示例#1
0
    record_with_id['aggregate_returns'] = backtest_statistics['aggregate_returns'].tolist()
    record_with_id['returns'] = backtest_statistics['transaction_adjusted_returns'].tolist()
    record_with_id['statistics'] = backtest_statistics['statistics']
    return record
    


# Generate backtests.
for er_idx in range(len(ers)):
    print('er_idx = {0}'.format(er_idx))
    er = ers[er_idx]
    for mv_idx in range(len(mv_weights)):
        print('mv_idx = {0}'.format(mv_idx))
        w = mv_weights[mv_idx]
        mvu, mvw = rkw_rolling_backtest(gen_mvportfolio(w), er)
        mvstats = rkw_statistics(mvu, mvw)
        record = dict()
        record['id'] = '20160910_er_{0}_mv_{1}'.format(er_idx, mv_idx)
        record['er_idx'] = er_idx
        record['mv_idx'] = mv_idx
        record['portfolio_name'] = 'mean-variance'
        record = write_backtest_results_record(
            record, mvu, mvw, mvstats)
        db.insert(record)

        for eta_idx in range(len(etas)):
            # print 'eta_idx = {0}'.format(eta_idx)        
            w = msv_parameters[er_idx][mv_idx][eta_idx]['weight']
            eta = msv_parameters[er_idx][mv_idx][eta_idx]['eta']
            error = msv_parameters[er_idx][mv_idx][eta_idx]['error']
            msvu, msvw = rkw_rolling_backtest(gen_msvportfolio(w, 1.0, eta), er)
示例#2
0
        results = bt[1]
        
        experiment = db.load_experiment(experiment_id)
        backtest_params = db.load_backtests([backtest_id])
        returns = db.load_returns(experiment)
        excess_returns = returns.values
        train, test = backtest.split_returns(
            excess_returns, 
            backtest_params['update_periods'], 
            backtest_params['trailing_periods'])
        portfolios = pg.decimallistseries2nparray(results.portfolio_weights)
        portfolio_returns = pg.decimallistseries2nparray(results.test_returns)
        train_mean = ps.mean(portfolios[0,:], train[0])
        train_variance = ps.variance(portfolios[0,:], train[0])
        eta = results.eta.iloc[0]
        backtest_statistics = ps.rkw_statistics(
            portfolios, portfolio_returns, eta=eta)
        test_statistics = backtest_statistics['statistics']
        agg_returns = backtest_statistics['aggregate_returns']
        
        output = test_statistics
        output['aggregate_returns'] = pg.array2pgarray(agg_returns)
        output['train_mean_return'] = train_mean
        output['train_variance'] = train_variance
        output['parameters_id'] = parameters_id
        output['experiment_id'] = experiment_id
        output['backtest_id'] = backtest_id
        outputs.append(output)
       
    output_table = pd.DataFrame(outputs)
    output_table.to_csv('dcc_backtest_statistics.csv', index=False)