + cv2.WARP_INVERSE_MAP) for z in range(z): image[:,z,:,:,c] = cv2.warpAffine((rdr.read(z=z, c=0, rescale=False)), warp_matrix, (y,x), flags=cv2.INTER_LINEAR + cv2.WARP_INVERSE_MAP) return image
def imsave_al(image, im, path): dic = oib.image_info(im) if dic['time_interval'] == None: t = 0 else: t = float(dic['time_interval']) sx = (1/float(dic['xsize'])) filename = [os.path.splitext(filename)[0] for filename in os.listdir(path) if filename.endswith(('.nd2'))] filename i = 0 for img in image: i+=1 filename_save = (path+ '/' + ('%s%i' %(filename[0], i)) + '.tif') filename_save if os.path.isfile(filename_save) == True: print 'the file already exist' else: tifffile.imsave(filename_save, img.transpose(0,1,4,2,3), imagej=True, resolution = (sx,sx), metadata = {'mode' : 'color', 'finterval' : t, 'unit' : 'micron'})