args = parser.parse_args()
job_ids=args.jobids
data_file_name = args.file

    
con = mdb.connect(server, user, password, table);

with con:
    cur = con.cursor()
    plot_xlabel = "benchmarks solved"
    plot_ylabel = "cummulative time"

    gnuplot_command = cStringIO.StringIO()

    data_file = open(data_file_name, 'w')
    util.setupPlot(gnuplot_command, plot_xlabel, plot_ylabel, "")
    util.setupCanvasPlot(gnuplot_command, "gnuplot_canvas")
    util.setupCactusPlot(gnuplot_command)

    util.startPlot(gnuplot_command)
    
    for i in range(len(job_ids)) :
        job_id = job_ids[i]
        result_i = util.getSortedResults(cur, job_id)
        util.dumpCactusToFile(data_file, util.getJobName(cur, job_id), result_i)

    for i in range(len(job_ids)) :
        util.plotOneCactus(gnuplot_command, data_file_name, i, 1, 2)
        if ( i < len(job_ids) - 1) :
            util.plotSeparator(gnuplot_command)
示例#2
0
with con:
    cur = con.cursor()
    plot_xlabel = "benchmarks solved"
    plot_ylabel = "cummulative time"

    base_name = path + generateCactusBaseName(job_ids)

    gnuplot_file_name = base_name + ".gnuplot"
    gnuplot_file = open(gnuplot_file_name, 'w')

    data_file_name = base_name + ".dat"
    data_file = open(data_file_name, 'w')
    
    pdf_file_name = base_name + ".pdf"

    util.setupPlot(gnuplot_file, plot_xlabel, plot_ylabel, "")
    util.setupPdfPlot(gnuplot_file, pdf_file_name)
    util.setupCactusPlot(gnuplot_file)

    util.startPlot(gnuplot_file)
    
    for i in range(len(job_ids)) :
        job_id = job_ids[i]
        result_i = util.getSortedResults(cur, job_id)
        util.dumpCactusToFile(data_file, util.getJobName(cur, job_id), result_i)

    for i in range(len(job_ids)) :
        util.plotOneCactus(gnuplot_file, data_file_name, i, 1, 2)
        if ( i < len(job_ids) - 1) :
            util.plotSeparator(gnuplot_file)
            filtered_results.append((path, xvalue, yvalue))
    return filtered_results
    
con = mdb.connect(server, user, password, database);
with con:
    cur = con.cursor()
    
    plot_xlabel = util.getJobName(cur, xjob) + " ("+ str(xjob) + ")"
    plot_ylabel = util.getJobName(cur, yjob) + " ("+ str(yjob) + ")"
    plot_title = plot_xlabel + " vs " + plot_ylabel
    
    data_file = open(data_file_name, 'w')
    javascript_file = open(javascript_file_name, 'w')
    gnuplot_command = cStringIO.StringIO()
    
    util.setupPlot(gnuplot_command, plot_xlabel, plot_ylabel, plot_title)
    util.setupCanvasPlot(gnuplot_command, "gnuplot_canvas")

    util.startPlot(gnuplot_command)

    results_and_answers = util.getRunTimesAndAnswer(cur, xjob, yjob)
    results = filterUnknowns(results_and_answers)
    families = util.groupByFamilies(results)
    if input_family == None or input_family == "":
	run_over_families = families
    else:
	if input_family[0] == '-':
 		input_family = input_family[1:]
		exclude_families = input_family.split(',')
		run_over_families = [item for item in families if item not in exclude_families]
        else:
    
    plot_xlabel = util.getJobName(cur, xjob)
    plot_ylabel = util.getJobName(cur, yjob)
    plot_title = plot_xlabel + " vs " + plot_ylabel
    
    base_name = path + generateScatterBaseName(xjob, yjob, xfield, yfield)

    gnuplot_file_name = base_name + ".gnuplot"
    gnuplot_file = open(gnuplot_file_name, 'w')

    data_file_name = base_name + ".dat"
    data_file = open(data_file_name, 'w')
    
    pdf_file_name = base_name + ".pdf"

    util.setupPlot(gnuplot_file, plot_xlabel, plot_ylabel, plot_title)
    util.setupPdfPlot(gnuplot_file, pdf_file_name)

    util.startPlot(gnuplot_file)

    results = util.selectAllResult(cur, xjob, yjob, xfield, yfield)
    families = util.groupByFamilies(results)

    for family in families:
        family_results = families[family]
        util.dumpFamilyToFile(data_file, family, family_results)

    for i in range(len(families)):
        util.plotOneScatter(gnuplot_file, data_file_name, i, 2, 3)
        util.plotSeparator(gnuplot_file)