示例#1
0
def main():
    """
    NAME
       di_tilt.py

    DESCRIPTION
       rotates geographic coordinate dec, inc data to stratigraphic
       coordinates using the dip and dip direction (strike+90, dip if dip to right of strike)

    INPUT FORMAT
        declination inclination dip_direction  dip

    SYNTAX
       di_tilt.py [-h][-i][-f FILE] [< filename ]

    OPTIONS
        -h prints help message and quits
        -i for interactive data entry
        -f FILE command line entry of file name
        -F OFILE, specify output file, default is standard output


    OUTPUT:
        declination inclination
 """
    if '-h' in sys.argv:
        print main.__doc__
        sys.exit()
    if '-F' in sys.argv:
        ind = sys.argv.index('-F')
        ofile = sys.argv[ind + 1]
        out = open(ofile, 'w')
        print ofile, ' opened for output'
    else:
        ofile = ""
    if '-i' in sys.argv:  # interactive flag
        while 1:
            try:
                Dec = float(raw_input("Declination: <cntl-D> to quit "))
            except:
                print "\n Good-bye\n"
                sys.exit()
            Inc = float(raw_input("Inclination: "))
            Dip_dir = float(raw_input("Dip direction: "))
            Dip = float(raw_input("Dip: "))
            print '%7.1f %7.1f' % (pmag.dotilt(Dec, Inc, Dip_dir, Dip))
    elif '-f' in sys.argv:
        ind = sys.argv.index('-f')
        file = sys.argv[ind + 1]
        data = numpy.loadtxt(file)
    else:
        data = numpy.loadtxt(
            sys.stdin, dtype=numpy.float)  # read in the data from the datafile
    D, I = pmag.dotilt_V(data)
    for k in range(len(D)):
        if ofile == "":
            print '%7.1f %7.1f' % (D[k], I[k])
        else:
            out.write('%7.1f %7.1f\n' % (D[k], I[k]))
示例#2
0
def main():
    """
    NAME
       di_tilt.py

    DESCRIPTION
       rotates geographic coordinate dec, inc data to stratigraphic
       coordinates using the dip and dip direction (strike+90, dip if dip to right of strike)

    INPUT FORMAT
        declination inclination dip_direction  dip

    SYNTAX
       di_tilt.py [-h][-i][-f FILE] [< filename ]

    OPTIONS
        -h prints help message and quits
        -i for interactive data entry
        -f FILE command line entry of file name
        -F OFILE, specify output file, default is standard output


    OUTPUT:
        declination inclination
 """
    if "-h" in sys.argv:
        print main.__doc__
        sys.exit()
    if "-F" in sys.argv:
        ind = sys.argv.index("-F")
        ofile = sys.argv[ind + 1]
        out = open(ofile, "w")
        print ofile, " opened for output"
    else:
        ofile = ""
    if "-i" in sys.argv:  # interactive flag
        while 1:
            try:
                Dec = float(raw_input("Declination: <cntl-D> to quit "))
            except:
                print "\n Good-bye\n"
                sys.exit()
            Inc = float(raw_input("Inclination: "))
            Dip_dir = float(raw_input("Dip direction: "))
            Dip = float(raw_input("Dip: "))
            print "%7.1f %7.1f" % (pmag.dotilt(Dec, Inc, Dip_dir, Dip))
    elif "-f" in sys.argv:
        ind = sys.argv.index("-f")
        file = sys.argv[ind + 1]
        data = numpy.loadtxt(file)
    else:
        data = numpy.loadtxt(sys.stdin, dtype=numpy.float)  # read in the data from the datafile
    D, I = pmag.dotilt_V(data)
    for k in range(len(D)):
        if ofile == "":
            print "%7.1f %7.1f" % (D[k], I[k])
        else:
            out.write("%7.1f %7.1f\n" % (D[k], I[k]))
示例#3
0
def main():
    """
    NAME
        zeq_magic.py

    DESCRIPTION
        reads in magic_measurements formatted file, makes plots of remanence decay
        during demagnetization experiments.  Reads in prior interpretations saved in
        a pmag_specimens formatted file [and  allows re-interpretations of best-fit lines
        and planes and saves (revised or new) interpretations in a pmag_specimens file.
        interpretations are saved in the coordinate system used. Also allows judicious editting of
        measurements to eliminate "bad" measurements.  These are marked as such in the magic_measurements
        input file.  they are NOT deleted, just ignored. ] Bracketed part not yet implemented

    SYNTAX
        zeq_magic.py [command line options]

    OPTIONS
        -h prints help message and quits
        -f  MEASFILE: sets measurements format input file, default: measurements.txt
        -fsp SPECFILE: sets specimens format file with prior interpreations, default: specimens.txt
        -fsa SAMPFILE: sets samples format file sample=>site information, default: samples.txt
        -fsi SITEFILE: sets sites format file with site=>location informationprior interpreations, default: samples.txt
        -Fp PLTFILE: sets filename for saved plot, default is name_type.fmt (where type is zijd, eqarea or decay curve)
        -crd [s,g,t]: sets coordinate system,  g=geographic, t=tilt adjusted, default: specimen coordinate system
        -spc SPEC  plots single specimen SPEC, saves plot with specified format
              with optional -dir settings and quits
        -dir [L,P,F][beg][end]: sets calculation type for principal component analysis, default is none
             beg: starting step for PCA calculation
             end: ending step for PCA calculation
             [L,P,F]: calculation type for line, plane or fisher mean
             must be used with -spc option
        -fmt FMT: set format of saved plot [png,svg,jpg]
        -A:  suppresses averaging of  replicate measurements, default is to average
        -sav: saves all plots without review
    SCREEN OUTPUT:
        Specimen, N, a95, StepMin, StepMax, Dec, Inc, calculation type

    """
    # initialize some variables
    doave, e, b = 1, 0, 0  # average replicates, initial end and beginning step
    intlist = ['magn_moment', 'magn_volume', 'magn_mass', 'magnitude']
    plots, coord = 0, 's'
    noorient = 0
    version_num = pmag.get_version()
    verbose = pmagplotlib.verbose
    calculation_type, fmt = "", "svg"
    user, spec_keys, locname = "", [], ''
    geo, tilt, ask = 0, 0, 0
    PriorRecs = []  # empty list for prior interpretations
    backup = 0
    specimen = ""  # can skip everything and just plot one specimen with bounds e,b
    if '-h' in sys.argv:
        print(main.__doc__)
        sys.exit()
    dir_path = pmag.get_named_arg_from_sys("-WD", default_val=os.getcwd())
    meas_file = pmag.get_named_arg_from_sys("-f",
                                            default_val="measurements.txt")
    spec_file = pmag.get_named_arg_from_sys("-fsp",
                                            default_val="specimens.txt")
    samp_file = pmag.get_named_arg_from_sys("-fsa", default_val="samples.txt")
    site_file = pmag.get_named_arg_from_sys("-fsi", default_val="sites.txt")
    #meas_file = os.path.join(dir_path, meas_file)
    #spec_file = os.path.join(dir_path, spec_file)
    #samp_file = os.path.join(dir_path, samp_file)
    #site_file = os.path.join(dir_path, site_file)
    plot_file = pmag.get_named_arg_from_sys("-Fp", default_val="")
    crd = pmag.get_named_arg_from_sys("-crd", default_val="s")
    if crd == "s":
        coord = "-1"
    elif crd == "t":
        coord = "100"
    else:
        coord = "0"
    fmt = pmag.get_named_arg_from_sys("-fmt", "svg")
    specimen = pmag.get_named_arg_from_sys("-spc", default_val="")
    beg_pca, end_pca = "", ""
    if '-dir' in sys.argv:
        ind = sys.argv.index('-dir')
        direction_type = sys.argv[ind + 1]
        beg_pca = int(sys.argv[ind + 2])
        end_pca = int(sys.argv[ind + 3])
        if direction_type == 'L':
            calculation_type = 'DE-BFL'
        if direction_type == 'P':
            calculation_type = 'DE-BFP'
        if direction_type == 'F':
            calculation_type = 'DE-FM'
    if '-A' in sys.argv:
        doave = 0
    if '-sav' in sys.argv:
        plots, verbose = 1, 0
    #
    first_save = 1
    fnames = {
        'measurements': meas_file,
        'specimens': spec_file,
        'samples': samp_file,
        'sites': site_file
    }
    contribution = nb.Contribution(
        dir_path,
        custom_filenames=fnames,
        read_tables=['measurements', 'specimens', 'samples', 'sites'])
    #
    #   import  specimens

    specimen_cols = [
        'analysts', 'aniso_ftest', 'aniso_ftest12', 'aniso_ftest23', 'aniso_s',
        'aniso_s_mean', 'aniso_s_n_measurements', 'aniso_s_sigma',
        'aniso_s_unit', 'aniso_tilt_correction', 'aniso_type', 'aniso_v1',
        'aniso_v2', 'aniso_v3', 'citations', 'description', 'dir_alpha95',
        'dir_comp', 'dir_dec', 'dir_inc', 'dir_mad_free', 'dir_n_measurements',
        'dir_tilt_correction', 'experiments', 'geologic_classes',
        'geologic_types', 'hyst_bc', 'hyst_bcr', 'hyst_mr_moment',
        'hyst_ms_moment', 'int_abs', 'int_b', 'int_b_beta', 'int_b_sigma',
        'int_corr', 'int_dang', 'int_drats', 'int_f', 'int_fvds', 'int_gamma',
        'int_mad_free', 'int_md', 'int_n_measurements', 'int_n_ptrm', 'int_q',
        'int_rsc', 'int_treat_dc_field', 'lithologies', 'meas_step_max',
        'meas_step_min', 'meas_step_unit', 'method_codes', 'sample',
        'software_packages', 'specimen'
    ]
    if 'specimens' in contribution.tables:
        #        contribution.propagate_name_down('sample','measurements')
        spec_container = contribution.tables['specimens']
        prior_spec_data = spec_container.get_records_for_code(
            'LP-DIR', strict_match=False
        )  # look up all prior directional interpretations
#
#  tie sample names to measurement data
#
    else:
        spec_container, prior_spec_data = None, []

#
#   import samples  for orientation info
#
    if 'samples' in contribution.tables:
        #        contribution.propagate_name_down('site','measurements')
        contribution.propagate_cols(
            col_names=['azimuth', 'dip', 'orientation_flag'],
            target_df_name='measurements',
            source_df_name='samples')
#
# define figure numbers for equal area, zijderveld,
#  and intensity vs. demagnetiztion step respectively
#
    ZED = {}
    ZED['eqarea'], ZED['zijd'], ZED['demag'] = 1, 2, 3
    pmagplotlib.plot_init(ZED['eqarea'], 6, 6)
    pmagplotlib.plot_init(ZED['zijd'], 6, 6)
    pmagplotlib.plot_init(ZED['demag'], 6, 6)
    #    save_pca=0
    angle, direction_type, setangle = "", "", 0
    #   create measurement dataframe
    #
    meas_container = contribution.tables['measurements']
    meas_data = meas_container.df
    #
    meas_data = meas_data[meas_data['method_codes'].str.contains(
        'LT-NO|LT-AF-Z|LT-T-Z|LT-M-Z') == True]  # fish out steps for plotting
    meas_data = meas_data[meas_data['method_codes'].str.contains(
        'AN|ARM|LP-TRM|LP-PI-ARM') == False]  # strip out unwanted experiments
    intensity_types = [
        col_name for col_name in meas_data.columns if col_name in intlist
    ]
    # plot first intensity method found - normalized to initial value anyway -
    # doesn't matter which used
    int_key = intensity_types[0]
    # get all the non-null intensity records of the same type
    meas_data = meas_data[meas_data[int_key].notnull()]
    if 'flag' not in meas_data.columns:
        meas_data['flag'] = 'g'  # set the default flag to good
# need to treat LP-NO specially  for af data, treatment should be zero,
# otherwise 273.
    meas_data['treatment'] = meas_data['treat_ac_field'].where(
        cond=meas_data['treat_ac_field'] != '0', other=meas_data['treat_temp'])
    meas_data['ZI'] = 1  # initialize these to one
    meas_data['instrument_codes'] = ""  # initialize these to blank
    #   for unusual case of microwave power....
    if 'treat_mw_power' in meas_data.columns:
        meas_data.loc[
            meas_data.treat_mw_power != 0,
            'treatment'] = meas_data.treat_mw_power * meas_data.treat_mw_time
#
# get list of unique specimen names from measurement data
#
# this is a list of all the specimen names
    specimen_names = meas_data.specimen.unique()
    specimen_names = specimen_names.tolist()
    specimen_names.sort()
    #
    # set up new DataFrame for this sessions specimen interpretations
    #
    data_container = nb.MagicDataFrame(dtype='specimens',
                                       columns=specimen_cols)
    # this is for interpretations from this session
    current_spec_data = data_container.df
    locname = 'LookItUp'
    if specimen == "":
        k = 0
    else:
        k = specimen_names.index(specimen)
    # let's look at the data now
    while k < len(specimen_names):
        # set the current specimen for plotting
        this_specimen = specimen_names[k]
        if verbose and this_specimen != "":
            print(this_specimen, k + 1, 'out of ', len(specimen_names))
        if setangle == 0:
            angle = ""
        this_specimen_measurements = meas_data[
            meas_data['specimen'].str.contains(
                this_specimen) == True]  # fish out this specimen
        this_specimen_measurements = this_specimen_measurements[
            this_specimen_measurements['flag'].str.contains(
                'g') == True]  # fish out this specimen
        if len(this_specimen_measurements) != 0:  # if there are measurements
            #
            #    set up datablock [[treatment,dec, inc, int, direction_type],[....]]
            #
            #
            # figure out the method codes
            #
            units, methods, title = "", "", this_specimen
            # this is a list of all the specimen method codes`
            meas_meths = this_specimen_measurements.method_codes.unique()
            tr = pd.to_numeric(this_specimen_measurements.treatment).tolist()
            if set(tr) == set([0]):
                k += 1
                continue
            for m in meas_meths:
                if 'LT-AF-Z' in m:
                    units = 'T'  # units include tesla
                    tr[0] = 0
                if 'LT-T-Z' in m:
                    units = units + ":K"  # units include kelvin
                if 'LT-M-Z' in m:
                    units = units + ':J'  # units include joules
                    tr[0] = 0
                units = units.strip(':')  # strip off extra colons
                if 'LP-' in m:
                    methods = methods + ":" + m
            decs = pd.to_numeric(this_specimen_measurements.dir_dec).tolist()
            incs = pd.to_numeric(this_specimen_measurements.dir_inc).tolist()
            #
            #    fix the coordinate system
            #
            if coord != '-1':  # need to transform coordinates to geographic

                azimuths = pd.to_numeric(this_specimen_measurements.azimuth
                                         ).tolist()  # get the azimuths
                # get the azimuths
                dips = pd.to_numeric(this_specimen_measurements.dip).tolist()
                dirs = [decs, incs, azimuths, dips]
                # this transposes the columns and rows of the list of lists
                dirs_geo = np.array(list(map(list, list(zip(*dirs)))))
                decs, incs = pmag.dogeo_V(dirs_geo)
                if coord == '100':  # need to do tilt correction too
                    bed_dip_dirs = pd.to_numeric(
                        this_specimen_measurements.bed_dip_dir).tolist(
                        )  # get the azimuths
                    bed_dips = pd.to_numeric(this_specimen_measurements.bed_dip
                                             ).tolist()  # get the azimuths
                    dirs = [decs, incs, bed_dip_dirs, bed_dips]
                    # this transposes the columns and rows of the list of lists
                    dirs_tilt = np.array(list(map(list, list(zip(*dirs)))))
                    decs, incs = pmag.dotilt_V(dirs_tilt)
                    title = title + '_t'
                else:
                    title = title + '_g'
            if angle == "":
                angle = decs[0]
            ints = pd.to_numeric(this_specimen_measurements[int_key]).tolist()
            ZI = this_specimen_measurements.ZI.tolist()
            flags = this_specimen_measurements.flag.tolist()
            codes = this_specimen_measurements.instrument_codes.tolist()
            datalist = [tr, decs, incs, ints, ZI, flags, codes]
            # this transposes the columns and rows of the list of lists
            datablock = list(map(list, list(zip(*datalist))))
            pmagplotlib.plotZED(ZED, datablock, angle, title, units)
            if verbose:
                pmagplotlib.drawFIGS(ZED)
#
#     collect info for current_specimen_interpretation dictionary
#
            if beg_pca == "" and len(prior_spec_data) != 0:
                #
                #     find prior interpretation
                #
                prior_specimen_interpretations = prior_spec_data[
                    prior_spec_data['specimen'].str.contains(
                        this_specimen) == True]
                beg_pcas = pd.to_numeric(prior_specimen_interpretations.
                                         meas_step_min.values).tolist()
                end_pcas = pd.to_numeric(prior_specimen_interpretations.
                                         meas_step_max.values).tolist()
                spec_methods = prior_specimen_interpretations.method_codes.tolist(
                )
                # step through all prior interpretations and plot them
                for ind in range(len(beg_pcas)):
                    spec_meths = spec_methods[ind].split(':')
                    for m in spec_meths:
                        if 'DE-BFL' in m:
                            calculation_type = 'DE-BFL'  # best fit line
                        if 'DE-BFP' in m:
                            calculation_type = 'DE-BFP'  # best fit plane
                        if 'DE-FM' in m:
                            calculation_type = 'DE-FM'  # fisher mean
                        if 'DE-BFL-A' in m:
                            calculation_type = 'DE-BFL-A'  # anchored best fit line
                    start, end = tr.index(beg_pcas[ind]), tr.index(
                        end_pcas[ind]
                    )  # getting the starting and ending points
                    # calculate direction/plane
                    mpars = pmag.domean(datablock, start, end,
                                        calculation_type)
                    if mpars["specimen_direction_type"] != "Error":
                        # put it on the plot
                        pmagplotlib.plotDir(ZED, mpars, datablock, angle)
                        if verbose:
                            pmagplotlib.drawFIGS(ZED)
            else:
                start, end = int(beg_pca), int(end_pca)
                # calculate direction/plane
                mpars = pmag.domean(datablock, start, end, calculation_type)
                if mpars["specimen_direction_type"] != "Error":
                    # put it on the plot
                    pmagplotlib.plotDir(ZED, mpars, datablock, angle)
                    if verbose:
                        pmagplotlib.drawFIGS(ZED)
            if plots == 1 or specimen != "":
                if plot_file == "":
                    basename = title
                else:
                    basename = plot_file
                files = {}
                for key in list(ZED.keys()):
                    files[key] = basename + '_' + key + '.' + fmt
                pmagplotlib.saveP(ZED, files)
                if specimen != "":
                    sys.exit()
            if verbose:
                recnum = 0
                for plotrec in datablock:
                    if units == 'T':
                        print('%s: %i  %7.1f %s  %8.3e %7.1f %7.1f %s' %
                              (plotrec[5], recnum, plotrec[0] * 1e3, " mT",
                               plotrec[3], plotrec[1], plotrec[2], plotrec[6]))
                    if units == "K":
                        print('%s: %i  %7.1f %s  %8.3e %7.1f %7.1f %s' %
                              (plotrec[5], recnum, plotrec[0] - 273, ' C',
                               plotrec[3], plotrec[1], plotrec[2], plotrec[6]))
                    if units == "J":
                        print('%s: %i  %7.1f %s  %8.3e %7.1f %7.1f %s' %
                              (plotrec[5], recnum, plotrec[0], ' J',
                               plotrec[3], plotrec[1], plotrec[2], plotrec[6]))
                    if 'K' in units and 'T' in units:
                        if plotrec[0] >= 1.:
                            print('%s: %i  %7.1f %s  %8.3e %7.1f %7.1f %s' %
                                  (plotrec[5], recnum, plotrec[0] - 273, ' C',
                                   plotrec[3], plotrec[1], plotrec[2],
                                   plotrec[6]))
                        if plotrec[0] < 1.:
                            print('%s: %i  %7.1f %s  %8.3e %7.1f %7.1f %s' %
                                  (plotrec[5], recnum, plotrec[0] * 1e3, " mT",
                                   plotrec[3], plotrec[1], plotrec[2],
                                   plotrec[6]))
                    recnum += 1
            # we have a current interpretation
            elif mpars["specimen_direction_type"] != "Error":
                #
                # create a new specimen record for the interpreation for this
                # specimen
                this_specimen_interpretation = {
                    col: ""
                    for col in specimen_cols
                }
                #               this_specimen_interpretation["analysts"]=user
                this_specimen_interpretation['software_packages'] = version_num
                this_specimen_interpretation['specimen'] = this_specimen
                this_specimen_interpretation["method_codes"] = calculation_type
                this_specimen_interpretation["meas_step_unit"] = units
                this_specimen_interpretation["meas_step_min"] = tr[start]
                this_specimen_interpretation["meas_step_max"] = tr[end]
                this_specimen_interpretation["dir_dec"] = '%7.1f' % (
                    mpars['specimen_dec'])
                this_specimen_interpretation["dir_inc"] = '%7.1f' % (
                    mpars['specimen_inc'])
                this_specimen_interpretation["dir_dang"] = '%7.1f' % (
                    mpars['specimen_dang'])
                this_specimen_interpretation["dir_n_measurements"] = '%i' % (
                    mpars['specimen_n'])
                this_specimen_interpretation["dir_tilt_correction"] = coord
                methods = methods.replace(" ", "")
                if "T" in units:
                    methods = methods + ":LP-DIR-AF"
                if "K" in units:
                    methods = methods + ":LP-DIR-T"
                if "J" in units:
                    methods = methods + ":LP-DIR-M"
                this_specimen_interpretation["method_codes"] = methods.strip(
                    ':')
                this_specimen_interpretation[
                    "experiments"] = this_specimen_measurements.experiment.unique(
                    )[0]
                #
                #   print some stuff
                #
                if calculation_type != 'DE-FM':
                    this_specimen_interpretation["dir_mad_free"] = '%7.1f' % (
                        mpars['specimen_mad'])
                    this_specimen_interpretation["dir_alpha95"] = ''
                    if verbose:
                        if units == 'K':
                            print(
                                '%s %i %7.1f %7.1f %7.1f %7.1f %7.1f %7.1f %s \n'
                                %
                                (this_specimen_interpretation["specimen"],
                                 int(this_specimen_interpretation[
                                     "dir_n_measurements"]),
                                 float(this_specimen_interpretation[
                                     "dir_mad_free"]),
                                 float(
                                     this_specimen_interpretation["dir_dang"]),
                                 float(this_specimen_interpretation[
                                     "meas_step_min"]) - 273,
                                 float(this_specimen_interpretation[
                                     "meas_step_max"]) - 273,
                                 float(
                                     this_specimen_interpretation["dir_dec"]),
                                 float(
                                     this_specimen_interpretation["dir_inc"]),
                                 calculation_type))
                        elif units == 'T':
                            print(
                                '%s %i %7.1f %7.1f %7.1f %7.1f %7.1f %7.1f %s \n'
                                %
                                (this_specimen_interpretation["specimen"],
                                 int(this_specimen_interpretation[
                                     "dir_n_measurements"]),
                                 float(this_specimen_interpretation[
                                     "dir_mad_free"]),
                                 float(
                                     this_specimen_interpretation["dir_dang"]),
                                 float(this_specimen_interpretation[
                                     "meas_step_min"]) * 1e3,
                                 float(this_specimen_interpretation[
                                     "meas_step_max"]) * 1e3,
                                 float(
                                     this_specimen_interpretation["dir_dec"]),
                                 float(
                                     this_specimen_interpretation["dir_inc"]),
                                 calculation_type))
                        elif 'T' in units and 'K' in units:
                            if float(this_specimen_interpretation[
                                    'meas_step_min']) < 1.0:
                                min = float(this_specimen_interpretation[
                                    'meas_step_min']) * 1e3
                            else:
                                min = float(this_specimen_interpretation[
                                    'meas_step_min']) - 273
                            if float(this_specimen_interpretation[
                                    'meas_step_max']) < 1.0:
                                max = float(this_specimen_interpretation[
                                    'meas_step_max']) * 1e3
                            else:
                                max = float(this_specimen_interpretation[
                                    'meas_step_max']) - 273
                            print(
                                '%s %i %7.1f %i %i %7.1f %7.1f %7.1f %s \n' %
                                (this_specimen_interpretation["specimen"],
                                 int(this_specimen_interpretation[
                                     "dir_n_measurements"]),
                                 float(this_specimen_interpretation[
                                     "dir_mad_free"]),
                                 float(
                                     this_specimen_interpretation["dir_dang"]),
                                 min, max,
                                 float(
                                     this_specimen_interpretation["dir_dec"]),
                                 float(
                                     this_specimen_interpretation["dir_inc"]),
                                 calculation_type))
                        else:
                            print(
                                '%s %i %7.1f %7.1f %7.1f %7.1f %7.1f %7.1f %s \n'
                                %
                                (this_specimen_interpretation["specimen"],
                                 int(this_specimen_interpretation[
                                     "dir_n_measurements"]),
                                 float(this_specimen_interpretation[
                                     "dir_mad_free"]),
                                 float(
                                     this_specimen_interpretation["dir_dang"]),
                                 float(this_specimen_interpretation[
                                     "meas_step_min"]),
                                 float(this_specimen_interpretation[
                                     "meas_step_max"]),
                                 float(
                                     this_specimen_interpretation["dir_dec"]),
                                 float(
                                     this_specimen_interpretation["dir_inc"]),
                                 calculation_type))
                else:
                    this_specimen_interpretation["dir_alpha95"] = '%7.1f' % (
                        mpars['specimen_alpha95'])
                    this_specimen_interpretation["dir_mad_free"] = ''
                    if verbose:
                        if 'K' in units:
                            print(
                                '%s %i %7.1f %7.1f %7.1f %7.1f %7.1f %7.1f %s \n'
                                %
                                (this_specimen_interpretation["specimen"],
                                 int(this_specimen_interpretation[
                                     "dir_n_measurments"]),
                                 float(this_specimen_interpretation[
                                     "dir_mad_free"]),
                                 float(
                                     this_specimen_interpretation["dir_dang"]),
                                 float(this_specimen_interpretation[
                                     "meas_step_min"]) - 273,
                                 float(this_specimen_interpretation[
                                     "meas_step_max"]) - 273,
                                 float(
                                     this_specimen_interpretation["dir_dec"]),
                                 float(
                                     this_specimen_interpretation["dir_inc"]),
                                 calculation_type))
                        elif 'T' in units:
                            print(
                                '%s %i %7.1f %7.1f %7.1f %7.1f %7.1f %7.1f %s \n'
                                %
                                (this_specimen_interpretation["specimen"],
                                 int(this_specimen_interpretation[
                                     "dir_n_measurements"]),
                                 float(this_specimen_interpretation[
                                     "dir_alpha95"]),
                                 float(
                                     this_specimen_interpretation["dir_dang"]),
                                 float(this_specimen_interpretation[
                                     "meas_step_min"]) * 1e3,
                                 float(this_specimen_interpretation[
                                     "meas_step_max"]) * 1e3,
                                 float(
                                     this_specimen_interpretation["dir_dec"]),
                                 float(
                                     this_specimen_interpretation["dir_inc"]),
                                 calculation_type))
                        elif 'T' in units and 'K' in units:
                            if float(this_specimen_interpretation[
                                    'meas_step_min']) < 1.0:
                                min = float(this_specimen_interpretation[
                                    'meas_step_min']) * 1e3
                            else:
                                min = float(this_specimen_interpretation[
                                    'meas_step_min']) - 273
                            if float(this_specimen_interpretation[
                                    'meas_step_max']) < 1.0:
                                max = float(this_specimen_interpretation[
                                    'meas_step_max']) * 1e3
                            else:
                                max = float(this_specimen_interpretation[
                                    'meas_step_max']) - 273
                            print('%s %i %7.1f %i %i %7.1f %7.1f %s \n' % (
                                this_specimen_interpretation["specimen"],
                                int(this_specimen_interpretation[
                                    "dir_n_measurements"]),
                                float(
                                    this_specimen_interpretation["dir_alpha95"]
                                ), min, max,
                                float(this_specimen_interpretation["dir_dec"]),
                                float(this_specimen_interpretation["dir_inc"]),
                                calculation_type))
                        else:
                            print(
                                '%s %i %7.1f %7.1f %7.1f %7.1f %7.1f %s \n' %
                                (this_specimen_interpretation["specimen"],
                                 int(this_specimen_interpretation[
                                     "dir_n_measurements"]),
                                 float(this_specimen_interpretation[
                                     "dir_alpha95"]),
                                 float(this_specimen_interpretation[
                                     "meas_step_min"]),
                                 float(this_specimen_interpretation[
                                     "meas_step_max"]),
                                 float(
                                     this_specimen_interpretation["dir_dec"]),
                                 float(
                                     this_specimen_interpretation["dir_inc"]),
                                 calculation_type))
                if verbose:
                    saveit = input("Save this interpretation? [y]/n \n")
#   START HERE
#
#         if len(current_spec_data)==0: # no interpretations yet for this session
#             print "no current interpretation"
#             beg_pca,end_pca="",""
#             calculation_type=""
# get the ones that meet the current coordinate system
        else:
            print("no data")
        if verbose:
            input('Ready for next specimen  ')
        k += 1
示例#4
0
def main():
    """
    NAME
       foldtest.py

    DESCRIPTION
       does a fold test (Tauxe, 2010) on data

    INPUT FORMAT
       dec inc dip_direction dip

    SYNTAX
       foldtest.py [command line options]

    OPTIONS
        -h prints help message and quits
        -f FILE file with input data
        -F FILE for confidence bounds on fold test
        -u ANGLE (circular standard deviation) for uncertainty on bedding poles
        -b MIN MAX bounds for quick search of percent untilting [default is -10 to 150%]
        -n NB  number of bootstrap samples [default is 1000]
        -fmt FMT, specify format - default is svg
        -sav  save figures and quit
    INPUT FILE
    Dec Inc Dip_Direction Dip  in space delimited file

    OUTPUT PLOTS
        Geographic: is an equal area projection of the input data in
                    original coordinates
        Stratigraphic: is an equal area projection of the input data in
                    tilt adjusted coordinates
        % Untilting: The dashed (red) curves are representative plots of
                    maximum eigenvalue (tau_1) as a function of untilting
                    The solid line is the cumulative distribution of the
                    % Untilting required to maximize tau for all the
                    bootstrapped data sets.  The dashed vertical lines
                    are 95% confidence bounds on the % untilting that yields
                   the most clustered result (maximum tau_1).
        Command line: prints out the bootstrapped iterations and
                   finally the confidence bounds on optimum untilting.
        If the 95% conf bounds include 0, then a post-tilt magnetization is indicated
        If the 95% conf bounds include 100, then a pre-tilt magnetization is indicated
        If the 95% conf bounds exclude both 0 and 100, syn-tilt magnetization is
                possible as is vertical axis rotation or other pathologies
        Geographic: is an equal area projection of the input data in

    OPTIONAL OUTPUT FILE:
       The output file has the % untilting within the 95% confidence bounds
nd the number of bootstrap samples
    """
    kappa=0
    fmt,plot='svg',0
    nb=1000 # number of bootstraps
    min,max=-10,150
    if '-h' in sys.argv: # check if help is needed
        print(main.__doc__)
        sys.exit() # graceful quit
    if '-F' in sys.argv:
        ind=sys.argv.index('-F')
        outfile=open(sys.argv[ind+1],'w')
    else:
        outfile=""
    if '-f' in sys.argv:
        ind=sys.argv.index('-f')
        file=sys.argv[ind+1]
        DIDDs=numpy.loadtxt(file)
    else:
        print(main.__doc__)
        sys.exit()
    if '-fmt' in sys.argv:
        ind=sys.argv.index('-fmt')
        fmt=sys.argv[ind+1]
    if '-sav' in sys.argv:plot=1
    if '-b' in sys.argv:
        ind=sys.argv.index('-b')
        min=int(sys.argv[ind+1])
        max=int(sys.argv[ind+2])
    if '-n' in sys.argv:
        ind=sys.argv.index('-n')
        nb=int(sys.argv[ind+1])
    if '-u' in sys.argv:
        ind=sys.argv.index('-u')
        csd=float(sys.argv[ind+1])
        kappa=(81. / csd)**2
    #
    # get to work
    #
    PLTS={'geo':1,'strat':2,'taus':3} # make plot dictionary
    pmagplotlib.plot_init(PLTS['geo'],5,5)
    pmagplotlib.plot_init(PLTS['strat'],5,5)
    pmagplotlib.plot_init(PLTS['taus'],5,5)
    pmagplotlib.plot_eq(PLTS['geo'],DIDDs,'Geographic')
    D,I=pmag.dotilt_V(DIDDs)
    TCs=numpy.array([D,I]).transpose()
    pmagplotlib.plot_eq(PLTS['strat'],TCs,'Stratigraphic')
    if not set_env.IS_WIN:
        if plot==0:pmagplotlib.draw_figs(PLTS)
    Percs=list(range(min,max))
    Cdf,Untilt=[],[]
    pylab.figure(num=PLTS['taus'])
    print('doing ',nb,' iterations...please be patient.....')
    for n in range(nb): # do bootstrap data sets - plot first 25 as dashed red line
            if n%50==0:print(n)
            Taus=[] # set up lists for taus
            PDs=pmag.pseudo(DIDDs)
            if kappa!=0:
                for k in range(len(PDs)):
                    d,i=pmag.fshdev(kappa)
                    dipdir,dip=pmag.dodirot(d,i,PDs[k][2],PDs[k][3])
                    PDs[k][2]=dipdir
                    PDs[k][3]=dip
            for perc in Percs:
                tilt=numpy.array([1.,1.,1.,0.01*perc])
                D,I=pmag.dotilt_V(PDs*tilt)
                TCs=numpy.array([D,I]).transpose()
                ppars=pmag.doprinc(TCs) # get principal directions
                Taus.append(ppars['tau1'])
            if n<25:pylab.plot(Percs,Taus,'r--')
            Untilt.append(Percs[Taus.index(numpy.max(Taus))]) # tilt that gives maximum tau
            Cdf.append(float(n) / float(nb))
    pylab.plot(Percs,Taus,'k')
    pylab.xlabel('% Untilting')
    pylab.ylabel('tau_1 (red), CDF (green)')
    Untilt.sort() # now for CDF of tilt of maximum tau
    pylab.plot(Untilt,Cdf,'g')
    lower=int(.025*nb)
    upper=int(.975*nb)
    pylab.axvline(x=Untilt[lower],ymin=0,ymax=1,linewidth=1,linestyle='--')
    pylab.axvline(x=Untilt[upper],ymin=0,ymax=1,linewidth=1,linestyle='--')
    tit= '%i - %i %s'%(Untilt[lower],Untilt[upper],'Percent Unfolding')
    print(tit)
    print('range of all bootstrap samples: ', Untilt[0], ' - ', Untilt[-1])
    pylab.title(tit)
    outstring= '%i - %i; %i\n'%(Untilt[lower],Untilt[upper],nb)
    if outfile!="":outfile.write(outstring)
    files={}
    for key in list(PLTS.keys()):
        files[key]=('foldtest_'+'%s'%(key.strip()[:2])+'.'+fmt)
    if plot==0:
        pmagplotlib.draw_figs(PLTS)
        ans= input('S[a]ve all figures, <Return> to quit   ')
        if ans!='a':
            print("Good bye")
            sys.exit()
    pmagplotlib.save_plots(PLTS,files)
示例#5
0
def main():
    """
    NAME
       foldtest_magic.py

    DESCRIPTION
       does a fold test (Tauxe, 2010) on data

    INPUT FORMAT
       pmag_specimens format file, er_samples.txt format file (for bedding)

    SYNTAX
       foldtest_magic.py [command line options]

    OPTIONS
        -h prints help message and quits
        -f sites  formatted file [default for 3.0 is sites.txt, for 2.5, pmag_sites.txt]
        -fsa samples  formatted file
        -fsi sites  formatted file
        -exc use criteria to set acceptance criteria (supported only for data model 3)
        -n NB, set number of bootstraps, default is 1000
        -b MIN, MAX, set bounds for untilting, default is -10, 150
        -fmt FMT, specify format - default is svg
        -sav saves plots and quits
        -DM NUM MagIC data model number (2 or 3, default 3)

    OUTPUT
        Geographic: is an equal area projection of the input data in
                    original coordinates
        Stratigraphic: is an equal area projection of the input data in
                    tilt adjusted coordinates
        % Untilting: The dashed (red) curves are representative plots of
                    maximum eigenvalue (tau_1) as a function of untilting
                    The solid line is the cumulative distribution of the
                    % Untilting required to maximize tau for all the
                    bootstrapped data sets.  The dashed vertical lines
                    are 95% confidence bounds on the % untilting that yields
                   the most clustered result (maximum tau_1).
        Command line: prints out the bootstrapped iterations and
                   finally the confidence bounds on optimum untilting.
        If the 95% conf bounds include 0, then a pre-tilt magnetization is indicated
        If the 95% conf bounds include 100, then a post-tilt magnetization is indicated
        If the 95% conf bounds exclude both 0 and 100, syn-tilt magnetization is
                possible as is vertical axis rotation or other pathologies

    """
    if '-h' in sys.argv:  # check if help is needed
        print(main.__doc__)
        sys.exit()  # graceful quit

    kappa = 0

    dir_path = pmag.get_named_arg("-WD", ".")
    nboot = int(float(pmag.get_named_arg("-n", 1000)))     # number of bootstraps
    fmt = pmag.get_named_arg("-fmt", "svg")
    data_model_num = int(float(pmag.get_named_arg("-DM", 3)))
    if data_model_num == 3:
        infile = pmag.get_named_arg("-f", 'sites.txt')
        orfile = 'samples.txt'
        site_col = 'site'
        dec_col = 'dir_dec'
        inc_col = 'dir_inc'
        tilt_col = 'dir_tilt_correction'
        dipkey, azkey = 'bed_dip', 'bed_dip_direction'
        crit_col = 'criterion'
        critfile = 'criteria.txt'
    else:
        infile = pmag.get_named_arg("-f", 'pmag_sites.txt')
        orfile = 'er_samples.txt'
        site_col = 'er_site_name'
        dec_col = 'site_dec'
        inc_col = 'site_inc'
        tilt_col = 'site_tilt_correction'
        dipkey, azkey = 'sample_bed_dip', 'sample_bed_dip_direction'
        crit_col = 'pmag_criteria_code'
        critfile = 'pmag_criteria.txt'
    if '-sav' in sys.argv:
        plot = 1
    else:
        plot = 0
    if '-b' in sys.argv:
        ind = sys.argv.index('-b')
        untilt_min = int(sys.argv[ind+1])
        untilt_max = int(sys.argv[ind+2])
    else:
        untilt_min, untilt_max = -10, 150
    if '-fsa' in sys.argv:
        orfile = pmag.get_named_arg("-fsa", "")
    elif '-fsi' in sys.argv:
        orfile = pmag.get_named_arg("-fsi", "")
        if data_model_num == 3:
            dipkey, azkey = 'bed_dip', 'bed_dip_direction'
        else:
            dipkey, azkey = 'site_bed_dip', 'site_bed_dip_direction'
    else:
        if data_model_num == 3:
            orfile = 'sites.txt'
        else:
            orfile = 'pmag_sites.txt'
    orfile = pmag.resolve_file_name(orfile, dir_path)
    infile = pmag.resolve_file_name(infile, dir_path)
    critfile = pmag.resolve_file_name(critfile, dir_path)
    df = pd.read_csv(infile, sep='\t', header=1)
    # keep only records with tilt_col
    data = df.copy()
    data = data[data[tilt_col].notnull()]
    data = data.where(data.notnull(), "")
    # turn into pmag data list
    data = list(data.T.apply(dict))
    # get orientation data
    if data_model_num == 3:
        # often orientation will be in infile (sites table)
        if os.path.split(orfile)[1] == os.path.split(infile)[1]:
            ordata = df[df[azkey].notnull()]
            ordata = ordata[ordata[dipkey].notnull()]
            ordata = list(ordata.T.apply(dict))
        # sometimes orientation might be in a sample file instead
        else:
            ordata = pd.read_csv(orfile, sep='\t', header=1)
            ordata = list(ordata.T.apply(dict))
    else:
        ordata, file_type = pmag.magic_read(orfile)

    if '-exc' in sys.argv:
        crits, file_type = pmag.magic_read(critfile)
        SiteCrits = []
        for crit in crits:
            if crit[crit_col] == "DE-SITE":
                SiteCrits.append(crit)
                #break

# get to work
#
    PLTS = {'geo': 1, 'strat': 2, 'taus': 3}  # make plot dictionary
    if not set_env.IS_WIN:
        pmagplotlib.plot_init(PLTS['geo'], 5, 5)
        pmagplotlib.plot_init(PLTS['strat'], 5, 5)
        pmagplotlib.plot_init(PLTS['taus'], 5, 5)
    if data_model_num == 2:
        GEOrecs = pmag.get_dictitem(data, tilt_col, '0', 'T')
    else:
        GEOrecs = data
    if len(GEOrecs) > 0:  # have some geographic data
        num_dropped = 0
        DIDDs = []  # set up list for dec inc  dip_direction, dip
        for rec in GEOrecs:   # parse data
            dip, dip_dir = 0, -1
            Dec = float(rec[dec_col])
            Inc = float(rec[inc_col])
            orecs = pmag.get_dictitem(
                ordata, site_col, rec[site_col], 'T')
            if len(orecs) > 0:
                if orecs[0][azkey] != "":
                    dip_dir = float(orecs[0][azkey])
                if orecs[0][dipkey] != "":
                    dip = float(orecs[0][dipkey])
            if dip != 0 and dip_dir != -1:
                if '-exc' in sys.argv:
                    keep = 1
                    for site_crit in SiteCrits:
                        crit_name = site_crit['table_column'].split('.')[1]
                        if crit_name and crit_name in rec.keys() and rec[crit_name]:
                            # get the correct operation (<, >=, =, etc.)
                            op = OPS[site_crit['criterion_operation']]
                            # then make sure the site record passes
                            if op(float(rec[crit_name]), float(site_crit['criterion_value'])):
                                keep = 0

                    if keep == 1:
                        DIDDs.append([Dec, Inc, dip_dir, dip])
                    else:
                        num_dropped += 1
                else:
                    DIDDs.append([Dec, Inc, dip_dir, dip])
        if num_dropped:
            print("-W- Dropped {} records because each failed one or more criteria".format(num_dropped))
    else:
        print('no geographic directional data found')
        sys.exit()

    pmagplotlib.plot_eq(PLTS['geo'], DIDDs, 'Geographic')
    data = np.array(DIDDs)
    D, I = pmag.dotilt_V(data)
    TCs = np.array([D, I]).transpose()
    pmagplotlib.plot_eq(PLTS['strat'], TCs, 'Stratigraphic')
    if plot == 0:
        pmagplotlib.draw_figs(PLTS)
    Percs = list(range(untilt_min, untilt_max))
    Cdf, Untilt = [], []
    plt.figure(num=PLTS['taus'])
    print('doing ', nboot, ' iterations...please be patient.....')
    for n in range(nboot):  # do bootstrap data sets - plot first 25 as dashed red line
        if n % 50 == 0:
            print(n)
        Taus = []  # set up lists for taus
        PDs = pmag.pseudo(DIDDs)
        if kappa != 0:
            for k in range(len(PDs)):
                d, i = pmag.fshdev(kappa)
                dipdir, dip = pmag.dodirot(d, i, PDs[k][2], PDs[k][3])
                PDs[k][2] = dipdir
                PDs[k][3] = dip
        for perc in Percs:
            tilt = np.array([1., 1., 1., 0.01*perc])
            D, I = pmag.dotilt_V(PDs*tilt)
            TCs = np.array([D, I]).transpose()
            ppars = pmag.doprinc(TCs)  # get principal directions
            Taus.append(ppars['tau1'])
        if n < 25:
            plt.plot(Percs, Taus, 'r--')
        # tilt that gives maximum tau
        Untilt.append(Percs[Taus.index(np.max(Taus))])
        Cdf.append(float(n) / float(nboot))
    plt.plot(Percs, Taus, 'k')
    plt.xlabel('% Untilting')
    plt.ylabel('tau_1 (red), CDF (green)')
    Untilt.sort()  # now for CDF of tilt of maximum tau
    plt.plot(Untilt, Cdf, 'g')
    lower = int(.025*nboot)
    upper = int(.975*nboot)
    plt.axvline(x=Untilt[lower], ymin=0, ymax=1, linewidth=1, linestyle='--')
    plt.axvline(x=Untilt[upper], ymin=0, ymax=1, linewidth=1, linestyle='--')
    tit = '%i - %i %s' % (Untilt[lower], Untilt[upper], 'Percent Unfolding')
    print(tit)
    plt.title(tit)
    if plot == 0:
        pmagplotlib.draw_figs(PLTS)
        ans = input('S[a]ve all figures, <Return> to quit  \n ')
        if ans != 'a':
            print("Good bye")
            sys.exit()
    files = {}
    for key in list(PLTS.keys()):
        files[key] = ('foldtest_'+'%s' % (key.strip()[:2])+'.'+fmt)
    pmagplotlib.save_plots(PLTS, files)
示例#6
0
def main():
    """
    NAME
        di_rot.py

    DESCRIPTION
        rotates set of directions to new coordinate system

    SYNTAX
        di_rot.py [command line options]

    OPTIONS
        -h prints help message and quits
        -f specify input file, default is standard input
        -F specify output file, default is standard output
        -D D specify  Dec of new coordinate system, default is 0
        -I I specify  Inc of new coordinate system, default is 90
    INTPUT/OUTPUT
        dec  inc   [space delimited]  


    """
    D,I=0.,90.
    outfile=""
    infile=""
    if '-h' in sys.argv:
        print main.__doc__
        sys.exit()
    if '-f' in sys.argv:
        ind=sys.argv.index('-f')
        infile=sys.argv[ind+1]
        data=numpy.loadtxt(infile)
    else:
        data=numpy.loadtxt(sys.stdin,dtype=numpy.float)
    if '-F' in sys.argv:
        ind=sys.argv.index('-F')
        outfile=sys.argv[ind+1]
        out=open(outfile,'w')
    if '-D' in sys.argv:
        ind=sys.argv.index('-D')
        D=float(sys.argv[ind+1])
    if '-I' in sys.argv:
        ind=sys.argv.index('-I')
        I=float(sys.argv[ind+1])
    if len(data.shape)>1: # 2-D array
        N=data.shape[0] 
        DipDir,Dip=numpy.ones(N,dtype=numpy.float).transpose()*(D-180.),numpy.ones(N,dtype=numpy.float).transpose()*(90.-I)
        data=data.transpose()
        data=numpy.array([data[0],data[1],DipDir ,Dip]).transpose()
        drot,irot=pmag.dotilt_V(data)
        drot=(drot-180.)%360.  # 
        for k in range(N): 
             if outfile=="":
                print '%7.1f %7.1f ' % (drot[k],irot[k])
             else:
                out.write('%7.1f %7.1f\n' % (drot[k],irot[k]))
    else: 
        d,i=pmag.dotilt(data[0],data[1],(D-180.),90.-I)
        if outfile=="":
            print '%7.1f %7.1f ' % ((d-180.)%360.,i)
        else:
            out.write('%7.1f %7.1f\n' % ((d-180.)%360.,i))
示例#7
0
def main():
    """
    NAME
       foldtest.py

    DESCRIPTION
       does a fold test (Tauxe, 2010) on data

    INPUT FORMAT
       dec inc dip_direction dip

    SYNTAX
       foldtest.py [command line options]

    OPTIONS
        -h prints help message and quits
        -f FILE file with input data
        -F FILE for confidence bounds on fold test
        -u ANGLE (circular standard deviation) for uncertainty on bedding poles
        -b MIN MAX bounds for quick search of percent untilting [default is -10 to 150%]
        -n NB  number of bootstrap samples [default is 1000]
        -fmt FMT, specify format - default is svg
        -sav  save figures and quit
    INPUT FILE
	Dec Inc Dip_Direction Dip  in space delimited file

    OUTPUT PLOTS
        Geographic: is an equal area projection of the input data in
                    original coordinates
        Stratigraphic: is an equal area projection of the input data in
                    tilt adjusted coordinates
        % Untilting: The dashed (red) curves are representative plots of
                    maximum eigenvalue (tau_1) as a function of untilting
                    The solid line is the cumulative distribution of the
                    % Untilting required to maximize tau for all the
                    bootstrapped data sets.  The dashed vertical lines
                    are 95% confidence bounds on the % untilting that yields
                   the most clustered result (maximum tau_1).
        Command line: prints out the bootstrapped iterations and
                   finally the confidence bounds on optimum untilting.
        If the 95% conf bounds include 0, then a post-tilt magnetization is indicated
        If the 95% conf bounds include 100, then a pre-tilt magnetization is indicated
        If the 95% conf bounds exclude both 0 and 100, syn-tilt magnetization is
                possible as is vertical axis rotation or other pathologies
        Geographic: is an equal area projection of the input data in

    OPTIONAL OUTPUT FILE:
       The output file has the % untilting within the 95% confidence bounds
nd the number of bootstrap samples
    """
    kappa = 0
    fmt, plot = 'svg', 0
    nb = 1000  # number of bootstraps
    min, max = -10, 150
    if '-h' in sys.argv:  # check if help is needed
        print main.__doc__
        sys.exit()  # graceful quit
    if '-F' in sys.argv:
        ind = sys.argv.index('-F')
        outfile = open(sys.argv[ind + 1], 'w')
    else:
        outfile = ""
    if '-f' in sys.argv:
        ind = sys.argv.index('-f')
        file = sys.argv[ind + 1]
        DIDDs = numpy.loadtxt(file)
    else:
        print main.__doc__
        sys.exit()
    if '-fmt' in sys.argv:
        ind = sys.argv.index('-fmt')
        fmt = sys.argv[ind + 1]
    if '-sav' in sys.argv: plot = 1
    if '-b' in sys.argv:
        ind = sys.argv.index('-b')
        min = int(sys.argv[ind + 1])
        max = int(sys.argv[ind + 2])
    if '-n' in sys.argv:
        ind = sys.argv.index('-n')
        nb = int(sys.argv[ind + 1])
    if '-u' in sys.argv:
        ind = sys.argv.index('-u')
        csd = float(sys.argv[ind + 1])
        kappa = (81. / csd)**2
    #
    # get to work
    #
    PLTS = {'geo': 1, 'strat': 2, 'taus': 3}  # make plot dictionary
    pmagplotlib.plot_init(PLTS['geo'], 5, 5)
    pmagplotlib.plot_init(PLTS['strat'], 5, 5)
    pmagplotlib.plot_init(PLTS['taus'], 5, 5)
    pmagplotlib.plotEQ(PLTS['geo'], DIDDs, 'Geographic')
    D, I = pmag.dotilt_V(DIDDs)
    TCs = numpy.array([D, I]).transpose()
    pmagplotlib.plotEQ(PLTS['strat'], TCs, 'Stratigraphic')
    if plot == 0: pmagplotlib.drawFIGS(PLTS)
    Percs = range(min, max)
    Cdf, Untilt = [], []
    pylab.figure(num=PLTS['taus'])
    print 'doing ', nb, ' iterations...please be patient.....'
    for n in range(
            nb):  # do bootstrap data sets - plot first 25 as dashed red line
        if n % 50 == 0: print n
        Taus = []  # set up lists for taus
        PDs = pmag.pseudo(DIDDs)
        if kappa != 0:
            for k in range(len(PDs)):
                d, i = pmag.fshdev(kappa)
                dipdir, dip = pmag.dodirot(d, i, PDs[k][2], PDs[k][3])
                PDs[k][2] = dipdir
                PDs[k][3] = dip
        for perc in Percs:
            tilt = numpy.array([1., 1., 1., 0.01 * perc])
            D, I = pmag.dotilt_V(PDs * tilt)
            TCs = numpy.array([D, I]).transpose()
            ppars = pmag.doprinc(TCs)  # get principal directions
            Taus.append(ppars['tau1'])
        if n < 25: pylab.plot(Percs, Taus, 'r--')
        Untilt.append(Percs[Taus.index(
            numpy.max(Taus))])  # tilt that gives maximum tau
        Cdf.append(float(n) / float(nb))
    pylab.plot(Percs, Taus, 'k')
    pylab.xlabel('% Untilting')
    pylab.ylabel('tau_1 (red), CDF (green)')
    Untilt.sort()  # now for CDF of tilt of maximum tau
    pylab.plot(Untilt, Cdf, 'g')
    lower = int(.025 * nb)
    upper = int(.975 * nb)
    pylab.axvline(x=Untilt[lower], ymin=0, ymax=1, linewidth=1, linestyle='--')
    pylab.axvline(x=Untilt[upper], ymin=0, ymax=1, linewidth=1, linestyle='--')
    tit = '%i - %i %s' % (Untilt[lower], Untilt[upper], 'Percent Unfolding')
    print tit
    print 'range of all bootstrap samples: ', Untilt[0], ' - ', Untilt[-1]
    pylab.title(tit)
    outstring = '%i - %i; %i\n' % (Untilt[lower], Untilt[upper], nb)
    if outfile != "": outfile.write(outstring)
    files = {}
    for key in PLTS.keys():
        files[key] = ('foldtest_' + '%s' % (key.strip()[:2]) + '.' + fmt)
    if plot == 0:
        pmagplotlib.drawFIGS(PLTS)
        ans = raw_input('S[a]ve all figures, <Return> to quit   ')
        if ans != 'a':
            print "Good bye"
            sys.exit()
    pmagplotlib.saveP(PLTS, files)
示例#8
0
def main():
    """
    NAME
       foldtest_magic.py

    DESCRIPTION
       does a fold test (Tauxe, 2010) on data

    INPUT FORMAT
       pmag_specimens format file, er_samples.txt format file (for bedding)

    SYNTAX
       foldtest_magic.py [command line options]

    OPTIONS
        -h prints help message and quits
        -f sites  formatted file [default for 3.0 is sites.txt, for 2.5, pmag_sites.txt]
        -fsa samples  formatted file
        -fsi sites  formatted file
        -exc use criteria to set acceptance criteria (supported only for data model 3)
        -n NB, set number of bootstraps, default is 1000
        -b MIN, MAX, set bounds for untilting, default is -10, 150
        -fmt FMT, specify format - default is svg
        -sav saves plots and quits
        -DM NUM MagIC data model number (2 or 3, default 3)

    OUTPUT
        Geographic: is an equal area projection of the input data in
                    original coordinates
        Stratigraphic: is an equal area projection of the input data in
                    tilt adjusted coordinates
        % Untilting: The dashed (red) curves are representative plots of
                    maximum eigenvalue (tau_1) as a function of untilting
                    The solid line is the cumulative distribution of the
                    % Untilting required to maximize tau for all the
                    bootstrapped data sets.  The dashed vertical lines
                    are 95% confidence bounds on the % untilting that yields
                   the most clustered result (maximum tau_1).
        Command line: prints out the bootstrapped iterations and
                   finally the confidence bounds on optimum untilting.
        If the 95% conf bounds include 0, then a pre-tilt magnetization is indicated
        If the 95% conf bounds include 100, then a post-tilt magnetization is indicated
        If the 95% conf bounds exclude both 0 and 100, syn-tilt magnetization is
                possible as is vertical axis rotation or other pathologies

    """
    if '-h' in sys.argv:  # check if help is needed
        print(main.__doc__)
        sys.exit()  # graceful quit

    kappa = 0

    dir_path = pmag.get_named_arg("-WD", ".")
    nboot = int(float(pmag.get_named_arg("-n", 1000)))  # number of bootstraps
    fmt = pmag.get_named_arg("-fmt", "svg")
    data_model_num = int(float(pmag.get_named_arg("-DM", 3)))
    if data_model_num == 3:
        infile = pmag.get_named_arg("-f", 'sites.txt')
        orfile = 'samples.txt'
        site_col = 'site'
        dec_col = 'dir_dec'
        inc_col = 'dir_inc'
        tilt_col = 'dir_tilt_correction'
        dipkey, azkey = 'bed_dip', 'bed_dip_direction'
        crit_col = 'criterion'
        critfile = 'criteria.txt'
    else:
        infile = pmag.get_named_arg("-f", 'pmag_sites.txt')
        orfile = 'er_samples.txt'
        site_col = 'er_site_name'
        dec_col = 'site_dec'
        inc_col = 'site_inc'
        tilt_col = 'site_tilt_correction'
        dipkey, azkey = 'sample_bed_dip', 'sample_bed_dip_direction'
        crit_col = 'pmag_criteria_code'
        critfile = 'pmag_criteria.txt'
    if '-sav' in sys.argv:
        plot = 1
    else:
        plot = 0
    if '-b' in sys.argv:
        ind = sys.argv.index('-b')
        untilt_min = int(sys.argv[ind + 1])
        untilt_max = int(sys.argv[ind + 2])
    else:
        untilt_min, untilt_max = -10, 150
    if '-fsa' in sys.argv:
        orfile = pmag.get_named_arg("-fsa", "")
    elif '-fsi' in sys.argv:
        orfile = pmag.get_named_arg("-fsi", "")
        if data_model_num == 3:
            dipkey, azkey = 'bed_dip', 'bed_dip_direction'
        else:
            dipkey, azkey = 'site_bed_dip', 'site_bed_dip_direction'
    else:
        if data_model_num == 3:
            orfile = 'sites.txt'
        else:
            orfile = 'pmag_sites.txt'
    orfile = pmag.resolve_file_name(orfile, dir_path)
    infile = pmag.resolve_file_name(infile, dir_path)
    critfile = pmag.resolve_file_name(critfile, dir_path)
    df = pd.read_csv(infile, sep='\t', header=1)
    # keep only records with tilt_col
    data = df.copy()
    data = data[data[tilt_col].notnull()]
    data = data.where(data.notnull(), "")
    # turn into pmag data list
    data = list(data.T.apply(dict))
    # get orientation data
    if data_model_num == 3:
        # often orientation will be in infile (sites table)
        if os.path.split(orfile)[1] == os.path.split(infile)[1]:
            ordata = df[df[azkey].notnull()]
            ordata = ordata[ordata[dipkey].notnull()]
            ordata = list(ordata.T.apply(dict))
        # sometimes orientation might be in a sample file instead
        else:
            ordata = pd.read_csv(orfile, sep='\t', header=1)
            ordata = list(ordata.T.apply(dict))
    else:
        ordata, file_type = pmag.magic_read(orfile)

    if '-exc' in sys.argv:
        crits, file_type = pmag.magic_read(critfile)
        SiteCrits = []
        for crit in crits:
            if crit[crit_col] == "DE-SITE":
                SiteCrits.append(crit)
                #break


# get to work
#
    PLTS = {'geo': 1, 'strat': 2, 'taus': 3}  # make plot dictionary
    if not set_env.IS_WIN:
        pmagplotlib.plot_init(PLTS['geo'], 5, 5)
        pmagplotlib.plot_init(PLTS['strat'], 5, 5)
        pmagplotlib.plot_init(PLTS['taus'], 5, 5)
    if data_model_num == 2:
        GEOrecs = pmag.get_dictitem(data, tilt_col, '0', 'T')
    else:
        GEOrecs = data
    if len(GEOrecs) > 0:  # have some geographic data
        num_dropped = 0
        DIDDs = []  # set up list for dec inc  dip_direction, dip
        for rec in GEOrecs:  # parse data
            dip, dip_dir = 0, -1
            Dec = float(rec[dec_col])
            Inc = float(rec[inc_col])
            orecs = pmag.get_dictitem(ordata, site_col, rec[site_col], 'T')
            if len(orecs) > 0:
                if orecs[0][azkey] != "":
                    dip_dir = float(orecs[0][azkey])
                if orecs[0][dipkey] != "":
                    dip = float(orecs[0][dipkey])
            if dip != 0 and dip_dir != -1:
                if '-exc' in sys.argv:
                    keep = 1
                    for site_crit in SiteCrits:
                        crit_name = site_crit['table_column'].split('.')[1]
                        if crit_name and crit_name in rec.keys(
                        ) and rec[crit_name]:
                            # get the correct operation (<, >=, =, etc.)
                            op = OPS[site_crit['criterion_operation']]
                            # then make sure the site record passes
                            if op(float(rec[crit_name]),
                                  float(site_crit['criterion_value'])):
                                keep = 0

                    if keep == 1:
                        DIDDs.append([Dec, Inc, dip_dir, dip])
                    else:
                        num_dropped += 1
                else:
                    DIDDs.append([Dec, Inc, dip_dir, dip])
        if num_dropped:
            print(
                "-W- Dropped {} records because each failed one or more criteria"
                .format(num_dropped))
    else:
        print('no geographic directional data found')
        sys.exit()

    pmagplotlib.plot_eq(PLTS['geo'], DIDDs, 'Geographic')
    data = np.array(DIDDs)
    D, I = pmag.dotilt_V(data)
    TCs = np.array([D, I]).transpose()
    pmagplotlib.plot_eq(PLTS['strat'], TCs, 'Stratigraphic')
    if plot == 0:
        pmagplotlib.draw_figs(PLTS)
    Percs = list(range(untilt_min, untilt_max))
    Cdf, Untilt = [], []
    plt.figure(num=PLTS['taus'])
    print('doing ', nboot, ' iterations...please be patient.....')
    for n in range(
            nboot
    ):  # do bootstrap data sets - plot first 25 as dashed red line
        if n % 50 == 0:
            print(n)
        Taus = []  # set up lists for taus
        PDs = pmag.pseudo(DIDDs)
        if kappa != 0:
            for k in range(len(PDs)):
                d, i = pmag.fshdev(kappa)
                dipdir, dip = pmag.dodirot(d, i, PDs[k][2], PDs[k][3])
                PDs[k][2] = dipdir
                PDs[k][3] = dip
        for perc in Percs:
            tilt = np.array([1., 1., 1., 0.01 * perc])
            D, I = pmag.dotilt_V(PDs * tilt)
            TCs = np.array([D, I]).transpose()
            ppars = pmag.doprinc(TCs)  # get principal directions
            Taus.append(ppars['tau1'])
        if n < 25:
            plt.plot(Percs, Taus, 'r--')
        # tilt that gives maximum tau
        Untilt.append(Percs[Taus.index(np.max(Taus))])
        Cdf.append(float(n) / float(nboot))
    plt.plot(Percs, Taus, 'k')
    plt.xlabel('% Untilting')
    plt.ylabel('tau_1 (red), CDF (green)')
    Untilt.sort()  # now for CDF of tilt of maximum tau
    plt.plot(Untilt, Cdf, 'g')
    lower = int(.025 * nboot)
    upper = int(.975 * nboot)
    plt.axvline(x=Untilt[lower], ymin=0, ymax=1, linewidth=1, linestyle='--')
    plt.axvline(x=Untilt[upper], ymin=0, ymax=1, linewidth=1, linestyle='--')
    tit = '%i - %i %s' % (Untilt[lower], Untilt[upper], 'Percent Unfolding')
    print(tit)
    plt.title(tit)
    if plot == 0:
        pmagplotlib.draw_figs(PLTS)
        ans = input('S[a]ve all figures, <Return> to quit  \n ')
        if ans != 'a':
            print("Good bye")
            sys.exit()
    files = {}
    for key in list(PLTS.keys()):
        files[key] = ('foldtest_' + '%s' % (key.strip()[:2]) + '.' + fmt)
    pmagplotlib.save_plots(PLTS, files)
示例#9
0
def main():
    """
    NAME
        zeq_magic.py

    DESCRIPTION
        reads in magic_measurements formatted file, makes plots of remanence decay
        during demagnetization experiments.  Reads in prior interpretations saved in
        a pmag_specimens formatted file [and  allows re-interpretations of best-fit lines
        and planes and saves (revised or new) interpretations in a pmag_specimens file.
        interpretations are saved in the coordinate system used. Also allows judicious editting of
        measurements to eliminate "bad" measurements.  These are marked as such in the magic_measurements
        input file.  they are NOT deleted, just ignored. ] Bracketed part not yet implemented

    SYNTAX
        zeq_magic.py [command line options]

    OPTIONS
        -h prints help message and quits
        -f  MEASFILE: sets measurements format input file, default: measurements.txt
        -fsp SPECFILE: sets specimens format file with prior interpreations, default: specimens.txt
        -fsa SAMPFILE: sets samples format file sample=>site information, default: samples.txt
        -fsi SITEFILE: sets sites format file with site=>location informationprior interpreations, default: samples.txt
        -Fp PLTFILE: sets filename for saved plot, default is name_type.fmt (where type is zijd, eqarea or decay curve)
        -crd [s,g,t]: sets coordinate system,  g=geographic, t=tilt adjusted, default: specimen coordinate system
        -spc SPEC  plots single specimen SPEC, saves plot with specified format
              with optional -dir settings and quits
        -dir [L,P,F][beg][end]: sets calculation type for principal component analysis, default is none
             beg: starting step for PCA calculation
             end: ending step for PCA calculation
             [L,P,F]: calculation type for line, plane or fisher mean
             must be used with -spc option
        -fmt FMT: set format of saved plot [png,svg,jpg]
        -A:  suppresses averaging of  replicate measurements, default is to average
        -sav: saves all plots without review
    SCREEN OUTPUT:
        Specimen, N, a95, StepMin, StepMax, Dec, Inc, calculation type

    """
    # initialize some variables
    doave, e, b = 1, 0, 0  # average replicates, initial end and beginning step
    intlist = ['magn_moment', 'magn_volume', 'magn_mass', 'magnitude']
    plots, coord = 0, 's'
    noorient = 0
    version_num = pmag.get_version()
    verbose = pmagplotlib.verbose
    calculation_type, fmt = "", "svg"
    user, spec_keys, locname = "", [], ''
    geo, tilt, ask = 0, 0, 0
    PriorRecs = []  # empty list for prior interpretations
    backup = 0
    specimen = ""  # can skip everything and just plot one specimen with bounds e,b
    if '-h' in sys.argv:
        print(main.__doc__)
        sys.exit()
    dir_path = pmag.get_named_arg_from_sys("-WD", default_val=os.getcwd())
    meas_file = pmag.get_named_arg_from_sys(
        "-f", default_val="measurements.txt")
    spec_file = pmag.get_named_arg_from_sys(
        "-fsp", default_val="specimens.txt")
    samp_file = pmag.get_named_arg_from_sys("-fsa", default_val="samples.txt")
    site_file = pmag.get_named_arg_from_sys("-fsi", default_val="sites.txt")
    #meas_file = os.path.join(dir_path, meas_file)
    #spec_file = os.path.join(dir_path, spec_file)
    #samp_file = os.path.join(dir_path, samp_file)
    #site_file = os.path.join(dir_path, site_file)
    plot_file = pmag.get_named_arg_from_sys("-Fp", default_val="")
    crd = pmag.get_named_arg_from_sys("-crd", default_val="s")
    if crd == "s":
        coord = "-1"
    elif crd == "t":
        coord = "100"
    else:
        coord = "0"
    fmt = pmag.get_named_arg_from_sys("-fmt", "svg")
    specimen = pmag.get_named_arg_from_sys("-spc", default_val="")
    beg_pca, end_pca = "", ""
    if '-dir' in sys.argv:
        ind = sys.argv.index('-dir')
        direction_type = sys.argv[ind + 1]
        beg_pca = int(sys.argv[ind + 2])
        end_pca = int(sys.argv[ind + 3])
        if direction_type == 'L':
            calculation_type = 'DE-BFL'
        if direction_type == 'P':
            calculation_type = 'DE-BFP'
        if direction_type == 'F':
            calculation_type = 'DE-FM'
    if '-A' in sys.argv:
        doave = 0
    if '-sav' in sys.argv:
        plots, verbose = 1, 0
    #
    first_save = 1
    fnames = {'measurements': meas_file, 'specimens': spec_file,
              'samples': samp_file, 'sites': site_file}
    contribution = nb.Contribution(dir_path, custom_filenames=fnames, read_tables=[
                                   'measurements', 'specimens', 'samples', 'sites'])
#
#   import  specimens

    specimen_cols = ['analysts', 'aniso_ftest', 'aniso_ftest12', 'aniso_ftest23', 'aniso_s', 'aniso_s_mean', 'aniso_s_n_measurements', 'aniso_s_sigma', 'aniso_s_unit', 'aniso_tilt_correction', 'aniso_type', 'aniso_v1', 'aniso_v2', 'aniso_v3', 'citations', 'description', 'dir_alpha95', 'dir_comp', 'dir_dec', 'dir_inc', 'dir_mad_free', 'dir_n_measurements', 'dir_tilt_correction', 'experiments', 'geologic_classes',
                     'geologic_types', 'hyst_bc', 'hyst_bcr', 'hyst_mr_moment', 'hyst_ms_moment', 'int_abs', 'int_b', 'int_b_beta', 'int_b_sigma', 'int_corr', 'int_dang', 'int_drats', 'int_f', 'int_fvds', 'int_gamma', 'int_mad_free', 'int_md', 'int_n_measurements', 'int_n_ptrm', 'int_q', 'int_rsc', 'int_treat_dc_field', 'lithologies', 'meas_step_max', 'meas_step_min', 'meas_step_unit', 'method_codes', 'sample', 'software_packages', 'specimen']
    if 'specimens' in contribution.tables:
        #        contribution.propagate_name_down('sample','measurements')
        spec_container = contribution.tables['specimens']
        if 'method_codes' not in spec_container.df.columns:
            spec_container.df['method_codes'] = None
        prior_spec_data = spec_container.get_records_for_code(
            'LP-DIR', strict_match=False)  # look up all prior directional interpretations
#
#  tie sample names to measurement data
#
    else:
        spec_container, prior_spec_data = None, []

#
#   import samples  for orientation info
#
    if ('samples' in contribution.tables) and ('specimens' in contribution.tables):
        #        contribution.propagate_name_down('site','measurements')
        contribution.propagate_cols(col_names=[
                                    'azimuth', 'dip', 'orientation_quality'], target_df_name='measurements', source_df_name='samples')
#
# define figure numbers for equal area, zijderveld,
#  and intensity vs. demagnetiztion step respectively
#
    ZED = {}
    ZED['eqarea'], ZED['zijd'],  ZED['demag'] = 1, 2, 3
    pmagplotlib.plot_init(ZED['eqarea'], 6, 6)
    pmagplotlib.plot_init(ZED['zijd'], 6, 6)
    pmagplotlib.plot_init(ZED['demag'], 6, 6)
#    save_pca=0
    angle, direction_type, setangle = "", "", 0
#   create measurement dataframe
#
    meas_container = contribution.tables['measurements']
    meas_data = meas_container.df
#
    meas_data = meas_data[meas_data['method_codes'].str.contains(
        'LT-NO|LT-AF-Z|LT-T-Z|LT-M-Z') == True]  # fish out steps for plotting
    meas_data = meas_data[meas_data['method_codes'].str.contains(
        'AN|ARM|LP-TRM|LP-PI-ARM') == False]  # strip out unwanted experiments
    intensity_types = [
        col_name for col_name in meas_data.columns if col_name in intlist]
    intensity_types = [
        col_name for col_name in intensity_types if any(meas_data[col_name])]
    if not len(intensity_types):
        print('-W- No intensity columns found')
        return
    # plot first non-empty intensity method found - normalized to initial value anyway -
    # doesn't matter which used
    int_key = intensity_types[0]
    # get all the non-null intensity records of the same type
    meas_data = meas_data[meas_data[int_key].notnull()]
    if 'flag' not in meas_data.columns:
        meas_data['flag'] = 'g'  # set the default flag to good
# need to treat LP-NO specially  for af data, treatment should be zero,
# otherwise 273.
    meas_data['treatment'] = meas_data['treat_ac_field'].where(
        cond=meas_data['treat_ac_field'] != 0, other=meas_data['treat_temp'])
    meas_data['ZI'] = 1  # initialize these to one
    meas_data['instrument_codes'] = ""  # initialize these to blank
#   for unusual case of microwave power....
    if 'treat_mw_power' in meas_data.columns:
        meas_data.loc[
            (meas_data.treat_mw_power != 0) &
            (meas_data.treat_mw_power) &
            (meas_data.treat_mw_time),
             'treatment'] = meas_data.treat_mw_power * meas_data.treat_mw_time
#
# get list of unique specimen names from measurement data
#
    # this is a list of all the specimen names
    specimen_names = meas_data.specimen.unique()
    specimen_names = specimen_names.tolist()
    specimen_names.sort()
#
# set up new DataFrame for this sessions specimen interpretations
#
    data_container = nb.MagicDataFrame(
        dtype='specimens', columns=specimen_cols)
    # this is for interpretations from this session
    current_spec_data = data_container.df
    locname = 'LookItUp'
    if specimen == "":
        k = 0
    else:
        k = specimen_names.index(specimen)
    # let's look at the data now
    while k < len(specimen_names):
        mpars = None
        # set the current specimen for plotting
        this_specimen = specimen_names[k]
        # reset beginning/end pca if plotting more than one specimen
        if not specimen:
            beg_pca, end_pca = "", ""
        if verbose and this_specimen != "":
            print(this_specimen, k + 1, 'out of ', len(specimen_names))
        if setangle == 0:
            angle = ""
        this_specimen_measurements = meas_data[meas_data['specimen'].str.contains(
            this_specimen) == True]  # fish out this specimen
        this_specimen_measurements = this_specimen_measurements[this_specimen_measurements['flag'].str.contains(
            'g') == True]  # fish out this specimen
        if len(this_specimen_measurements) != 0:  # if there are measurements
            #
            #    set up datablock [[treatment,dec, inc, int, direction_type],[....]]
            #
            #
            # figure out the method codes
            #
            units, methods, title = "", "", this_specimen
            # this is a list of all the specimen method codes`
            meas_meths = this_specimen_measurements.method_codes.unique()
            tr = pd.to_numeric(this_specimen_measurements.treatment).tolist()
            if set(tr) == set([0]):
                k += 1
                continue
            for m in meas_meths:
                if 'LT-AF-Z' in m:
                    units = 'T'  # units include tesla
                    tr[0] = 0
                if 'LT-T-Z' in m:
                    units = units + ":K"  # units include kelvin
                if 'LT-M-Z' in m:
                    units = units + ':J'  # units include joules
                    tr[0] = 0
                units = units.strip(':')  # strip off extra colons
                if 'LP-' in m:
                    methods = methods + ":" + m
            decs = pd.to_numeric(this_specimen_measurements.dir_dec).tolist()
            incs = pd.to_numeric(this_specimen_measurements.dir_inc).tolist()
#
#    fix the coordinate system
#
            if coord != '-1':  # need to transform coordinates to geographic

                azimuths = pd.to_numeric(
                    this_specimen_measurements.azimuth).tolist()  # get the azimuths
                # get the azimuths
                dips = pd.to_numeric(this_specimen_measurements.dip).tolist()
                dirs = [decs, incs, azimuths, dips]
                # this transposes the columns and rows of the list of lists
                dirs_geo = np.array(list(map(list, list(zip(*dirs)))))
                decs, incs = pmag.dogeo_V(dirs_geo)
                if coord == '100':  # need to do tilt correction too
                    bed_dip_dirs = pd.to_numeric(
                        this_specimen_measurements.bed_dip_dir).tolist()  # get the azimuths
                    bed_dips = pd.to_numeric(
                        this_specimen_measurements.bed_dip).tolist()  # get the azimuths
                    dirs = [decs, incs, bed_dip_dirs, bed_dips]
                    # this transposes the columns and rows of the list of lists
                    dirs_tilt = np.array(list(map(list, list(zip(*dirs)))))
                    decs, incs = pmag.dotilt_V(dirs_tilt)
                    title = title + '_t'
                else:
                    title = title + '_g'
            if angle == "":
                angle = decs[0]
            ints = pd.to_numeric(this_specimen_measurements[int_key]).tolist()
            ZI = this_specimen_measurements.ZI.tolist()
            flags = this_specimen_measurements.flag.tolist()
            codes = this_specimen_measurements.instrument_codes.tolist()
            datalist = [tr, decs, incs, ints, ZI, flags, codes]
            # this transposes the columns and rows of the list of lists
            datablock = list(map(list, list(zip(*datalist))))
            pmagplotlib.plotZED(ZED, datablock, angle, title, units)
            if verbose:
                pmagplotlib.drawFIGS(ZED)
#
#     collect info for current_specimen_interpretation dictionary
#

#
#     find prior interpretation
#

            prior_specimen_interpretations = prior_spec_data[prior_spec_data['specimen'].str.contains(this_specimen) == True]

            if (beg_pca == "") and (len(prior_specimen_interpretations) != 0):
                if len(prior_specimen_interpretations)>0:
                    beg_pcas = pd.to_numeric(
                        prior_specimen_interpretations.meas_step_min.values).tolist()
                    end_pcas = pd.to_numeric(
                        prior_specimen_interpretations.meas_step_max.values).tolist()
                    spec_methods = prior_specimen_interpretations.method_codes.tolist()
                # step through all prior interpretations and plot them
                    for ind in range(len(beg_pcas)):
                        spec_meths = spec_methods[ind].split(':')
                        for m in spec_meths:
                            if 'DE-BFL' in m:
                                calculation_type = 'DE-BFL'  # best fit line
                            if 'DE-BFP' in m:
                                calculation_type = 'DE-BFP'  # best fit plane
                            if 'DE-FM' in m:
                                calculation_type = 'DE-FM'  # fisher mean
                            if 'DE-BFL-A' in m:
                                calculation_type = 'DE-BFL-A'  # anchored best fit line
                        start, end = tr.index(beg_pcas[ind]), tr.index(
                            end_pcas[ind])  # getting the starting and ending points
                    # calculate direction/plane
                        mpars = pmag.domean(
                            datablock, start, end, calculation_type)
                        if mpars["specimen_direction_type"] != "Error":
                            # put it on the plot
                            pmagplotlib.plotDir(ZED, mpars, datablock, angle)
                            if verbose:
                                pmagplotlib.drawFIGS(ZED)
            else:
                try:
                    start, end = int(beg_pca), int(end_pca)
                except ValueError:
                    beg_pca = 0
                    end_pca = len(datablock) - 1
                    start, end = int(beg_pca), int(end_pca)
                # calculate direction/plane
                try:
                    mpars = pmag.domean(datablock, start, end, calculation_type)
                except Exception as ex:
                    print('-I- Problem with {}'.format(this_specimen))
                    print('   ', ex)
                    print('    Skipping')
                    k += 1
                    continue
                if mpars["specimen_direction_type"] != "Error":
                    # put it on the plot
                    pmagplotlib.plotDir(ZED, mpars, datablock, angle)
                    if verbose:
                        pmagplotlib.drawFIGS(ZED)
            if plots == 1 or specimen != "":
                if plot_file == "":
                    basename = title
                else:
                    basename = plot_file
                files = {}
                for key in list(ZED.keys()):
                    files[key] = basename + '_' + key + '.' + fmt
                pmagplotlib.saveP(ZED, files)
                if specimen != "":
                    sys.exit()
            if verbose:
                recnum = 0
                for plotrec in datablock:
                    if units == 'T':
                        print('%s: %i  %7.1f %s  %8.3e %7.1f %7.1f %s' % (
                            plotrec[5], recnum, plotrec[0] * 1e3, " mT", plotrec[3], plotrec[1], plotrec[2], plotrec[6]))
                    if units == "K":
                        print('%s: %i  %7.1f %s  %8.3e %7.1f %7.1f %s' % (
                            plotrec[5], recnum, plotrec[0] - 273, ' C', plotrec[3], plotrec[1], plotrec[2], plotrec[6]))
                    if units == "J":
                        print('%s: %i  %7.1f %s  %8.3e %7.1f %7.1f %s' % (
                            plotrec[5], recnum, plotrec[0], ' J', plotrec[3], plotrec[1], plotrec[2], plotrec[6]))
                    if 'K' in units and 'T' in units:
                        if plotrec[0] >= 1.:
                            print('%s: %i  %7.1f %s  %8.3e %7.1f %7.1f %s' % (
                                plotrec[5], recnum, plotrec[0] - 273, ' C', plotrec[3], plotrec[1], plotrec[2], plotrec[6]))
                        if plotrec[0] < 1.:
                            print('%s: %i  %7.1f %s  %8.3e %7.1f %7.1f %s' % (
                                plotrec[5], recnum, plotrec[0] * 1e3, " mT", plotrec[3], plotrec[1], plotrec[2], plotrec[6]))
                    recnum += 1
            # we have a current interpretation
            elif mpars["specimen_direction_type"] != "Error":
                #
                # create a new specimen record for the interpreation for this
                # specimen
                this_specimen_interpretation = {
                    col: "" for col in specimen_cols}
#               this_specimen_interpretation["analysts"]=user
                this_specimen_interpretation['software_packages'] = version_num
                this_specimen_interpretation['specimen'] = this_specimen
                this_specimen_interpretation["method_codes"] = calculation_type
                this_specimen_interpretation["meas_step_unit"] = units
                this_specimen_interpretation["meas_step_min"] = tr[start]
                this_specimen_interpretation["meas_step_max"] = tr[end]
                this_specimen_interpretation["dir_dec"] = '%7.1f' % (
                    mpars['specimen_dec'])
                this_specimen_interpretation["dir_inc"] = '%7.1f' % (
                    mpars['specimen_inc'])
                this_specimen_interpretation["dir_dang"] = '%7.1f' % (
                    mpars['specimen_dang'])
                this_specimen_interpretation["dir_n_measurements"] = '%i' % (
                    mpars['specimen_n'])
                this_specimen_interpretation["dir_tilt_correction"] = coord
                methods = methods.replace(" ", "")
                if "T" in units:
                    methods = methods + ":LP-DIR-AF"
                if "K" in units:
                    methods = methods + ":LP-DIR-T"
                if "J" in units:
                    methods = methods + ":LP-DIR-M"
                this_specimen_interpretation["method_codes"] = methods.strip(
                    ':')
                this_specimen_interpretation["experiments"] = this_specimen_measurements.experiment.unique()[
                    0]
#
#   print some stuff
#
                if calculation_type != 'DE-FM':
                    this_specimen_interpretation["dir_mad_free"] = '%7.1f' % (
                        mpars['specimen_mad'])
                    this_specimen_interpretation["dir_alpha95"] = ''
                    if verbose:
                        if units == 'K':
                            print('%s %i %7.1f %7.1f %7.1f %7.1f %7.1f %7.1f %s \n' % (this_specimen_interpretation["specimen"], int(this_specimen_interpretation["dir_n_measurements"]), float(this_specimen_interpretation["dir_mad_free"]), float(this_specimen_interpretation["dir_dang"]), float(
                                this_specimen_interpretation["meas_step_min"]) - 273, float(this_specimen_interpretation["meas_step_max"]) - 273, float(this_specimen_interpretation["dir_dec"]), float(this_specimen_interpretation["dir_inc"]), calculation_type))
                        elif units == 'T':
                            print('%s %i %7.1f %7.1f %7.1f %7.1f %7.1f %7.1f %s \n' % (this_specimen_interpretation["specimen"], int(this_specimen_interpretation["dir_n_measurements"]), float(this_specimen_interpretation["dir_mad_free"]), float(this_specimen_interpretation["dir_dang"]), float(
                                this_specimen_interpretation["meas_step_min"]) * 1e3, float(this_specimen_interpretation["meas_step_max"]) * 1e3, float(this_specimen_interpretation["dir_dec"]), float(this_specimen_interpretation["dir_inc"]), calculation_type))
                        elif 'T' in units and 'K' in units:
                            if float(this_specimen_interpretation['meas_step_min']) < 1.0:
                                min = float(
                                    this_specimen_interpretation['meas_step_min']) * 1e3
                            else:
                                min = float(
                                    this_specimen_interpretation['meas_step_min']) - 273
                            if float(this_specimen_interpretation['meas_step_max']) < 1.0:
                                max = float(
                                    this_specimen_interpretation['meas_step_max']) * 1e3
                            else:
                                max = float(
                                    this_specimen_interpretation['meas_step_max']) - 273
                            print('%s %i %7.1f %i %i %7.1f %7.1f %7.1f %s \n' % (this_specimen_interpretation["specimen"], int(this_specimen_interpretation["dir_n_measurements"]), float(this_specimen_interpretation["dir_mad_free"]), float(
                                this_specimen_interpretation["dir_dang"]), min, max, float(this_specimen_interpretation["dir_dec"]), float(this_specimen_interpretation["dir_inc"]), calculation_type))
                        else:
                            print('%s %i %7.1f %7.1f %7.1f %7.1f %7.1f %7.1f %s \n' % (this_specimen_interpretation["specimen"], int(this_specimen_interpretation["dir_n_measurements"]), float(this_specimen_interpretation["dir_mad_free"]), float(this_specimen_interpretation["dir_dang"]), float(
                                this_specimen_interpretation["meas_step_min"]), float(this_specimen_interpretation["meas_step_max"]), float(this_specimen_interpretation["dir_dec"]), float(this_specimen_interpretation["dir_inc"]), calculation_type))
                else:
                    this_specimen_interpretation["dir_alpha95"] = '%7.1f' % (
                        mpars['specimen_alpha95'])
                    this_specimen_interpretation["dir_mad_free"] = ''
                    if verbose:
                        if 'K' in units:
                            print('%s %i %7.1f %7.1f %7.1f %7.1f %7.1f %7.1f %s \n' % (this_specimen_interpretation["specimen"], int(this_specimen_interpretation["dir_n_measurments"]), float(this_specimen_interpretation["dir_mad_free"]), float(this_specimen_interpretation["dir_dang"]), float(
                                this_specimen_interpretation["meas_step_min"]) - 273, float(this_specimen_interpretation["meas_step_max"]) - 273, float(this_specimen_interpretation["dir_dec"]), float(this_specimen_interpretation["dir_inc"]), calculation_type))
                        elif 'T' in units:
                            print('%s %i %7.1f %7.1f %7.1f %7.1f %7.1f %7.1f %s \n' % (this_specimen_interpretation["specimen"], int(this_specimen_interpretation["dir_n_measurements"]), float(this_specimen_interpretation["dir_alpha95"]), float(this_specimen_interpretation["dir_dang"]), float(
                                this_specimen_interpretation["meas_step_min"]) * 1e3, float(this_specimen_interpretation["meas_step_max"]) * 1e3, float(this_specimen_interpretation["dir_dec"]), float(this_specimen_interpretation["dir_inc"]), calculation_type))
                        elif 'T' in units and 'K' in units:
                            if float(this_specimen_interpretation['meas_step_min']) < 1.0:
                                min = float(
                                    this_specimen_interpretation['meas_step_min']) * 1e3
                            else:
                                min = float(
                                    this_specimen_interpretation['meas_step_min']) - 273
                            if float(this_specimen_interpretation['meas_step_max']) < 1.0:
                                max = float(
                                    this_specimen_interpretation['meas_step_max']) * 1e3
                            else:
                                max = float(
                                    this_specimen_interpretation['meas_step_max']) - 273
                            print('%s %i %7.1f %i %i %7.1f %7.1f %s \n' % (this_specimen_interpretation["specimen"], int(this_specimen_interpretation["dir_n_measurements"]), float(
                                this_specimen_interpretation["dir_alpha95"]), min, max, float(this_specimen_interpretation["dir_dec"]), float(this_specimen_interpretation["dir_inc"]), calculation_type))
                        else:
                            print('%s %i %7.1f %7.1f %7.1f %7.1f %7.1f %s \n' % (this_specimen_interpretation["specimen"], int(this_specimen_interpretation["dir_n_measurements"]), float(this_specimen_interpretation["dir_alpha95"]), float(
                                this_specimen_interpretation["meas_step_min"]), float(this_specimen_interpretation["meas_step_max"]), float(this_specimen_interpretation["dir_dec"]), float(this_specimen_interpretation["dir_inc"]), calculation_type))
                if verbose:
                    saveit = input("Save this interpretation? [y]/n \n")
#   START HERE
#
#         if len(current_spec_data)==0: # no interpretations yet for this session
#             print "no current interpretation"
#             beg_pca,end_pca="",""
#             calculation_type=""
# get the ones that meet the current coordinate system
        else:
            print("no data")
        if verbose:
            res = input('  <return> for next specimen, [q]uit  ')
            if res == 'q':
                return
        k += 1
示例#10
0
def main():
    """
    NAME
        zeq_magic.py

    DESCRIPTION
        reads in magic_measurements formatted file, makes plots of remanence decay
        during demagnetization experiments.  Reads in prior interpretations saved in
        a pmag_specimens formatted file [and  allows re-interpretations of best-fit lines
        and planes and saves (revised or new) interpretations in a pmag_specimens file.
        interpretations are saved in the coordinate system used. Also allows judicious editting of
        measurements to eliminate "bad" measurements.  These are marked as such in the magic_measurements
        input file.  they are NOT deleted, just ignored. ] Bracketed part not yet implemented

    SYNTAX
        zeq_magic.py [command line options]

    OPTIONS
        -h prints help message and quits
        -f  MEASFILE: sets measurements format input file, default: measurements.txt
        -fsp SPECFILE: sets specimens format file with prior interpreations, default: specimens.txt
        -fsa SAMPFILE: sets samples format file sample=>site information, default: samples.txt
        -fsi SITEFILE: sets sites format file with site=>location informationprior interpreations, default: samples.txt
        -Fp PLTFILE: sets filename for saved plot, default is name_type.fmt (where type is zijd, eqarea or decay curve)
        -crd [s,g,t]: sets coordinate system,  g=geographic, t=tilt adjusted, default: specimen coordinate system
        -spc SPEC  plots single specimen SPEC, saves plot with specified format
              with optional -dir settings and quits
        -dir [L,P,F][beg][end]: sets calculation type for principal component analysis, default is none
             beg: starting step for PCA calculation
             end: ending step for PCA calculation
             [L,P,F]: calculation type for line, plane or fisher mean
             must be used with -spc option
        -fmt FMT: set format of saved plot [png,svg,jpg]
        -A:  suppresses averaging of  replicate measurements, default is to average
        -sav: saves all plots without review
    SCREEN OUTPUT:
        Specimen, N, a95, StepMin, StepMax, Dec, Inc, calculation type

    """
    # initialize some variables
    doave, e, b = 1, 0, 0  # average replicates, initial end and beginning step
    intlist = ['magn_moment', 'magn_volume', 'magn_mass', 'magnitude']
    plots, coord = 0, 's'
    noorient = 0
    version_num = pmag.get_version()
    verbose = pmagplotlib.verbose
    calculation_type, fmt = "", "svg"
    spec_keys = []
    geo, tilt, ask = 0, 0, 0
    PriorRecs = []  # empty list for prior interpretations
    backup = 0
    specimen = ""  # can skip everything and just plot one specimen with bounds e,b
    if '-h' in sys.argv:
        print(main.__doc__)
        sys.exit()
    dir_path = pmag.get_named_arg("-WD", default_val=os.getcwd())
    meas_file = pmag.get_named_arg("-f", default_val="measurements.txt")
    spec_file = pmag.get_named_arg("-fsp", default_val="specimens.txt")
    samp_file = pmag.get_named_arg("-fsa", default_val="samples.txt")
    site_file = pmag.get_named_arg("-fsi", default_val="sites.txt")
    #meas_file = os.path.join(dir_path, meas_file)
    #spec_file = os.path.join(dir_path, spec_file)
    #samp_file = os.path.join(dir_path, samp_file)
    #site_file = os.path.join(dir_path, site_file)
    plot_file = pmag.get_named_arg("-Fp", default_val="")
    crd = pmag.get_named_arg("-crd", default_val="s")
    if crd == "s":
        coord = "-1"
    elif crd == "t":
        coord = "100"
    else:
        coord = "0"
    saved_coord = coord
    fmt = pmag.get_named_arg("-fmt", "svg")
    specimen = pmag.get_named_arg("-spc", default_val="")
    #if specimen: # just save plot and exit
    #    plots, verbose = 1, 0
    beg_pca, end_pca = "", ""
    if '-dir' in sys.argv:
        ind = sys.argv.index('-dir')
        direction_type = sys.argv[ind + 1]
        beg_pca = int(sys.argv[ind + 2])
        end_pca = int(sys.argv[ind + 3])
        if direction_type == 'L':
            calculation_type = 'DE-BFL'
        if direction_type == 'P':
            calculation_type = 'DE-BFP'
        if direction_type == 'F':
            calculation_type = 'DE-FM'
    if '-A' in sys.argv:
        doave = 0
    if '-sav' in sys.argv:
        plots, verbose = 1, 0
    #
    first_save = 1
    fnames = {
        'measurements': meas_file,
        'specimens': spec_file,
        'samples': samp_file,
        'sites': site_file
    }
    contribution = cb.Contribution(
        dir_path,
        custom_filenames=fnames,
        read_tables=['measurements', 'specimens', 'samples', 'sites'])
    #
    #   import  specimens

    if 'measurements' not in contribution.tables:
        print('-W- No measurements table found in your working directory')
        return

    specimen_cols = [
        'analysts', 'aniso_ftest', 'aniso_ftest12', 'aniso_ftest23', 'aniso_s',
        'aniso_s_mean', 'aniso_s_n_measurements', 'aniso_s_sigma',
        'aniso_s_unit', 'aniso_tilt_correction', 'aniso_type', 'aniso_v1',
        'aniso_v2', 'aniso_v3', 'citations', 'description', 'dir_alpha95',
        'dir_comp', 'dir_dec', 'dir_inc', 'dir_mad_free', 'dir_n_measurements',
        'dir_tilt_correction', 'experiments', 'geologic_classes',
        'geologic_types', 'hyst_bc', 'hyst_bcr', 'hyst_mr_moment',
        'hyst_ms_moment', 'int_abs', 'int_b', 'int_b_beta', 'int_b_sigma',
        'int_corr', 'int_dang', 'int_drats', 'int_f', 'int_fvds', 'int_gamma',
        'int_mad_free', 'int_md', 'int_n_measurements', 'int_n_ptrm', 'int_q',
        'int_rsc', 'int_treat_dc_field', 'lithologies', 'meas_step_max',
        'meas_step_min', 'meas_step_unit', 'method_codes', 'sample',
        'software_packages', 'specimen'
    ]
    if 'specimens' in contribution.tables:
        contribution.propagate_name_down('sample', 'measurements')
        # add location/site info to measurements table for naming plots
        if pmagplotlib.isServer:
            contribution.propagate_name_down('site', 'measurements')
            contribution.propagate_name_down('location', 'measurements')
        spec_container = contribution.tables['specimens']
        if 'method_codes' not in spec_container.df.columns:
            spec_container.df['method_codes'] = None
        prior_spec_data = spec_container.get_records_for_code(
            'LP-DIR', strict_match=False
        )  # look up all prior directional interpretations
#
#  tie sample names to measurement data
#
    else:
        spec_container, prior_spec_data = None, []

#
#   import samples  for orientation info
#
    if 'samples' in contribution.tables:
        samp_container = contribution.tables['samples']
        samps = samp_container.df
        samp_data = samps.to_dict(
            'records'
        )  # convert to list of dictionaries for use with get_orient
    else:
        samp_data = []
    #if ('samples' in contribution.tables) and ('specimens' in contribution.tables):
    #    #        contribution.propagate_name_down('site','measurements')
    #    contribution.propagate_cols(col_names=[
    #                                'azimuth', 'dip', 'orientation_quality','bed_dip','bed_dip_direction'], target_df_name='measurements', source_df_name='samples')
##
# define figure numbers for equal area, zijderveld,
#  and intensity vs. demagnetiztion step respectively
#
    ZED = {}
    ZED['eqarea'], ZED['zijd'], ZED['demag'] = 1, 2, 3
    pmagplotlib.plot_init(ZED['eqarea'], 6, 6)
    pmagplotlib.plot_init(ZED['zijd'], 6, 6)
    pmagplotlib.plot_init(ZED['demag'], 6, 6)
    #    save_pca=0
    angle, direction_type, setangle = "", "", 0
    #   create measurement dataframe
    #
    meas_container = contribution.tables['measurements']
    meas_data = meas_container.df
    #
    meas_data = meas_data[meas_data['method_codes'].str.contains(
        'LT-NO|LT-AF-Z|LT-T-Z|LT-M-Z') == True]  # fish out steps for plotting
    meas_data = meas_data[meas_data['method_codes'].str.contains(
        'AN|ARM|LP-TRM|LP-PI-ARM') == False]  # strip out unwanted experiments
    intensity_types = [
        col_name for col_name in meas_data.columns if col_name in intlist
    ]
    intensity_types = [
        col_name for col_name in intensity_types if any(meas_data[col_name])
    ]
    if not len(intensity_types):
        print('-W- No intensity columns found')
        return
    # plot first non-empty intensity method found - normalized to initial value anyway -
    # doesn't matter which used
    int_key = intensity_types[0]
    # get all the non-null intensity records of the same type
    meas_data = meas_data[meas_data[int_key].notnull()]
    if 'quality' not in meas_data.columns:
        meas_data['quality'] = 'g'  # set the default flag to good
# need to treat LP-NO specially  for af data, treatment should be zero,
# otherwise 273.
#meas_data['treatment'] = meas_data['treat_ac_field'].where(
#    cond=meas_data['treat_ac_field'] != 0, other=meas_data['treat_temp'])
    meas_data['treatment'] = meas_data['treat_ac_field'].where(
        cond=meas_data['treat_ac_field'].astype(bool),
        other=meas_data['treat_temp'])
    meas_data['ZI'] = 1  # initialize these to one
    meas_data['instrument_codes'] = ""  # initialize these to blank
    #   for unusual case of microwave power....
    if 'treat_mw_power' in meas_data.columns:
        meas_data.loc[
            (meas_data.treat_mw_power != 0) & (meas_data.treat_mw_power) &
            (meas_data.treat_mw_time),
            'treatment'] = meas_data.treat_mw_power * meas_data.treat_mw_time
#
# get list of unique specimen names from measurement data
#
# this is a list of all the specimen names
    specimen_names = meas_data.specimen.unique()
    specimen_names = specimen_names.tolist()
    specimen_names.sort()
    #
    # set up new DataFrame for this sessions specimen interpretations
    #
    data_container = cb.MagicDataFrame(dtype='specimens',
                                       columns=specimen_cols)
    # this is for interpretations from this session
    current_spec_data = data_container.df
    if specimen == "":
        k = 0
    else:
        k = specimen_names.index(specimen)
    # let's look at the data now
    while k < len(specimen_names):
        mpars = {"specimen_direction_type": "Error"}
        # set the current specimen for plotting
        this_specimen = specimen_names[k]
        # reset beginning/end pca if plotting more than one specimen
        if not specimen:
            beg_pca, end_pca = "", ""
        if verbose and this_specimen != "":
            print(this_specimen, k + 1, 'out of ', len(specimen_names))
        if setangle == 0:
            angle = ""
        this_specimen_measurements = meas_data[
            meas_data['specimen'].str.contains(this_specimen).astype(
                bool)]  # fish out this specimen
        this_specimen_measurements = this_specimen_measurements[
            -this_specimen_measurements['quality'].str.contains('b').astype(
                bool)]  # remove bad measurements
        if len(this_specimen_measurements) != 0:  # if there are measurements
            meas_list = this_specimen_measurements.to_dict(
                'records')  # get a list of dictionaries
            this_sample = ""
            if coord != '-1' and 'sample' in meas_list[0].keys(
            ):  # look up sample name
                this_sample = pmag.get_dictitem(meas_list, 'specimen',
                                                this_specimen, 'T')
                if len(this_sample) > 0:
                    this_sample = this_sample[0]['sample']
            #
            #    set up datablock [[treatment,dec, inc, int, direction_type],[....]]
            #
            #
            # figure out the method codes
            #
            units, methods, title = "", "", this_specimen

            if pmagplotlib.isServer:
                try:
                    loc = this_specimen_measurements.loc[:,
                                                         'location'].values[0]
                except:
                    loc = ""
                try:
                    site = this_specimen_measurements.loc[:, 'site'].values[0]
                except:
                    site = ""
                try:
                    samp = this_specimen_measurements.loc[:,
                                                          'sample'].values[0]
                except:
                    samp = ""
                title = "LO:_{}_SI:_{}_SA:_{}_SP:_{}_".format(
                    loc, site, samp, this_specimen)
            # this is a list of all the specimen method codes
            meas_meths = this_specimen_measurements.method_codes.unique()
            tr = pd.to_numeric(this_specimen_measurements.treatment).tolist()
            if any(cb.is_null(treat, False) for treat in tr):
                print(
                    '-W- Missing required values in measurements.treatment for {}, skipping'
                    .format(this_specimen))
                if specimen:
                    return
                k += 1
                continue
            if set(tr) == set([0]):
                print(
                    '-W- Missing required values in measurements.treatment for {}, skipping'
                    .format(this_specimen))
                if specimen:
                    return
                k += 1
                continue
            for m in meas_meths:
                if 'LT-AF-Z' in m and 'T' not in units:
                    units = 'T'  # units include tesla
                    tr[0] = 0
                if 'LT-T-Z' in m and 'K' not in units:
                    units = units + ":K"  # units include kelvin
                if 'LT-M-Z' in m and 'J' not in units:
                    units = units + ':J'  # units include joules
                    tr[0] = 0
                units = units.strip(':')  # strip off extra colons
                if 'LP-' in m:
                    methods = methods + ":" + m
            decs = pd.to_numeric(this_specimen_measurements.dir_dec).tolist()
            incs = pd.to_numeric(this_specimen_measurements.dir_inc).tolist()

            #
            #    fix the coordinate system
            #
            # revert to original coordinate system
            coord = saved_coord
            if coord != '-1':  # need to transform coordinates to geographic
                # get the azimuth
                or_info, az_type = pmag.get_orient(samp_data,
                                                   this_sample,
                                                   data_model=3)
                if 'azimuth' in or_info.keys() and cb.not_null(
                        or_info['azimuth']):
                    #azimuths = pd.to_numeric(
                    #    this_specimen_measurements.azimuth).tolist()
                    #dips = pd.to_numeric(this_specimen_measurements.dip).tolist()
                    azimuths = len(decs) * [or_info['azimuth']]
                    dips = len(decs) * [or_info['dip']]
                # if azimuth/dip is missing, plot using specimen coordinates instead
                else:
                    azimuths, dips = [], []
                if any([cb.is_null(az) for az in azimuths if az != 0]):
                    coord = '-1'
                    print("-W- Couldn't find azimuth and dip for {}".format(
                        this_specimen))
                    print("    Plotting with specimen coordinates instead")
                elif any([cb.is_null(dip) for dip in dips if dip != 0]):
                    coord = '-1'
                    print("-W- Couldn't find azimuth and dip for {}".format(
                        this_specimen))
                    print("    Plotting with specimen coordinates instead")
                else:
                    coord = saved_coord
                # if azimuth and dip were found, continue with geographic coordinates
                if coord != "-1" and len(azimuths) > 0:
                    dirs = [decs, incs, azimuths, dips]
                    # this transposes the columns and rows of the list of lists
                    dirs_geo = np.array(list(map(list, list(zip(*dirs)))))
                    decs, incs = pmag.dogeo_V(dirs_geo)
                    if coord == '100' and 'bed_dip_direction' in or_info.keys(
                    ) and or_info[
                            'bed_dip_direction'] != "":  # need to do tilt correction too
                        bed_dip_dirs = len(decs) * [
                            or_info['bed_dip_direction']
                        ]
                        bed_dips = len(decs) * [or_info['bed_dip']]
                        #bed_dip_dirs = pd.to_numeric(
                        #    this_specimen_measurements.bed_dip_direction).tolist()  # get the azimuths
                        #bed_dips = pd.to_numeric(
                        #    this_specimen_measurements.bed_dip).tolist()  # get the azimuths

                        dirs = [decs, incs, bed_dip_dirs, bed_dips]
                        ## this transposes the columns and rows of the list of lists
                        dirs_tilt = np.array(list(map(list, list(zip(*dirs)))))
                        decs, incs = pmag.dotilt_V(dirs_tilt)
                        if pmagplotlib.isServer:
                            title = title + "CO:_t_"
                        else:
                            title = title + '_t'
                    else:
                        if pmagplotlib.isServer:
                            title = title + "CO:_g_"
                        else:
                            title = title + '_g'
            if angle == "":
                angle = decs[0]
            ints = pd.to_numeric(this_specimen_measurements[int_key]).tolist()
            ZI = this_specimen_measurements.ZI.tolist()
            flags = this_specimen_measurements.quality.tolist()
            codes = this_specimen_measurements.instrument_codes.tolist()
            datalist = [tr, decs, incs, ints, ZI, flags, codes]
            # this transposes the columns and rows of the list of lists
            datablock = list(map(list, list(zip(*datalist))))
            pmagplotlib.plot_zed(ZED, datablock, angle, title, units)
            if verbose and not set_env.IS_WIN:
                pmagplotlib.draw_figs(ZED)
#
#     collect info for current_specimen_interpretation dictionary
#

#
#     find prior interpretation
#
            prior_specimen_interpretations = []
            if len(prior_spec_data):
                prior_specimen_interpretations = prior_spec_data[
                    prior_spec_data['specimen'].str.contains(
                        this_specimen) == True]
            if (beg_pca == "") and (len(prior_specimen_interpretations) != 0):
                if len(prior_specimen_interpretations) > 0:
                    beg_pcas = pd.to_numeric(prior_specimen_interpretations.
                                             meas_step_min.values).tolist()
                    end_pcas = pd.to_numeric(prior_specimen_interpretations.
                                             meas_step_max.values).tolist()
                    spec_methods = prior_specimen_interpretations.method_codes.tolist(
                    )
                    # step through all prior interpretations and plot them
                    for ind in range(len(beg_pcas)):
                        spec_meths = spec_methods[ind].split(':')
                        for m in spec_meths:
                            if 'DE-BFL' in m:
                                calculation_type = 'DE-BFL'  # best fit line
                            if 'DE-BFP' in m:
                                calculation_type = 'DE-BFP'  # best fit plane
                            if 'DE-FM' in m:
                                calculation_type = 'DE-FM'  # fisher mean
                            if 'DE-BFL-A' in m:
                                calculation_type = 'DE-BFL-A'  # anchored best fit line
                        if len(beg_pcas) != 0:
                            try:
                                # getting the starting and ending points
                                start, end = tr.index(beg_pcas[ind]), tr.index(
                                    end_pcas[ind])
                                mpars = pmag.domean(datablock, start, end,
                                                    calculation_type)
                            except ValueError:
                                print(
                                    '-W- Specimen record contains invalid start/stop bounds:'
                                )
                                mpars['specimen_direction_type'] = "Error"
                        # calculate direction/plane
                            if mpars["specimen_direction_type"] != "Error":
                                # put it on the plot
                                pmagplotlib.plot_dir(ZED, mpars, datablock,
                                                     angle)
                                if verbose and not set_env.IS_WIN:
                                    pmagplotlib.draw_figs(ZED)
### SKIP if no prior interpretation - this section should not be used:
#            else:
#                try:
#                    start, end = int(beg_pca), int(end_pca)
#                except ValueError:
#                    beg_pca = 0
#                    end_pca = len(datablock) - 1
#                    start, end = int(beg_pca), int(end_pca)
#            #    # calculate direction/plane
#                try:
#                    mpars = pmag.domean(datablock, start, end, calculation_type)
#                except Exception as ex:
#                    print('-I- Problem with {}'.format(this_specimen))
#                    print('   ', ex)
#                    print('    Skipping')
#                    continue
#                    k += 1
#                if mpars["specimen_direction_type"] != "Error":
#                    # put it on the plot
#                    pmagplotlib.plot_dir(ZED, mpars, datablock, angle)
#                    if verbose:
#                        pmagplotlib.draw_figs(ZED)

            if plots == 1 or specimen != "":
                if plot_file == "":
                    basename = title
                else:
                    basename = plot_file
                files = {}
                for key in list(ZED.keys()):
                    files[key] = basename + '_' + key + '.' + fmt
                    if pmagplotlib.isServer:
                        files[key] = basename + "TY:_{}_.".format(key) + fmt
                pmagplotlib.save_plots(ZED, files)
                if specimen != "":
                    sys.exit()
            if verbose:
                recnum = 0
                for plotrec in datablock:
                    if units == 'T':
                        print('%s: %i  %7.1f %s  %8.3e %7.1f %7.1f %s' %
                              (plotrec[5], recnum, plotrec[0] * 1e3, " mT",
                               plotrec[3], plotrec[1], plotrec[2], plotrec[6]))
                    if units == "K":
                        print('%s: %i  %7.1f %s  %8.3e %7.1f %7.1f %s' %
                              (plotrec[5], recnum, plotrec[0] - 273, ' C',
                               plotrec[3], plotrec[1], plotrec[2], plotrec[6]))
                    if units == "J":
                        print('%s: %i  %7.1f %s  %8.3e %7.1f %7.1f %s' %
                              (plotrec[5], recnum, plotrec[0], ' J',
                               plotrec[3], plotrec[1], plotrec[2], plotrec[6]))
                    if 'K' in units and 'T' in units:
                        if plotrec[0] >= 1.:
                            print('%s: %i  %7.1f %s  %8.3e %7.1f %7.1f %s' %
                                  (plotrec[5], recnum, plotrec[0] - 273, ' C',
                                   plotrec[3], plotrec[1], plotrec[2],
                                   plotrec[6]))
                        if plotrec[0] < 1.:
                            print('%s: %i  %7.1f %s  %8.3e %7.1f %7.1f %s' %
                                  (plotrec[5], recnum, plotrec[0] * 1e3, " mT",
                                   plotrec[3], plotrec[1], plotrec[2],
                                   plotrec[6]))
                    recnum += 1
            # we have a current interpretation
            elif mpars["specimen_direction_type"] != "Error":
                #
                # create a new specimen record for the interpreation for this
                # specimen
                this_specimen_interpretation = {
                    col: ""
                    for col in specimen_cols
                }
                #               this_specimen_interpretation["analysts"]=user
                this_specimen_interpretation['software_packages'] = version_num
                this_specimen_interpretation['specimen'] = this_specimen
                this_specimen_interpretation["method_codes"] = calculation_type
                this_specimen_interpretation["meas_step_unit"] = units
                this_specimen_interpretation["meas_step_min"] = tr[start]
                this_specimen_interpretation["meas_step_max"] = tr[end]
                this_specimen_interpretation["dir_dec"] = '%7.1f' % (
                    mpars['specimen_dec'])
                this_specimen_interpretation["dir_inc"] = '%7.1f' % (
                    mpars['specimen_inc'])
                this_specimen_interpretation["dir_dang"] = '%7.1f' % (
                    mpars['specimen_dang'])
                this_specimen_interpretation["dir_n_measurements"] = '%i' % (
                    mpars['specimen_n'])
                this_specimen_interpretation["dir_tilt_correction"] = coord
                methods = methods.replace(" ", "")
                if "T" in units:
                    methods = methods + ":LP-DIR-AF"
                if "K" in units:
                    methods = methods + ":LP-DIR-T"
                if "J" in units:
                    methods = methods + ":LP-DIR-M"
                this_specimen_interpretation["method_codes"] = methods.strip(
                    ':')
                this_specimen_interpretation[
                    "experiments"] = this_specimen_measurements.experiment.unique(
                    )[0]
                #
                #   print some stuff
                #
                if calculation_type != 'DE-FM':
                    this_specimen_interpretation["dir_mad_free"] = '%7.1f' % (
                        mpars['specimen_mad'])
                    this_specimen_interpretation["dir_alpha95"] = ''
                    if verbose:
                        if units == 'K':
                            print(
                                '%s %i %7.1f %7.1f %7.1f %7.1f %7.1f %7.1f %s \n'
                                %
                                (this_specimen_interpretation["specimen"],
                                 int(this_specimen_interpretation[
                                     "dir_n_measurements"]),
                                 float(this_specimen_interpretation[
                                     "dir_mad_free"]),
                                 float(
                                     this_specimen_interpretation["dir_dang"]),
                                 float(this_specimen_interpretation[
                                     "meas_step_min"]) - 273,
                                 float(this_specimen_interpretation[
                                     "meas_step_max"]) - 273,
                                 float(
                                     this_specimen_interpretation["dir_dec"]),
                                 float(
                                     this_specimen_interpretation["dir_inc"]),
                                 calculation_type))
                        elif units == 'T':
                            print(
                                '%s %i %7.1f %7.1f %7.1f %7.1f %7.1f %7.1f %s \n'
                                %
                                (this_specimen_interpretation["specimen"],
                                 int(this_specimen_interpretation[
                                     "dir_n_measurements"]),
                                 float(this_specimen_interpretation[
                                     "dir_mad_free"]),
                                 float(
                                     this_specimen_interpretation["dir_dang"]),
                                 float(this_specimen_interpretation[
                                     "meas_step_min"]) * 1e3,
                                 float(this_specimen_interpretation[
                                     "meas_step_max"]) * 1e3,
                                 float(
                                     this_specimen_interpretation["dir_dec"]),
                                 float(
                                     this_specimen_interpretation["dir_inc"]),
                                 calculation_type))
                        elif 'T' in units and 'K' in units:
                            if float(this_specimen_interpretation[
                                    'meas_step_min']) < 1.0:
                                min = float(this_specimen_interpretation[
                                    'meas_step_min']) * 1e3
                            else:
                                min = float(this_specimen_interpretation[
                                    'meas_step_min']) - 273
                            if float(this_specimen_interpretation[
                                    'meas_step_max']) < 1.0:
                                max = float(this_specimen_interpretation[
                                    'meas_step_max']) * 1e3
                            else:
                                max = float(this_specimen_interpretation[
                                    'meas_step_max']) - 273
                            print(
                                '%s %i %7.1f %i %i %7.1f %7.1f %7.1f %s \n' %
                                (this_specimen_interpretation["specimen"],
                                 int(this_specimen_interpretation[
                                     "dir_n_measurements"]),
                                 float(this_specimen_interpretation[
                                     "dir_mad_free"]),
                                 float(
                                     this_specimen_interpretation["dir_dang"]),
                                 min, max,
                                 float(
                                     this_specimen_interpretation["dir_dec"]),
                                 float(
                                     this_specimen_interpretation["dir_inc"]),
                                 calculation_type))
                        else:
                            print(
                                '%s %i %7.1f %7.1f %7.1f %7.1f %7.1f %7.1f %s \n'
                                %
                                (this_specimen_interpretation["specimen"],
                                 int(this_specimen_interpretation[
                                     "dir_n_measurements"]),
                                 float(this_specimen_interpretation[
                                     "dir_mad_free"]),
                                 float(
                                     this_specimen_interpretation["dir_dang"]),
                                 float(this_specimen_interpretation[
                                     "meas_step_min"]),
                                 float(this_specimen_interpretation[
                                     "meas_step_max"]),
                                 float(
                                     this_specimen_interpretation["dir_dec"]),
                                 float(
                                     this_specimen_interpretation["dir_inc"]),
                                 calculation_type))
                else:
                    this_specimen_interpretation["dir_alpha95"] = '%7.1f' % (
                        mpars['specimen_alpha95'])
                    this_specimen_interpretation["dir_mad_free"] = ''
                    if verbose:
                        if 'K' in units:
                            print(
                                '%s %i %7.1f %7.1f %7.1f %7.1f %7.1f %7.1f %s \n'
                                %
                                (this_specimen_interpretation["specimen"],
                                 int(this_specimen_interpretation[
                                     "dir_n_measurments"]),
                                 float(this_specimen_interpretation[
                                     "dir_mad_free"]),
                                 float(
                                     this_specimen_interpretation["dir_dang"]),
                                 float(this_specimen_interpretation[
                                     "meas_step_min"]) - 273,
                                 float(this_specimen_interpretation[
                                     "meas_step_max"]) - 273,
                                 float(
                                     this_specimen_interpretation["dir_dec"]),
                                 float(
                                     this_specimen_interpretation["dir_inc"]),
                                 calculation_type))
                        elif 'T' in units:
                            print(
                                '%s %i %7.1f %7.1f %7.1f %7.1f %7.1f %7.1f %s \n'
                                %
                                (this_specimen_interpretation["specimen"],
                                 int(this_specimen_interpretation[
                                     "dir_n_measurements"]),
                                 float(this_specimen_interpretation[
                                     "dir_alpha95"]),
                                 float(
                                     this_specimen_interpretation["dir_dang"]),
                                 float(this_specimen_interpretation[
                                     "meas_step_min"]) * 1e3,
                                 float(this_specimen_interpretation[
                                     "meas_step_max"]) * 1e3,
                                 float(
                                     this_specimen_interpretation["dir_dec"]),
                                 float(
                                     this_specimen_interpretation["dir_inc"]),
                                 calculation_type))
                        elif 'T' in units and 'K' in units:
                            if float(this_specimen_interpretation[
                                    'meas_step_min']) < 1.0:
                                min = float(this_specimen_interpretation[
                                    'meas_step_min']) * 1e3
                            else:
                                min = float(this_specimen_interpretation[
                                    'meas_step_min']) - 273
                            if float(this_specimen_interpretation[
                                    'meas_step_max']) < 1.0:
                                max = float(this_specimen_interpretation[
                                    'meas_step_max']) * 1e3
                            else:
                                max = float(this_specimen_interpretation[
                                    'meas_step_max']) - 273
                            print('%s %i %7.1f %i %i %7.1f %7.1f %s \n' % (
                                this_specimen_interpretation["specimen"],
                                int(this_specimen_interpretation[
                                    "dir_n_measurements"]),
                                float(
                                    this_specimen_interpretation["dir_alpha95"]
                                ), min, max,
                                float(this_specimen_interpretation["dir_dec"]),
                                float(this_specimen_interpretation["dir_inc"]),
                                calculation_type))
                        else:
                            print(
                                '%s %i %7.1f %7.1f %7.1f %7.1f %7.1f %s \n' %
                                (this_specimen_interpretation["specimen"],
                                 int(this_specimen_interpretation[
                                     "dir_n_measurements"]),
                                 float(this_specimen_interpretation[
                                     "dir_alpha95"]),
                                 float(this_specimen_interpretation[
                                     "meas_step_min"]),
                                 float(this_specimen_interpretation[
                                     "meas_step_max"]),
                                 float(
                                     this_specimen_interpretation["dir_dec"]),
                                 float(
                                     this_specimen_interpretation["dir_inc"]),
                                 calculation_type))
                if verbose:
                    saveit = input("Save this interpretation? [y]/n \n")
        else:
            print("no data", this_specimen)
        if verbose:
            pmagplotlib.draw_figs(ZED)
            #res = input('  <return> for next specimen, [q]uit  ')
            res = input("S[a]ve plots, [q]uit, or <return> to continue  ")
            if res == 'a':
                files = {
                    plot_type: this_specimen + "_" + plot_type + "." + fmt
                    for plot_type in ZED
                }
                pmagplotlib.save_plots(ZED, files)
                print("")
            if res == 'q':
                return
        k += 1
示例#11
0
def main():
    """
    NAME
       foldtest_magic.py

    DESCRIPTION
       does a fold test (Tauxe, 2010) on data

    INPUT FORMAT
       pmag_specimens format file, er_samples.txt format file (for bedding)

    SYNTAX
       foldtest_magic.py [command line options]

    OPTIONS
        -h prints help message and quits
        -f pmag_sites  formatted file [default is pmag_sites.txt]
        -fsa er_samples  formatted file [default is er_samples.txt]
        -fsi er_sites  formatted file 
        -exc use pmag_criteria.txt to set acceptance criteria
        -n NB, set number of bootstraps, default is 1000
        -b MIN, MAX, set bounds for untilting, default is -10, 150
        -fmt FMT, specify format - default is svg
        -sav saves plots and quits
    
    OUTPUT
        Geographic: is an equal area projection of the input data in 
                    original coordinates
        Stratigraphic: is an equal area projection of the input data in 
                    tilt adjusted coordinates
        % Untilting: The dashed (red) curves are representative plots of 
                    maximum eigenvalue (tau_1) as a function of untilting
                    The solid line is the cumulative distribution of the
                    % Untilting required to maximize tau for all the 
                    bootstrapped data sets.  The dashed vertical lines
                    are 95% confidence bounds on the % untilting that yields 
                   the most clustered result (maximum tau_1).  
        Command line: prints out the bootstrapped iterations and
                   finally the confidence bounds on optimum untilting.
        If the 95% conf bounds include 0, then a pre-tilt magnetization is indicated
        If the 95% conf bounds include 100, then a post-tilt magnetization is indicated
        If the 95% conf bounds exclude both 0 and 100, syn-tilt magnetization is
                possible as is vertical axis rotation or other pathologies

    """
    kappa = 0
    nb = 1000  # number of bootstraps
    min, max = -10, 150
    dir_path = '.'
    infile, orfile = 'pmag_sites.txt', 'er_samples.txt'
    critfile = 'pmag_criteria.txt'
    dipkey, azkey = 'sample_bed_dip', 'sample_bed_dip_direction'
    fmt = 'svg'
    plot = 0
    if '-WD' in sys.argv:
        ind = sys.argv.index('-WD')
        dir_path = sys.argv[ind + 1]
    if '-h' in sys.argv:  # check if help is needed
        print(main.__doc__)
        sys.exit()  # graceful quit
    if '-n' in sys.argv:
        ind = sys.argv.index('-n')
        nb = int(sys.argv[ind + 1])
    if '-fmt' in sys.argv:
        ind = sys.argv.index('-fmt')
        fmt = sys.argv[ind + 1]
    if '-sav' in sys.argv: plot = 1
    if '-b' in sys.argv:
        ind = sys.argv.index('-b')
        min = int(sys.argv[ind + 1])
        max = int(sys.argv[ind + 2])
    if '-f' in sys.argv:
        ind = sys.argv.index('-f')
        infile = sys.argv[ind + 1]
    if '-fsa' in sys.argv:
        ind = sys.argv.index('-fsa')
        orfile = sys.argv[ind + 1]
    elif '-fsi' in sys.argv:
        ind = sys.argv.index('-fsi')
        orfile = sys.argv[ind + 1]
        dipkey, azkey = 'site_bed_dip', 'site_bed_dip_direction'
    orfile = dir_path + '/' + orfile
    infile = dir_path + '/' + infile
    critfile = dir_path + '/' + critfile
    data, file_type = pmag.magic_read(infile)
    ordata, file_type = pmag.magic_read(orfile)
    if '-exc' in sys.argv:
        crits, file_type = pmag.magic_read(critfile)
        for crit in crits:
            if crit['pmag_criteria_code'] == "DE-SITE":
                SiteCrit = crit
                break


# get to work
#
    PLTS = {'geo': 1, 'strat': 2, 'taus': 3}  # make plot dictionary
    pmagplotlib.plot_init(PLTS['geo'], 5, 5)
    pmagplotlib.plot_init(PLTS['strat'], 5, 5)
    pmagplotlib.plot_init(PLTS['taus'], 5, 5)
    GEOrecs = pmag.get_dictitem(data, 'site_tilt_correction', '0', 'T')
    if len(GEOrecs) > 0:  # have some geographic data
        DIDDs = []  # set up list for dec inc  dip_direction, dip
        for rec in GEOrecs:  # parse data
            dip, dip_dir = 0, -1
            Dec = float(rec['site_dec'])
            Inc = float(rec['site_inc'])
            orecs = pmag.get_dictitem(ordata, 'er_site_name',
                                      rec['er_site_name'], 'T')
            if len(orecs) > 0:
                if orecs[0][azkey] != "": dip_dir = float(orecs[0][azkey])
                if orecs[0][dipkey] != "": dip = float(orecs[0][dipkey])
            if dip != 0 and dip_dir != -1:
                if '-exc' in sys.argv:
                    keep = 1
                    for key in list(SiteCrit.keys()):
                        if 'site' in key and SiteCrit[key] != "" and rec[
                                key] != "" and key != 'site_alpha95':
                            if float(rec[key]) < float(SiteCrit[key]):
                                keep = 0
                                print(rec['er_site_name'], key, rec[key])
                        if key == 'site_alpha95' and SiteCrit[
                                key] != "" and rec[key] != "":
                            if float(rec[key]) > float(SiteCrit[key]):
                                keep = 0
                    if keep == 1: DIDDs.append([Dec, Inc, dip_dir, dip])
                else:
                    DIDDs.append([Dec, Inc, dip_dir, dip])
    else:
        print('no geographic directional data found')
        sys.exit()
    pmagplotlib.plotEQ(PLTS['geo'], DIDDs, 'Geographic')
    data = numpy.array(DIDDs)
    D, I = pmag.dotilt_V(data)
    TCs = numpy.array([D, I]).transpose()
    pmagplotlib.plotEQ(PLTS['strat'], TCs, 'Stratigraphic')
    if plot == 0: pmagplotlib.drawFIGS(PLTS)
    Percs = list(range(min, max))
    Cdf, Untilt = [], []
    pylab.figure(num=PLTS['taus'])
    print('doing ', nb, ' iterations...please be patient.....')
    for n in range(
            nb):  # do bootstrap data sets - plot first 25 as dashed red line
        if n % 50 == 0: print(n)
        Taus = []  # set up lists for taus
        PDs = pmag.pseudo(DIDDs)
        if kappa != 0:
            for k in range(len(PDs)):
                d, i = pmag.fshdev(kappa)
                dipdir, dip = pmag.dodirot(d, i, PDs[k][2], PDs[k][3])
                PDs[k][2] = dipdir
                PDs[k][3] = dip
        for perc in Percs:
            tilt = numpy.array([1., 1., 1., 0.01 * perc])
            D, I = pmag.dotilt_V(PDs * tilt)
            TCs = numpy.array([D, I]).transpose()
            ppars = pmag.doprinc(TCs)  # get principal directions
            Taus.append(ppars['tau1'])
        if n < 25: pylab.plot(Percs, Taus, 'r--')
        Untilt.append(Percs[Taus.index(
            numpy.max(Taus))])  # tilt that gives maximum tau
        Cdf.append(old_div(float(n), float(nb)))
    pylab.plot(Percs, Taus, 'k')
    pylab.xlabel('% Untilting')
    pylab.ylabel('tau_1 (red), CDF (green)')
    Untilt.sort()  # now for CDF of tilt of maximum tau
    pylab.plot(Untilt, Cdf, 'g')
    lower = int(.025 * nb)
    upper = int(.975 * nb)
    pylab.axvline(x=Untilt[lower], ymin=0, ymax=1, linewidth=1, linestyle='--')
    pylab.axvline(x=Untilt[upper], ymin=0, ymax=1, linewidth=1, linestyle='--')
    tit = '%i - %i %s' % (Untilt[lower], Untilt[upper], 'Percent Unfolding')
    print(tit)
    pylab.title(tit)
    if plot == 0:
        pmagplotlib.drawFIGS(PLTS)
        ans = input('S[a]ve all figures, <Return> to quit  \n ')
        if ans != 'a':
            print("Good bye")
            sys.exit()
    files = {}
    for key in list(PLTS.keys()):
        files[key] = ('foldtest_' + '%s' % (key.strip()[:2]) + '.' + fmt)
    pmagplotlib.saveP(PLTS, files)
示例#12
0
def main():
    """
    NAME
        di_rot.py

    DESCRIPTION
        rotates set of directions to new coordinate system

    SYNTAX
        di_rot.py [command line options]

    OPTIONS
        -h prints help message and quits
        -f specify input file, default is standard input
        -F specify output file, default is standard output
        -D D specify  Dec of new coordinate system, default is 0
        -I I specify  Inc of new coordinate system, default is 90
    INTPUT/OUTPUT
        dec  inc   [space delimited]  


    """
    D, I = 0., 90.
    outfile = ""
    infile = ""
    if '-h' in sys.argv:
        print main.__doc__
        sys.exit()
    if '-f' in sys.argv:
        ind = sys.argv.index('-f')
        infile = sys.argv[ind + 1]
        data = numpy.loadtxt(infile)
    else:
        data = numpy.loadtxt(sys.stdin, dtype=numpy.float)
    if '-F' in sys.argv:
        ind = sys.argv.index('-F')
        outfile = sys.argv[ind + 1]
        out = open(outfile, 'w')
    if '-D' in sys.argv:
        ind = sys.argv.index('-D')
        D = float(sys.argv[ind + 1])
    if '-I' in sys.argv:
        ind = sys.argv.index('-I')
        I = float(sys.argv[ind + 1])
    if len(data.shape) > 1:  # 2-D array
        N = data.shape[0]
        DipDir, Dip = numpy.ones(N, dtype=numpy.float).transpose() * (
            D - 180.), numpy.ones(N, dtype=numpy.float).transpose() * (90. - I)
        data = data.transpose()
        data = numpy.array([data[0], data[1], DipDir, Dip]).transpose()
        drot, irot = pmag.dotilt_V(data)
        drot = (drot - 180.) % 360.  #
        for k in range(N):
            if outfile == "":
                print '%7.1f %7.1f ' % (drot[k], irot[k])
            else:
                out.write('%7.1f %7.1f\n' % (drot[k], irot[k]))
    else:
        d, i = pmag.dotilt(data[0], data[1], (D - 180.), 90. - I)
        if outfile == "":
            print '%7.1f %7.1f ' % ((d - 180.) % 360., i)
        else:
            out.write('%7.1f %7.1f\n' % ((d - 180.) % 360., i))
def main():
    """
    NAME
       foldtest_magic.py

    DESCRIPTION
       does a fold test (Tauxe, 2010) on data

    INPUT FORMAT
       pmag_specimens format file, er_samples.txt format file (for bedding)

    SYNTAX
       foldtest_magic.py [command line options]

    OPTIONS
        -h prints help message and quits
        -f pmag_sites  formatted file [default is pmag_sites.txt]
        -fsa er_samples  formatted file [default is er_samples.txt]
        -fsi er_sites  formatted file 
        -exc use pmag_criteria.txt to set acceptance criteria
        -n NB, set number of bootstraps, default is 1000
        -b MIN, MAX, set bounds for untilting, default is -10, 150
        -fmt FMT, specify format - default is svg
        -sav saves plots and quits
    
    OUTPUT
        Geographic: is an equal area projection of the input data in 
                    original coordinates
        Stratigraphic: is an equal area projection of the input data in 
                    tilt adjusted coordinates
        % Untilting: The dashed (red) curves are representative plots of 
                    maximum eigenvalue (tau_1) as a function of untilting
                    The solid line is the cumulative distribution of the
                    % Untilting required to maximize tau for all the 
                    bootstrapped data sets.  The dashed vertical lines
                    are 95% confidence bounds on the % untilting that yields 
                   the most clustered result (maximum tau_1).  
        Command line: prints out the bootstrapped iterations and
                   finally the confidence bounds on optimum untilting.
        If the 95% conf bounds include 0, then a pre-tilt magnetization is indicated
        If the 95% conf bounds include 100, then a post-tilt magnetization is indicated
        If the 95% conf bounds exclude both 0 and 100, syn-tilt magnetization is
                possible as is vertical axis rotation or other pathologies

    """
    kappa=0
    nb=1000 # number of bootstraps
    min,max=-10,150
    dir_path='.'
    infile,orfile='pmag_sites.txt','er_samples.txt'
    critfile='pmag_criteria.txt'
    dipkey,azkey='sample_bed_dip','sample_bed_dip_direction'
    fmt='svg'
    plot=0
    if '-WD' in sys.argv:
        ind=sys.argv.index('-WD')
        dir_path=sys.argv[ind+1]
    if '-h' in sys.argv: # check if help is needed
        print main.__doc__
        sys.exit() # graceful quit
    if '-n' in sys.argv:
        ind=sys.argv.index('-n')
        nb=int(sys.argv[ind+1])
    if '-fmt' in sys.argv:
        ind=sys.argv.index('-fmt')
        fmt=sys.argv[ind+1]
    if '-sav' in sys.argv:plot=1
    if '-b' in sys.argv:
        ind=sys.argv.index('-b')
        min=int(sys.argv[ind+1])
        max=int(sys.argv[ind+2])
    if '-f' in sys.argv:
        ind=sys.argv.index('-f')
        infile=sys.argv[ind+1] 
    if '-fsa' in sys.argv:
        ind=sys.argv.index('-fsa')
        orfile=sys.argv[ind+1] 
    elif '-fsi' in sys.argv:
        ind=sys.argv.index('-fsi')
        orfile=sys.argv[ind+1] 
        dipkey,azkey='site_bed_dip','site_bed_dip_direction'
    orfile=dir_path+'/'+orfile
    infile=dir_path+'/'+infile
    critfile=dir_path+'/'+critfile
    data,file_type=pmag.magic_read(infile)
    ordata,file_type=pmag.magic_read(orfile)
    if '-exc' in sys.argv:
        crits,file_type=pmag.magic_read(critfile)
        for crit in crits:
             if crit['pmag_criteria_code']=="DE-SITE":
                 SiteCrit=crit
                 break
# get to work
#
    PLTS={'geo':1,'strat':2,'taus':3} # make plot dictionary
    pmagplotlib.plot_init(PLTS['geo'],5,5)
    pmagplotlib.plot_init(PLTS['strat'],5,5)
    pmagplotlib.plot_init(PLTS['taus'],5,5)
    GEOrecs=pmag.get_dictitem(data,'site_tilt_correction','0','T')
    if len(GEOrecs)>0: # have some geographic data
        DIDDs= [] # set up list for dec inc  dip_direction, dip
        for rec in GEOrecs:   # parse data
            dip,dip_dir=0,-1
            Dec=float(rec['site_dec'])
            Inc=float(rec['site_inc'])
            orecs=pmag.get_dictitem(ordata,'er_site_name',rec['er_site_name'],'T')
            if len(orecs)>0:
                    if orecs[0][azkey]!="":dip_dir=float(orecs[0][azkey])
                    if orecs[0][dipkey]!="":dip=float(orecs[0][dipkey])
            if dip!=0 and dip_dir!=-1:
                if  '-exc' in  sys.argv:
                    keep=1
                    for key in SiteCrit.keys():
                        if 'site' in key  and SiteCrit[key]!="" and rec[key]!="" and key!='site_alpha95':
                            if float(rec[key])<float(SiteCrit[key]): 
                                keep=0
                                print rec['er_site_name'],key,rec[key]
                        if key=='site_alpha95'  and SiteCrit[key]!="" and rec[key]!="":
                            if float(rec[key])>float(SiteCrit[key]): 
                                keep=0
                    if keep==1:  DIDDs.append([Dec,Inc,dip_dir,dip])
                else:
                                DIDDs.append([Dec,Inc,dip_dir,dip])
    else:
        print 'no geographic directional data found'
        sys.exit()
    pmagplotlib.plotEQ(PLTS['geo'],DIDDs,'Geographic')
    data=numpy.array(DIDDs)
    D,I=pmag.dotilt_V(data)
    TCs=numpy.array([D,I]).transpose()
    pmagplotlib.plotEQ(PLTS['strat'],TCs,'Stratigraphic')
    if plot==0:pmagplotlib.drawFIGS(PLTS)
    Percs=range(min,max)
    Cdf,Untilt=[],[]
    pylab.figure(num=PLTS['taus'])
    print 'doing ',nb,' iterations...please be patient.....'
    for n in range(nb): # do bootstrap data sets - plot first 25 as dashed red line
            if n%50==0:print n
            Taus=[] # set up lists for taus
            PDs=pmag.pseudo(DIDDs)
            if kappa!=0:
                for k in range(len(PDs)):
                    d,i=pmag.fshdev(kappa)
                    dipdir,dip=pmag.dodirot(d,i,PDs[k][2],PDs[k][3])
                    PDs[k][2]=dipdir
                    PDs[k][3]=dip
            for perc in Percs:
                tilt=numpy.array([1.,1.,1.,0.01*perc])
                D,I=pmag.dotilt_V(PDs*tilt)
                TCs=numpy.array([D,I]).transpose()
                ppars=pmag.doprinc(TCs) # get principal directions
                Taus.append(ppars['tau1'])
            if n<25:pylab.plot(Percs,Taus,'r--')
            Untilt.append(Percs[Taus.index(numpy.max(Taus))]) # tilt that gives maximum tau
            Cdf.append(float(n)/float(nb))
    pylab.plot(Percs,Taus,'k')
    pylab.xlabel('% Untilting')
    pylab.ylabel('tau_1 (red), CDF (green)')
    Untilt.sort() # now for CDF of tilt of maximum tau
    pylab.plot(Untilt,Cdf,'g')
    lower=int(.025*nb)     
    upper=int(.975*nb)
    pylab.axvline(x=Untilt[lower],ymin=0,ymax=1,linewidth=1,linestyle='--')
    pylab.axvline(x=Untilt[upper],ymin=0,ymax=1,linewidth=1,linestyle='--')
    tit= '%i - %i %s'%(Untilt[lower],Untilt[upper],'Percent Unfolding')
    print tit
    pylab.title(tit)
    if plot==0:
        pmagplotlib.drawFIGS(PLTS)
        ans= raw_input('S[a]ve all figures, <Return> to quit  \n ')
        if ans!='a':
            print "Good bye"
            sys.exit()
    files={}
    for key in PLTS.keys():
        files[key]=('foldtest_'+'%s'%(key.strip()[:2])+'.'+fmt)
    pmagplotlib.saveP(PLTS,files)