示例#1
0
文件: panel.py 项目: timClicks/pandas
def _make_long_index(major_values, minor_values):
    major_axis = Index(sorted(set(major_values)))
    minor_axis = Index(sorted(set(minor_values)))

    major_labels, _ = _tseries.getMergeVec(major_values, major_axis.indexMap)
    minor_labels, _ = _tseries.getMergeVec(minor_values, minor_axis.indexMap)

    long_index = MultiIndex(levels=[major_axis, minor_axis], labels=[major_labels, minor_labels])
    return long_index
示例#2
0
    def map(self, arg):
        """
        Map values of Series using input correspondence (which can be
        a dict, Series, or function).

        Parameters
        ----------
        arg : function, dict, or Series

        Returns
        -------
        y : Series
            same index as caller
        """
        if isinstance(arg, (dict, Series)):
            if isinstance(arg, dict):
                arg = Series(arg)

            indexer, mask = _tseries.getMergeVec(self, arg.index.indexMap)
            notmask = -mask

            new_values = arg.view(np.ndarray).take(indexer)

            if notmask.any():
                if issubclass(new_values.dtype.type, np.integer):
                    new_values = new_values.astype(float)

                np.putmask(new_values, notmask, np.nan)

            newSer = Series(new_values, index=self.index)
            return newSer
        else:
            return Series([arg(x) for x in self], index=self.index)
示例#3
0
文件: pytables.py 项目: MLnick/pandas
    def _read_panel_table(self, group, where=None):
        from pandas.core.common import _asarray_tuplesafe

        table = getattr(group, 'table')

        # create the selection
        sel = Selection(table, where)
        sel.select()
        fields = table._v_attrs.fields

        columns = _maybe_convert(sel.values['column'],
                                 table._v_attrs.columns_kind)
        index = _maybe_convert(sel.values['index'],
                               table._v_attrs.index_kind)
        # reconstruct
        long_index = MultiIndex.from_arrays([index, columns])
        lp = LongPanel(sel.values['values'], index=long_index,
                       columns=fields)

        if lp.consistent:
            lp = lp.sortlevel(level=0)
            wp = lp.to_wide()
        else:
            if not self._quiet:
                print ('Duplicate entries in table, taking most recently '
                       'appended')

            # need a better algorithm
            tuple_index = long_index.get_tuple_index()
            index_map = _tseries.map_indices_buf(tuple_index)

            unique_tuples = _tseries.fast_unique(tuple_index)
            unique_tuples = _asarray_tuplesafe(unique_tuples)

            indexer, _ = _tseries.getMergeVec(unique_tuples, index_map)

            new_index = long_index.take(indexer)
            new_values = lp.values.take(indexer, axis=0)

            lp = LongPanel(new_values, index=new_index, columns=lp.columns)
            wp = lp.to_wide()

        if sel.column_filter:
            new_minor = sorted(set(wp.minor_axis) & sel.column_filter)
            wp = wp.reindex(minor=new_minor)
        return wp
示例#4
0
    def join_on(self, other, on, axis=1):
        other_axis = other.axes[axis]
        indexer, mask = _tseries.getMergeVec(on, other_axis.indexMap)

        # TODO: deal with length-0 case? or does it fall out?
        notmask = -mask
        needs_masking = len(on) > 0 and notmask.any()
        other_blocks = []
        for block in other.blocks:
            newb = block.reindex_axis(indexer, notmask, needs_masking, axis=axis)
            other_blocks.append(newb)

        cons_items = self.items + other.items
        consolidated = _consolidate(self.blocks + other_blocks, cons_items)

        new_axes = list(self.axes)
        new_axes[0] = cons_items
        return BlockManager(consolidated, new_axes)
示例#5
0
    def join_on(self, other, on, axis=1, lsuffix=None, rsuffix=None):
        this, other = self._maybe_rename_join(other, lsuffix, rsuffix)

        other_axis = other.axes[axis]
        indexer, mask = _tseries.getMergeVec(on.astype(object),
                                             other_axis.indexMap)

        # TODO: deal with length-0 case? or does it fall out?
        notmask = -mask
        needs_masking = len(on) > 0 and notmask.any()
        other_blocks = []
        for block in other.blocks:
            newb = block.reindex_axis(indexer, notmask, needs_masking,
                                      axis=axis)
            other_blocks.append(newb)

        cons_items = this.items + other.items
        consolidated = _consolidate(this.blocks + other_blocks, cons_items)

        new_axes = list(this.axes)
        new_axes[0] = cons_items
        return BlockManager(consolidated, new_axes)
示例#6
0
 def fromarray(cls, values):
     values = np.asarray(values, dtype=object)
     levels = Index(sorted(set(values)))
     labels, _ = _tseries.getMergeVec(values, levels.indexMap)
     return Factor(labels, levels=levels)