示例#1
0
def plot_keypoint_scales(hs, fnum=1):
    print('[dev] plot_keypoint_scales()')
    cx2_kpts = hs.feats.cx2_kpts
    if len(cx2_kpts) == 0:
        hs.refresh_features()
        cx2_kpts = hs.feats.cx2_kpts
    cx2_nFeats = map(len, cx2_kpts)
    kpts = np.vstack(cx2_kpts)
    print('[dev] --- LaTeX --- ')
    _printopts = np.get_printoptions()
    np.set_printoptions(precision=3)
    print(util_latex.latex_scalar(r'\# keypoints, ', len(kpts)))
    print(util_latex.latex_mystats(r'\# keypoints per image', cx2_nFeats))
    scales = ktool.get_scales(kpts)
    scales = np.array(sorted(scales))
    print(util_latex.latex_mystats(r'keypoint scale', scales))
    np.set_printoptions(**_printopts)
    print('[dev] ---/LaTeX --- ')
    #
    df2.figure(fnum=fnum, docla=True, title='sorted scales')
    df2.plot(scales)
    df2.adjust_subplots_safe()
    #ax = df2.gca()
    #ax.set_yscale('log')
    #ax.set_xscale('log')
    #
    fnum += 1
    df2.figure(fnum=fnum, docla=True, title='hist scales')
    df2.show_histogram(scales, bins=20)
    df2.adjust_subplots_safe()
    #ax = df2.gca()
    #ax.set_yscale('log')
    #ax.set_xscale('log')
    return fnum
示例#2
0
def TEST_QUERY(ibs):
    print('[TEST_QUERY]')
    valid_aids = ibs.get_valid_aids()
    print('[TEST_QUERY] len(valid_aids)=%r' % (len(valid_aids)))
    qaid_list = valid_aids[0:1]
    print('[TEST_QUERY] len(qaid_list)=%r' % (len(qaid_list)))
    ibs._init_query_requestor()
    qreq = ibs.qreq
    #query_helpers.find_matchable_chips(ibs)
    aids = ibs.get_recognition_database_aids()
    qres_dict = ibs.query_all(qaid_list)

    for qaid in qaid_list:
        qres  = qres_dict[qaid]
        top_aids = qres.get_top_aids(ibs)
        top_aids = utool.safe_slice(top_aids, 3)
        aid2 = top_aids[0]
        fnum = df2.next_fnum()
        df2.figure(fnum=fnum, doclf=True)
        #viz_matches.show_matches(ibs, qres, aid2, fnum=fnum, in_image=True)
        #viz.show_qres(ibs, qres, fnum=fnum, top_aids=top_aids, ensure=False)
        interact.ishow_qres(ibs, qres, fnum=fnum, top_aids=top_aids,
                            ensure=False, annote_mode=1)
        df2.set_figtitle('Query Result')
        df2.adjust_subplots_safe(top=.8)
    return locals()
def TEST_QUERY_COMP(ibs):
    r"""
    CommandLine:
        python -m ibeis.tests.test_ibs_query_components --test-TEST_QUERY_COMP

    Example:
        >>> # ENABLE_DOCTEST
        >>> from ibeis.tests.test_ibs_query_components import *  # NOQA
        >>> import ibeis
        >>> # build test data
        >>> ibs = ibeis.opendb('testdb1')
        >>> # execute function
        >>> TEST_QUERY_COMP(ibs)
    """
    print('[TEST_QUERY_COMP]')
    aids = ibs.get_valid_aids()
    index = 0
    index = utool.get_argval('--index', type_=int, default=index)
    qaid_list = utool.safe_slice(aids, index, index + 1)
    print('[TEST_QUERY_COMP] len(qaid_list)=%r' % (qaid_list))
    try:
        comp_locals_ = query_helpers.get_query_components(ibs, qaid_list)
        qres_dict = OrderedDict([
            ('ORIG', comp_locals_['qres_ORIG']),
            ('FILT', comp_locals_['qres_FILT']),
            ('SVER', comp_locals_['qres_SVER']),
        ])

        top_aids = qres_dict['SVER'].get_top_aids()
        aid2 = top_aids[0]
    except Exception as ex:
        if 'qres_dict' in vars():
            for name, qres in qres_dict.items():
                print(name)
                print(qres.get_inspect_str())
        utool.printex(ex, keys=['qaid_list'], pad_stdout=True)
        raise

    for px, (lbl, qres) in enumerate(six.iteritems(qres_dict)):
        print(lbl)
        fnum = df2.next_fnum()
        df2.figure(fnum=fnum, doclf=True)
        qres.ishow_top(ibs,  fnum=fnum, top_aids=top_aids, ensure=False)
        df2.set_figtitle(lbl)
        df2.adjust_subplots_safe(top=.8)

    fnum = df2.next_fnum()

    qaid2_svtups = comp_locals_['qaid2_svtups']
    qaid2_chipmatch_FILT = comp_locals_['qaid2_chipmatch_FILT']
    aid1 = qaid = comp_locals_['qaid']
    aid2_svtup  = qaid2_svtups[aid1]
    chipmatch_FILT = qaid2_chipmatch_FILT[aid1]
    viz.show_sver(ibs, aid1, aid2, chipmatch_FILT, aid2_svtup, fnum=fnum)
    return locals()
示例#4
0
def TEST_QUERY(ibs):
    r"""
    CommandLine:
        python -m ibeis.tests.test_ibs_query --test-TEST_QUERY
        python -m ibeis.tests.test_ibs_query --test-TEST_QUERY --show

    Example:
        >>> # ENABLE_DOCTEST
        >>> from ibeis.tests.test_ibs_query import *  # NOQA
        >>> import plottool as pt
        >>> import ibeis
        >>> ibs = ibeis.opendb('testdb1')
        >>> TEST_QUERY(ibs)
        >>> pt.show_if_requested()
    """
    print('[TEST_QUERY]')
    daid_list = ibs.get_valid_aids()
    print('[TEST_QUERY] len(daid_list)=%r' % (len(daid_list)))
    qaid_list = daid_list[0:1]
    print('[TEST_QUERY] len(qaid_list)=%r' % (len(qaid_list)))
    qres_list = ibs.query_chips(qaid_list, daid_list, use_cache=False, use_bigcache=False)
    qres_list_ = ibs.query_chips(qaid_list, daid_list)

    try:
        vals1 = qres_list
        vals2 = qres_list_
        assert len(vals1) == 1, 'expected 1 qres in result'
        assert len(vals2) == 1, 'expected 1 qres in result'
        #assert list(qres_dict.keys()) == list(qres_dict_.keys()), 'qres cache doesnt work. key error'
        qres1 = vals1[0]
        qres2 = vals2[0]
        inspect_str1 = qres1.get_inspect_str(ibs)
        inspect_str2 = qres2.get_inspect_str(ibs)
        print(inspect_str1)
        assert inspect_str1 == inspect_str2, 'qres cache inconsistency'
        assert vals1 == vals2, 'qres cache doesnt work. val error'
    except AssertionError as ex:
        utool.printex(ex, key_list=list(locals().keys()))
        raise

    if ut.show_was_requested():
        for qres in qres_list:
            top_aids = qres.get_top_aids()
            #top_aids = utool.safe_slice(top_aids, 3)
            aid2 = top_aids[0]
            fnum = df2.next_fnum()
            df2.figure(fnum=fnum, doclf=True)
            qres.ishow_top(ibs, fnum=fnum, top_aids=top_aids, ensure=False, annot_mode=1)
            df2.set_figtitle('Query Result')
            df2.adjust_subplots_safe(top=.8)
    return locals()
def TEST_QUERY_COMP(ibs):
    print('[TEST_QUERY_COMP]')
    qaid_list = ibs.get_valid_aids()[0:1]
    print('[TEST_QUERY_COMP] len(qaid_list)=%r' % (qaid_list))
    ibs._init_query_requestor()
    qreq = ibs.qreq

    #query_helpers.find_matchable_chips(ibs)

    aids = ibs.get_recognition_database_aids()
    index = 0
    index = utool.get_arg('--index', type_=int, default=index)
    qaid_list = utool.safe_slice(aids, index, index + 1)

    comp_locals_ = query_helpers.get_query_components(ibs, qaid_list)
    qres_dict = OrderedDict([
        ('ORIG', comp_locals_['qres_ORIG']),
        ('FILT', comp_locals_['qres_FILT']),
        ('SVER', comp_locals_['qres_SVER']),
    ])

    top_aids = qres_dict['SVER'].get_top_aids(ibs)
    top_aids = utool.safe_slice(top_aids, 3)
    aid2 = top_aids[0]

    for px, (lbl, qres) in enumerate(six.iteritems(qres_dict)):
        print(lbl)
        fnum = df2.next_fnum()
        df2.figure(fnum=fnum, doclf=True)
        #viz_matches.show_matches(ibs, qres, aid2, fnum=fnum, in_image=True)
        #viz.show_qres(ibs, qres, fnum=fnum, top_aids=top_aids, ensure=False)
        interact.ishow_qres(ibs, qres, fnum=fnum, top_aids=top_aids, ensure=False)
        df2.set_figtitle(lbl)
        df2.adjust_subplots_safe(top=.8)

    fnum = df2.next_fnum()

    qaid2_svtups = comp_locals_['qaid2_svtups']
    qaid2_chipmatch_FILT = comp_locals_['qaid2_chipmatch_FILT']
    aid1 = qaid = comp_locals_['qaid']
    aid2_svtup  = qaid2_svtups[aid1]
    chipmatch_FILT = qaid2_chipmatch_FILT[aid1]
    viz.show_sver(ibs, aid1, aid2, chipmatch_FILT, aid2_svtup, fnum=fnum)
    return locals()
示例#6
0
def show_descriptors_match_distances(orgres2_distance, fnum=1, db_name='', **kwargs):
    disttype_list = orgres2_distance.itervalues().next().keys()
    orgtype_list = orgres2_distance.keys()
    (nRow, nCol) = len(orgtype_list), len(disttype_list)
    nColors = nRow * nCol
    color_list = df2.distinct_colors(nColors)
    df2.figure(fnum=fnum, docla=True, doclf=True)
    pnum_ = lambda px: (nRow, nCol, px + 1)
    plot_type = utool.get_arg('--plot-type', default='plot')

    # Remember min and max val for each distance type (l1, emd...)
    distkey2_min = {distkey: np.uint64(-1) for distkey in disttype_list}
    distkey2_max = {distkey: 0 for distkey in disttype_list}

    def _distplot(dists, color, label, distkey, plot_type=plot_type):
        data = sorted(dists)
        ax = df2.gca()
        min_ = distkey2_min[distkey]
        max_ = distkey2_max[distkey]
        if plot_type == 'plot':
            df2.plot(data, color=color, label=label, yscale='linear')
            #xticks = np.linspace(np.min(data), np.max(data), 3)
            #yticks = np.linspace(0, len(data), 5)
            #ax.set_xticks(xticks)
            #ax.set_yticks(yticks)
            ax.set_ylim(min_, max_)
            ax.set_xlim(0, len(dists))
            ax.set_ylabel('distance')
            ax.set_xlabel('matches indexes (sorted by distance)')
            df2.legend(loc='lower right')
        if plot_type == 'pdf':
            df2.plot_pdf(data, color=color, label=label)
            ax.set_ylabel('pr')
            ax.set_xlabel('distance')
            ax.set_xlim(min_, max_)
            df2.legend(loc='upper left')
        df2.dark_background(ax)
        df2.small_xticks(ax)
        df2.small_yticks(ax)

    px = 0
    for orgkey in orgtype_list:
        for distkey in disttype_list:
            dists = orgres2_distance[orgkey][distkey]
            if len(dists) == 0:
                continue
            min_ = dists.min()
            max_ = dists.max()
            distkey2_min[distkey] = min(distkey2_min[distkey], min_)
            distkey2_max[distkey] = max(distkey2_max[distkey], max_)

    for count, orgkey in enumerate(orgtype_list):
        for distkey in disttype_list:
            printDBG('[allres-viz] plotting: %r' % ((orgkey, distkey),))
            dists = orgres2_distance[orgkey][distkey]
            df2.figure(fnum=fnum, pnum=pnum_(px))
            color = color_list[px]
            title = distkey + ' ' + orgkey
            label = 'P(%s | %s)' % (distkey, orgkey)
            _distplot(dists, color, label, distkey, **kwargs)
            if count == 0:
                ax = df2.gca()
                ax.set_title(distkey)
            px += 1

    subtitle = 'the matching distances between sift descriptors'
    title = '(sift) matching distances'
    if db_name != '':
        title = db_name + ' ' + title
    df2.set_figtitle(title, subtitle)
    df2.adjust_subplots_safe()
def show_nearest_descriptors(ibs, qaid, qfx, fnum=None, stride=5,
                             qreq_=None, **kwargs):
    r"""
    Args:
        ibs (ibeis.IBEISController): image analysis api
        qaid (int):  query annotation id
        qfx (int): query feature index
        fnum (int):  figure number
        stride (int):
        consecutive_distance_compare (bool):

    CommandLine:
        # Find a good match to inspect
        python -m ibeis.viz.interact.interact_matches --test-testdata_match_interact --show --db PZ_MTEST --qaid 3

        # Now inspect it
        python -m ibeis.viz.viz_nearest_descriptors --test-show_nearest_descriptors --show --db PZ_MTEST --qaid 3 --qfx 879
        python -m ibeis.viz.viz_nearest_descriptors --test-show_nearest_descriptors --show
        python -m ibeis.viz.viz_nearest_descriptors --test-show_nearest_descriptors --db PZ_MTEST --qaid 3 --qfx 879 --diskshow --save foo.png --dpi=256

    SeeAlso:
        plottool.viz_featrow
        ~/code/plottool/plottool/viz_featrow.py

    Example:
        >>> # DISABLE_DOCTEST
        >>> from ibeis.viz.viz_nearest_descriptors import *  # NOQA
        >>> import ibeis
        >>> # build test data
        >>> qreq_ = ibeis.testdata_qreq_()
        >>> ibs = ibeis.opendb('PZ_MTEST')
        >>> qaid = qreq_.qaids[0]
        >>> qfx = ut.get_argval('--qfx', type_=int, default=879)
        >>> fnum = None
        >>> stride = 5
        >>> # execute function
        >>> skip = False
        >>> result = show_nearest_descriptors(ibs, qaid, qfx, fnum, stride,
        >>>                                   draw_chip=True,
        >>>                                   draw_warped=True,
        >>>                                   draw_unwarped=False,
        >>>                                   draw_desc=False, qreq_=qreq_)
        >>> # verify results
        >>> print(result)
        >>> pt.show_if_requested()
    """
    consecutive_distance_compare = True
    draw_chip     = kwargs.get('draw_chip', False)
    draw_desc     = kwargs.get('draw_desc', True)
    draw_warped   = kwargs.get('draw_warped', True)
    draw_unwarped = kwargs.get('draw_unwarped', True)
    #skip = kwargs.get('skip', True)
    # Plots the nearest neighbors of a given feature (qaid, qfx)
    if fnum is None:
        fnum = df2.next_fnum()
    try:
        # Flann NN query
        (qfx2_daid, qfx2_dfx, qfx2_dist, K, Knorm) = get_annotfeat_nn_index(ibs, qaid, qfx, qreq_=qreq_)

        # Adds metadata to a feature match
        def get_extract_tuple(aid, fx, k=-1):
            rchip = ibs.get_annot_chips(aid)
            kp    = ibs.get_annot_kpts(aid)[fx]
            sift  = ibs.get_annot_vecs(aid)[fx]
            if not ut.get_argflag('--texknormplot'):
                aidstr = vh.get_aidstrs(aid)
                nidstr = vh.get_nidstrs(ibs.get_annot_nids(aid))
                id_str = ' ' + aidstr + ' ' + nidstr + ' fx=%r' % (fx,)
            else:
                id_str = nidstr = aidstr = ''
            info = ''
            if k == -1:
                if pt.is_texmode():
                    info = '\\vspace{1cm}'
                    info += 'Query $\\mathbf{d}_i$'
                    info += '\n\\_'
                    info += '\n\\_'
                else:
                    if len(id_str) > '':
                        info = 'Query: %s' % (id_str,)
                    else:
                        info = 'Query'
                type_ = 'Query'
            elif k < K:
                type_ = 'Match'
                if ut.get_argflag('--texknormplot') and  pt.is_texmode():
                    #info = 'Match:\n$k=%r$, $\\frac{||\\mathbf{d}_i - \\mathbf{d}_j||}{Z}=%.3f$' % (k, qfx2_dist[0, k])
                    info = '\\vspace{1cm}'
                    info += 'Match: $\\mathbf{d}_{j_%r}$\n$\\textrm{dist}=%.3f$' % (k, qfx2_dist[0, k])
                    info += '\n$s_{\\tt{LNBNN}}=%.3f$' % (qfx2_dist[0, K + Knorm - 1] - qfx2_dist[0, k])
                else:
                    info = 'Match:%s\nk=%r, dist=%.3f' % (id_str, k, qfx2_dist[0, k])
                    info += '\nLNBNN=%.3f' % (qfx2_dist[0, K + Knorm - 1] - qfx2_dist[0, k])
            elif k < Knorm + K:
                type_ = 'Norm'
                if ut.get_argflag('--texknormplot') and  pt.is_texmode():
                    #info = 'Norm: $j_%r$\ndist=%.3f' % (id_str, k, qfx2_dist[0, k])
                    info = '\\vspace{1cm}'
                    info += 'Norm: $j_%r$\n$\\textrm{dist}=%.3f$' % (k, qfx2_dist[0, k])
                    info += '\n\\_'
                else:
                    info = 'Norm: %s\n$k=%r$, dist=$%.3f$' % (id_str, k, qfx2_dist[0, k])
            else:
                raise Exception('[viz] problem k=%r')
            return (rchip, kp, sift, fx, aid, info, type_)

        extracted_list = []
        # Remember the query sift feature
        extracted_list.append(get_extract_tuple(qaid, qfx, -1))
        origsift = extracted_list[0][2]
        skipped = 0
        for k in range(K + Knorm):
            #if qfx2_daid[0, k] == qaid and qfx2_dfx[0, k] == qfx:
            if qfx2_daid[0, k] == qaid:
                skipped += 1
                continue
            tup = get_extract_tuple(qfx2_daid[0, k], qfx2_dfx[0, k], k)
            extracted_list.append(tup)
        # Draw the _select_ith_match plot
        nRows = len(extracted_list)
        if stride is None:
            stride = nRows
        # Draw selected feature matches
        prevsift = None
        px = 0  # plot offset
        px_shift = 0  # plot stride shift
        nExtracted = len(extracted_list)
        featrow_kw = dict(
            draw_chip=draw_chip, draw_desc=draw_desc, draw_warped=draw_warped,
            draw_unwarped=draw_unwarped,
        )
        if ut.get_argflag('--texknormplot'):
            featrow_kw['ell_color'] = pt.ORANGE
            pass
        for listx, tup in enumerate(extracted_list):
            (rchip, kp, sift, fx, aid, info, type_) = tup
            if listx % stride == 0:
                # Create a temporary nRows and fnum in case we are splitting
                # up nearest neighbors into separate figures with stride
                _fnum = fnum + listx
                _nRows = min(nExtracted - listx, stride)
                px_shift = px
                df2.figure(fnum=_fnum, docla=True, doclf=True)
            px_ = px - px_shift
            px = draw_feat_row(rchip, fx, kp, sift, _fnum, _nRows, px=px_,
                               prevsift=prevsift, origsift=origsift, aid=aid,
                               info=info, type_=type_, **featrow_kw)

            px += px_shift
            if prevsift is None or consecutive_distance_compare:
                prevsift = sift

        df2.adjust_subplots_safe(hspace=.85, wspace=0, top=.95, bottom=.087, left=.05, right=.95)

    except Exception as ex:
        print('[viz] Error in show nearest descriptors')
        print(ex)
        raise
示例#8
0
文件: viz_qres.py 项目: byteyoo/ibeis
def show_qres(ibs, qres, **kwargs):
    """
    Display Query Result Logic
    Defaults to: query chip, groundtruth matches, and top 5 matches
    """
    annote_mode = kwargs.get('annote_mode', 1) % 3  # this is toggled
    figtitle    = kwargs.get('figtitle', '')
    aug         = kwargs.get('aug', '')
    top_aids    = kwargs.get('top_aids', 6)
    gt_aids     = kwargs.get('gt_aids',   [])
    all_kpts    = kwargs.get('all_kpts', False)
    show_query  = kwargs.get('show_query', False)
    in_image    = kwargs.get('in_image', False)
    sidebyside  = kwargs.get('sidebyside', True)
    fnum = df2.kwargs_fnum(kwargs)

    fig = df2.figure(fnum=fnum, docla=True, doclf=True)

    if isinstance(top_aids, int):
        top_aids = qres.get_top_aids(num=top_aids)

    all_gts = ibs.get_annot_groundtruth(qres.qaid)
    nTop   = len(top_aids)
    nSelGt = len(gt_aids)
    nAllGt = len(all_gts)

    max_nCols = 5
    if nTop in [6, 7]:
        max_nCols = 3
    if nTop in [8]:
        max_nCols = 4

    printDBG('[show_qres]========================')
    printDBG('[show_qres]----------------')
    printDBG('[show_qres] #nTop=%r #missed_gts=%r/%r' % (nTop, nSelGt, nAllGt))
    printDBG('[show_qres] * fnum=%r' % (fnum,))
    printDBG('[show_qres] * figtitle=%r' % (figtitle,))
    printDBG('[show_qres] * max_nCols=%r' % (max_nCols,))
    printDBG('[show_qres] * show_query=%r' % (show_query,))
    printDBG('[show_qres] * kwargs=%s' % (utool.dict_str(kwargs),))
    printDBG(qres.get_inspect_str())
    ranked_aids = qres.get_top_aids()
    # Build a subplot grid
    nQuerySubplts = 1 if show_query else 0
    nGtSubplts    = nQuerySubplts + (0 if gt_aids is None else len(gt_aids))
    nTopNSubplts  = nTop
    nTopNCols     = min(max_nCols, nTopNSubplts)
    nGTCols       = min(max_nCols, nGtSubplts)
    nGTCols       = max(nGTCols, nTopNCols)
    nTopNCols     = nGTCols
    nGtRows       = 0 if nGTCols   == 0 else int(np.ceil(nGtSubplts   / nGTCols))
    nTopNRows     = 0 if nTopNCols == 0 else int(np.ceil(nTopNSubplts / nTopNCols))
    nGtCells      = nGtRows * nGTCols
    nRows         = nTopNRows + nGtRows

    # HACK:
    _color_list = df2.distinct_colors(nTop)
    aid2_color = {aid: _color_list[ox] for ox, aid in enumerate(top_aids)}

    # Helpers
    def _show_query_fn(plotx_shift, rowcols):
        """ helper for show_qres """
        plotx = plotx_shift + 1
        pnum = (rowcols[0], rowcols[1], plotx)
        #print('[viz] Plotting Query: pnum=%r' % (pnum,))
        _kwshow = dict(draw_kpts=annote_mode)
        _kwshow.update(kwargs)
        _kwshow['prefix'] = 'q'
        _kwshow['pnum'] = pnum
        _kwshow['aid2_color'] = aid2_color
        _kwshow['draw_ell'] = annote_mode >= 1
        viz_chip.show_chip(ibs, qres.qaid, annote=False, **_kwshow)

    def _plot_matches_aids(aid_list, plotx_shift, rowcols):
        """ helper for show_qres to draw many aids """
        def _show_matches_fn(aid, orank, pnum):
            """ Helper function for drawing matches to one aid """
            aug = 'rank=%r\n' % orank
            #printDBG('[show_qres()] plotting: %r'  % (pnum,))
            _kwshow  = dict(draw_ell=annote_mode, draw_pts=False, draw_lines=annote_mode,
                            ell_alpha=.5, all_kpts=all_kpts)
            _kwshow.update(kwargs)
            _kwshow['fnum'] = fnum
            _kwshow['pnum'] = pnum
            _kwshow['title_aug'] = aug
            # If we already are showing the query dont show it here
            if sidebyside:
                _kwshow['draw_ell'] = annote_mode == 1
                _kwshow['draw_lines'] = annote_mode >= 1
                viz_matches.show_matches(ibs, qres, aid, in_image=in_image, **_kwshow)
            else:
                _kwshow['draw_ell'] = annote_mode >= 1
                if annote_mode == 2:
                    # TODO Find a better name
                    _kwshow['color'] = aid2_color[aid]
                    _kwshow['sel_fx2'] = qres.aid2_fm[aid][:, 1]
                viz_chip.show_chip(ibs, aid, in_image=in_image, annote=False, **_kwshow)
                viz_matches.annotate_matches(ibs, qres, aid, in_image=in_image, show_query=not show_query)

        printDBG('[show_qres()] Plotting Chips %s:' % vh.get_aidstrs(aid_list))
        if aid_list is None:
            return
        # Do lazy load before show
        vh.get_chips(ibs, aid_list, **kwargs)
        vh.get_kpts(ibs, aid_list, **kwargs)
        for ox, aid in enumerate(aid_list):
            plotx = ox + plotx_shift + 1
            pnum = (rowcols[0], rowcols[1], plotx)
            oranks = np.where(ranked_aids == aid)[0]
            if len(oranks) == 0:
                orank = -1
                continue
            orank = oranks[0] + 1
            _show_matches_fn(aid, orank, pnum)

    shift_topN = nGtCells

    if nGtSubplts == 1:
        nGTCols = 1

    if nRows == 0:
        df2.imshow_null(fnum=fnum)
    else:
        fig = df2.figure(fnum=fnum, pnum=(nRows, nGTCols, 1), docla=True, doclf=True)
        #df2.disconnect_callback(fig, 'button_press_event')
        df2.plt.subplot(nRows, nGTCols, 1)
        # Plot Query
        if show_query:
            _show_query_fn(0, (nRows, nGTCols))
        # Plot Ground Truth
        _plot_matches_aids(gt_aids, nQuerySubplts, (nRows, nGTCols))
        _plot_matches_aids(top_aids, shift_topN, (nRows, nTopNCols))
        #figtitle += ' q%s name=%s' % (ibsfuncs.aidstr(qres.qaid), ibs.aid2_name(qres.qaid))
        figtitle += aug
        df2.set_figtitle(figtitle, incanvas=not vh.NO_LBL_OVERRIDE)

    # Result Interaction
    df2.adjust_subplots_safe()
    printDBG('[show_qres()] Finished')
    return fig
示例#9
0
def draw():
    df2.adjust_subplots_safe()
    fig_presenter.draw()
示例#10
0
def show_nearest_descriptors(ibs, qaid, qfx, fnum=None, stride=5,
                             consecutive_distance_compare=False):
    # Plots the nearest neighbors of a given feature (qaid, qfx)
    if fnum is None:
        fnum = df2.next_fnum()
    try:
        # Flann NN query
        (qfx2_aid, qfx2_fx, qfx2_dist, K, Knorm) = query_helpers.get_annotfeat_nn_index(ibs, qaid, qfx)

        # Adds metadata to a feature match
        def get_extract_tuple(aid, fx, k=-1):
            rchip = ibs.get_annot_chips(aid)
            kp    = ibs.get_annot_kpts(aid)[fx]
            sift  = ibs.get_annot_desc(aid)[fx]
            if k == -1:
                info = '\nquery %s, fx=%r' % (vh.get_aidstrs(aid), fx)
                type_ = 'query'
            elif k < K:
                type_ = 'match'
                info = '\nmatch %s, fx=%r k=%r, dist=%r' % (vh.get_aidstrs(aid), fx, k, qfx2_dist[0, k])
            elif k < Knorm + K:
                type_ = 'norm'
                info = '\nnorm  %s, fx=%r k=%r, dist=%r' % (vh.get_aidstrs(aid), fx, k, qfx2_dist[0, k])
            else:
                raise Exception('[viz] problem k=%r')
            return (rchip, kp, sift, fx, aid, info, type_)

        extracted_list = []
        extracted_list.append(get_extract_tuple(qaid, qfx, -1))
        skipped = 0
        for k in xrange(K + Knorm):
            if qfx2_aid[0, k] == qaid and qfx2_fx[0, k] == qfx:
                skipped += 1
                continue
            tup = get_extract_tuple(qfx2_aid[0, k], qfx2_fx[0, k], k)
            extracted_list.append(tup)
        # Draw the _select_ith_match plot
        nRows, nCols = len(extracted_list), 3
        if stride is None:
            stride = nRows
        # Draw selected feature matches
        prevsift = None
        px = 0  # plot offset
        px_shift = 0  # plot stride shift
        nExtracted = len(extracted_list)
        for listx, tup in enumerate(extracted_list):
            (rchip, kp, sift, fx, aid, info, type_) = tup
            if listx % stride == 0:
                # Create a temporary nRows and fnum in case we are splitting
                # up nearest neighbors into separate figures with stride
                _fnum = fnum + listx
                _nRows = min(nExtracted - listx, stride)
                px_shift = px
                df2.figure(fnum=_fnum, docla=True, doclf=True)
            printDBG('[viz] ' + info.replace('\n', ''))
            px_ = px - px_shift
            px = draw_feat_row(rchip, fx, kp, sift, _fnum, _nRows, nCols, px_,
                               prevsift=prevsift, aid=aid, info=info, type_=type_) + px_shift
            if prevsift is None or consecutive_distance_compare:
                prevsift = sift

        df2.adjust_subplots_safe(hspace=1)

    except Exception as ex:
        print('[viz] Error in show nearest descriptors')
        print(ex)
        raise
示例#11
0
def show_nearest_descriptors(ibs,
                             qaid,
                             qfx,
                             fnum=None,
                             stride=5,
                             qreq_=None,
                             **kwargs):
    r"""
    Args:
        ibs (ibeis.IBEISController): image analysis api
        qaid (int):  query annotation id
        qfx (int): query feature index
        fnum (int):  figure number
        stride (int):
        consecutive_distance_compare (bool):

    CommandLine:
        # Find a good match to inspect
        python -m ibeis.viz.interact.interact_matches --test-testdata_match_interact --show --db PZ_MTEST --qaid 3

        # Now inspect it
        python -m ibeis.viz.viz_nearest_descriptors --test-show_nearest_descriptors --show --db PZ_MTEST --qaid 3 --qfx 879
        python -m ibeis.viz.viz_nearest_descriptors --test-show_nearest_descriptors --show
        python -m ibeis.viz.viz_nearest_descriptors --test-show_nearest_descriptors --db PZ_MTEST --qaid 3 --qfx 879 --diskshow --save foo.png --dpi=256

    SeeAlso:
        plottool.viz_featrow
        ~/code/plottool/plottool/viz_featrow.py

    Example:
        >>> # DISABLE_DOCTEST
        >>> from ibeis.viz.viz_nearest_descriptors import *  # NOQA
        >>> import ibeis
        >>> # build test data
        >>> qreq_ = ibeis.testdata_qreq_()
        >>> ibs = ibeis.opendb('PZ_MTEST')
        >>> qaid = qreq_.qaids[0]
        >>> qfx = ut.get_argval('--qfx', type_=None, default=879)
        >>> fnum = None
        >>> stride = 5
        >>> # execute function
        >>> skip = False
        >>> result = show_nearest_descriptors(ibs, qaid, qfx, fnum, stride,
        >>>                                   draw_chip=True,
        >>>                                   draw_warped=True,
        >>>                                   draw_unwarped=False,
        >>>                                   draw_desc=False, qreq_=qreq_)
        >>> # verify results
        >>> print(result)
        >>> pt.show_if_requested()
    """
    import plottool as pt  # NOQA
    consecutive_distance_compare = True
    draw_chip = kwargs.get('draw_chip', False)
    draw_desc = kwargs.get('draw_desc', True)
    draw_warped = kwargs.get('draw_warped', True)
    draw_unwarped = kwargs.get('draw_unwarped', True)
    #skip = kwargs.get('skip', True)
    # Plots the nearest neighbors of a given feature (qaid, qfx)
    if fnum is None:
        fnum = df2.next_fnum()
    try:
        # Flann NN query
        (qfx, qfx2_daid, qfx2_dfx, qfx2_dist, K,
         Knorm) = get_annotfeat_nn_index(ibs, qaid, qfx, qreq_=qreq_)

        # Adds metadata to a feature match
        def get_extract_tuple(aid, fx, k=-1):
            rchip = ibs.get_annot_chips(aid)
            kp = ibs.get_annot_kpts(aid)[fx]
            sift = ibs.get_annot_vecs(aid)[fx]
            if not ut.get_argflag('--texknormplot'):
                aidstr = vh.get_aidstrs(aid)
                nidstr = vh.get_nidstrs(ibs.get_annot_nids(aid))
                id_str = ' ' + aidstr + ' ' + nidstr + ' fx=%r' % (fx, )
            else:
                id_str = nidstr = aidstr = ''
            info = ''
            if k == -1:
                if pt.is_texmode():
                    info = '\\vspace{1cm}'
                    info += 'Query $\\mathbf{d}_i$'
                    info += '\n\\_'
                    info += '\n\\_'
                else:
                    if len(id_str) > '':
                        info = 'Query: %s' % (id_str, )
                    else:
                        info = 'Query'
                type_ = 'Query'
            elif k < K:
                type_ = 'Match'
                if ut.get_argflag('--texknormplot') and pt.is_texmode():
                    #info = 'Match:\n$k=%r$, $\\frac{||\\mathbf{d}_i - \\mathbf{d}_j||}{Z}=%.3f$' % (k, qfx2_dist[0, k])
                    info = '\\vspace{1cm}'
                    info += 'Match: $\\mathbf{d}_{j_%r}$\n$\\textrm{dist}=%.3f$' % (
                        k, qfx2_dist[0, k])
                    info += '\n$s_{\\tt{LNBNN}}=%.3f$' % (
                        qfx2_dist[0, K + Knorm - 1] - qfx2_dist[0, k])
                else:
                    info = 'Match:%s\nk=%r, dist=%.3f' % (id_str, k,
                                                          qfx2_dist[0, k])
                    info += '\nLNBNN=%.3f' % (qfx2_dist[0, K + Knorm - 1] -
                                              qfx2_dist[0, k])
            elif k < Knorm + K:
                type_ = 'Norm'
                if ut.get_argflag('--texknormplot') and pt.is_texmode():
                    #info = 'Norm: $j_%r$\ndist=%.3f' % (id_str, k, qfx2_dist[0, k])
                    info = '\\vspace{1cm}'
                    info += 'Norm: $j_%r$\n$\\textrm{dist}=%.3f$' % (
                        k, qfx2_dist[0, k])
                    info += '\n\\_'
                else:
                    info = 'Norm: %s\n$k=%r$, dist=$%.3f$' % (id_str, k,
                                                              qfx2_dist[0, k])
            else:
                raise Exception('[viz] problem k=%r')
            return (rchip, kp, sift, fx, aid, info, type_)

        extracted_list = []
        # Remember the query sift feature
        extracted_list.append(get_extract_tuple(qaid, qfx, -1))
        origsift = extracted_list[0][2]
        skipped = 0
        for k in range(K + Knorm):
            #if qfx2_daid[0, k] == qaid and qfx2_dfx[0, k] == qfx:
            if qfx2_daid[0, k] == qaid:
                skipped += 1
                continue
            tup = get_extract_tuple(qfx2_daid[0, k], qfx2_dfx[0, k], k)
            extracted_list.append(tup)
        # Draw the _select_ith_match plot
        nRows = len(extracted_list)
        if stride is None:
            stride = nRows
        # Draw selected feature matches
        prevsift = None
        px = 0  # plot offset
        px_shift = 0  # plot stride shift
        nExtracted = len(extracted_list)
        featrow_kw = dict(
            draw_chip=draw_chip,
            draw_desc=draw_desc,
            draw_warped=draw_warped,
            draw_unwarped=draw_unwarped,
        )
        if ut.get_argflag('--texknormplot'):
            featrow_kw['ell_color'] = pt.ORANGE
            pass
        for listx, tup in enumerate(extracted_list):
            (rchip, kp, sift, fx, aid, info, type_) = tup
            if listx % stride == 0:
                # Create a temporary nRows and fnum in case we are splitting
                # up nearest neighbors into separate figures with stride
                _fnum = fnum + listx
                _nRows = min(nExtracted - listx, stride)
                px_shift = px
                df2.figure(fnum=_fnum, docla=True, doclf=True)
            px_ = px - px_shift
            px = draw_feat_row(rchip,
                               fx,
                               kp,
                               sift,
                               _fnum,
                               _nRows,
                               px=px_,
                               prevsift=prevsift,
                               origsift=origsift,
                               aid=aid,
                               info=info,
                               type_=type_,
                               **featrow_kw)

            px += px_shift
            if prevsift is None or consecutive_distance_compare:
                prevsift = sift

        df2.adjust_subplots_safe(hspace=.85,
                                 wspace=0,
                                 top=.95,
                                 bottom=.087,
                                 left=.05,
                                 right=.95)

    except Exception as ex:
        print('[viz] Error in show nearest descriptors')
        print(ex)
        raise
示例#12
0
def show_descriptors_match_distances(orgres2_distance,
                                     fnum=1,
                                     db_name='',
                                     **kwargs):
    disttype_list = orgres2_distance.itervalues().next().keys()
    orgtype_list = orgres2_distance.keys()
    (nRow, nCol) = len(orgtype_list), len(disttype_list)
    nColors = nRow * nCol
    color_list = df2.distinct_colors(nColors)
    df2.figure(fnum=fnum, docla=True, doclf=True)
    pnum_ = lambda px: (nRow, nCol, px + 1)
    plot_type = utool.get_arg('--plot-type', default='plot')

    # Remember min and max val for each distance type (l1, emd...)
    distkey2_min = {distkey: np.uint64(-1) for distkey in disttype_list}
    distkey2_max = {distkey: 0 for distkey in disttype_list}

    def _distplot(dists, color, label, distkey, plot_type=plot_type):
        data = sorted(dists)
        ax = df2.gca()
        min_ = distkey2_min[distkey]
        max_ = distkey2_max[distkey]
        if plot_type == 'plot':
            df2.plot(data, color=color, label=label, yscale='linear')
            #xticks = np.linspace(np.min(data), np.max(data), 3)
            #yticks = np.linspace(0, len(data), 5)
            #ax.set_xticks(xticks)
            #ax.set_yticks(yticks)
            ax.set_ylim(min_, max_)
            ax.set_xlim(0, len(dists))
            ax.set_ylabel('distance')
            ax.set_xlabel('matches indexes (sorted by distance)')
            df2.legend(loc='lower right')
        if plot_type == 'pdf':
            df2.plot_pdf(data, color=color, label=label)
            ax.set_ylabel('pr')
            ax.set_xlabel('distance')
            ax.set_xlim(min_, max_)
            df2.legend(loc='upper left')
        df2.dark_background(ax)
        df2.small_xticks(ax)
        df2.small_yticks(ax)

    px = 0
    for orgkey in orgtype_list:
        for distkey in disttype_list:
            dists = orgres2_distance[orgkey][distkey]
            if len(dists) == 0:
                continue
            min_ = dists.min()
            max_ = dists.max()
            distkey2_min[distkey] = min(distkey2_min[distkey], min_)
            distkey2_max[distkey] = max(distkey2_max[distkey], max_)

    for count, orgkey in enumerate(orgtype_list):
        for distkey in disttype_list:
            printDBG('[allres-viz] plotting: %r' % ((orgkey, distkey), ))
            dists = orgres2_distance[orgkey][distkey]
            df2.figure(fnum=fnum, pnum=pnum_(px))
            color = color_list[px]
            title = distkey + ' ' + orgkey
            label = 'P(%s | %s)' % (distkey, orgkey)
            _distplot(dists, color, label, distkey, **kwargs)
            if count == 0:
                ax = df2.gca()
                ax.set_title(distkey)
            px += 1

    subtitle = 'the matching distances between sift descriptors'
    title = '(sift) matching distances'
    if db_name != '':
        title = db_name + ' ' + title
    df2.set_figtitle(title, subtitle)
    df2.adjust_subplots_safe()
示例#13
0
def draw():
    df2.adjust_subplots_safe()
    fig_presenter.draw()