示例#1
0
def compute_bs():
  from numpy import array
  from pylada.escan import read_input, exec_input, ReducedBPoints
  from pylada.vff import Vff

  # reads input file.
  input = read_input("input.py")

  # creating unrelaxed structure.
  structure = input.vff.lattice.to_structure()
  structure.atoms[0].type = "Si"
  structure.atoms[1].type = "Ge"
  structure.scale = 5.65

  # some kpoints + associated name
  X = array( [1,0,0], dtype="float64" )
  G = array( [0,0,0], dtype="float64" )
  L = array( [0.5,0.5,0.5], dtype="float64" )
  W = array( [0, 0.5,1], dtype="float64" )

  # Each job is performed for a given kpoint (first argument), at a given
  # reference energy (third argument). Results are stored in a specific directory
  # (second arguement). The expected eigenvalues are given in the fourth argument.
  input = read_input('input.py')
  kescan = exec_input(repr(input.escan).replace('Escan', 'KEscan')).functional

  kescan.fft_mesh = 14, 14, 14
  kescan.kpoints = ReducedBPoints(density=20) + (X, G) + (G, L)
  result = kescan( structure, outdir='results/projections', 
                   nbstates = len(structure.atoms) * 4 + 4,
                   eref = None )
示例#2
0
文件: emass.py 项目: mdavezac/LaDa
def gajobs(path, inputpath = "input.py"):
  from copy import deepcopy
  import IPython.ipapi
  from numpy import array, all

  from pylada.ga.escan.elemental.functional import Darwin as Functional
  from pylada.ga.escan.elemental.evaluator  import EffectiveMass as Evaluator
  from pylada.ga.escan.elemental            import Converter
  from pylada.ga.functional                 import minimize
  from pylada.jobs import JobFolder
  from pylada.escan import read_input

  # reads input file.
  input = read_input(inputpath)

  jobfolder = JobFolder()
  for type in ["ee", "hh"]:
    for direction in ["epi", "perp"]:
      for scale in input.scales:
        for range in input.ranges: 
          nmin, nmax = min(range), max(range)
          for trial in input.trials:
            escan = deepcopy(input.escan)
            escan.vff.lattice.scale = scale
            if direction == "perp": escan.direction = input.growth_direction
            elif all(array(input.growth_direction) - (0,0,1) == (0,0,0)):
              escan.direction = (1, 0, 0), (0, 1, 0)
            elif all(array(input.growth_direction) - (1,1,0) == (0,0,0)):
              escan.direction = (0, 0, 1), (-1, 1, 0)
            else: raise ValueError("Unknown growth direction.")
            if type == "ee": escan.type = "e"
            elif type == "hh" or type == "lh": escan.type = "h"
    
            converter = Converter(growth=input.growth_direction, lattice=escan.vff.lattice)
            
            kwargs = { "popsize": input.population_size, "rate": input.offspring_rate,
                       "max_gen": input.max_generations, "pools": input.pools,
                       "crossover_rate": input.crossover_rate, "swap_rate": input.swap_rate, 
                       "growth_rate": input.growth_rate, "nmin": nmin, "nmax": nmax,
                       "dosym": input.dosym, "rootworkdir": "$GSCRATCH", "comparison": minimize }
            kwargs.update(getattr(input, 'kwargs', {}))
            evaluator = Evaluator( converter = converter, 
                                   functional = escan, 
                                   **getattr(input, 'kwargs', {}) )
            functional = Functional(evaluator, **kwargs)
            functional.n = slice(2,4) if type == "lh" else slice(0,2)
    
            name = "{0[0]}{0[1]}{0[2]}/{1}/{2}/"\
                   .format(input.growth_direction, direction, type)
            name += "scale_{0:.2f}/{1}_{2}/trial_{3}".format(scale, nmin, nmax, trial)
            gajob = jobfolder / name
            gajob.functional = functional 

  ip = IPython.ipapi.get()
  ip.user_ns["current_jobfolder"] = jobfolder
  ip.magic("savejobs " + path)
示例#3
0
def gajobs(path, inputpath="input.py"):
    from copy import deepcopy
    import IPython.ipapi

    from pylada.ga.escan.elemental.functional import Darwin as Functional
    from pylada.ga.escan.elemental.evaluator import Dipole as Evaluator
    from pylada.ga.escan.elemental import LayeredConverter as Converter
    from pylada.jobs import JobFolder
    from pylada.escan import read_input

    # reads input file.
    input = read_input(inputpath)

    jobfolder = JobFolder()
    for scale in input.scales:
        for p in input.periods:
            for trial in input.trials:
                supercell = input.supercell(p)

                escan = deepcopy(input.escan)
                escan.fft_mesh = input.fftmesh(supercell)
                escan.vff.lattice.scale = scale

                converter = Converter(supercell, lattice=escan.vff.lattice)

                evaluator = Evaluator(converter=converter, escan=escan, **input.kwargs)
                evaluator._outdir.envvar = "$SCRATCH"

                functional = Functional(evaluator)
                functional.popsize = input.population_size
                functional.max_gen = input.max_generations
                functional.rate = input.offspring_rate
                functional.mean_conc = input.mean_conc
                functional.stddev_conc = input.stddev_conc
                functional.pools = input.pools

                gajob = jobfolder / "scale_{0:.2f}/period_{1}/trial_{2}".format(scale, p, trial)
                gajob.functional = functional

    ip = IPython.ipapi.get()
    ip.user_ns["current_jobfolder"] = jobfolder
    ip.magic("savejobs " + path)
示例#4
0
def gajobs(path, inputpath = "input.py"):
  from copy import deepcopy
  import IPython.ipapi

  from pylada.ga.escan.elemental.functional import Darwin as Functional
  from pylada.ga.escan.elemental.evaluator  import Dipole as Evaluator
  from pylada.ga.escan.elemental            import Converter
  from pylada.jobs import JobFolder
  from pylada.escan import read_input

  # reads input file.
  input = read_input(inputpath)

  jobfolder = JobFolder()
  for scale in input.scales:
    for range in input.ranges: 
      nmin, nmax = min(range), max(range)
      for trial in input.trials:
        escan = deepcopy(input.escan)
        escan.vff.lattice.scale = scale

        converter = Converter(growth=input.growth_direction, lattice=escan.vff.lattice)
        
        kwargs = { "popsizse": input.population_size, "rate": input.offspring_rate,
                   "max_gen": input.max_generations, "pools": input.pools,
                   "crossover_rate": input.crossover_rate, "swap_rate": input.swap_rate, 
                   "growth_rate": input.growth_rate, "nmin": nmin, "nmax": nmax,
                   "dosym": input.dosym, "rootworkdir": input.rootworkdir }
        kwargs.update(getattr(input, 'kwargs', {}))
        evaluator = Evaluator( converter = converter, 
                               functional = escan, 
                               **getattr(input, 'kwargs', {}) )
        functional = Functional(evaluator, **kwargs)

        gajob = jobfolder / "{4[0]}{4[1]}{4[2]}/scale_{0:.2f}/{1}_{2}/trial_{3}"\
                          .format(scale, nmin, nmax, trial, input.growth_direction)
        gajob.functional = functional 

  ip = IPython.ipapi.get()
  ip.user_ns["current_jobfolder"] = jobfolder
  ip.magic("savejobs " + path)
示例#5
0
#  You should have received a copy of the GNU General Public License along with PyLaDa.  If not, see
#  <http://www.gnu.org/licenses/>.
###############################

from sys import exit
from shutil import rmtree
from os.path import exists, join
from math import ceil, sqrt
from numpy import dot, array, matrix
from numpy.linalg import norm
from boost.mpi import world
from pylada.vff import Vff
from pylada.crystal import Structure, Lattice, fill_structure
from pylada.escan import read_input

input = read_input("input.py")

structure = Structure()
structure.set_cell = (4, 0, 0.5),\
                     (0, 1,   0),\
                     (0, 0, 0.5)
structure = fill_structure(structure.cell)
for i, atom in enumerate(structure.atoms):
  atom.type = "Si" if i < len(structure.atoms)/2 else "Ge"


result_str = Structure()
result_str.scale = 5.450000e+00
result_str.set_cell = (4.068890e+00, -4.235770e-18, 5.083297e-01),\
                     (-1.694308e-17, 1.016103e+00, 2.238072e-18),\
                     (-2.252168e-03, 8.711913e-18, 5.083297e-01)
示例#6
0
def create_sl(path, direction, nmin, nmax, nstep, x=0.5, density=10e0, input='input.py'):
  """ Creates dictionary of superlattices.
  
      :Parameters: 
        path : str 
          Path to output dictionary.
        direction : callable(int)->(3x3, 3x1)
          A callable taking the number of layers on input and returning a tuple
          consisting of a supercell with the correct number of layers and the
          direction of growth of the superlattice. The supercell must be
          have the correct periodicity: two vectors should be parallel to the
          substrate such that layers can actually be defined. Otherwise, there
          is not one-to-one correspondance between atoms and layers: the same
          atom could belong to different layers. A number of examples are given
          in this module: `direction001`, `direction011`, `direction111`.
        nmin : int
          Minimum number of layers.
        nmax : int 
          Maximum number of layers (excluded).
        nstep : int
          Step between layers: [``nmin``, ``nmin``+``nstep``,
          ``nmin``+2*``nstep``, ..., ``nmax``[
        x : float
          Concentration in Si of the superlattice. Should be between 0 and 1.
        density : float
          Kpoint density for escan calculations,
        input : str
          Path to input file containing escan functional.
  """
  from IPython.ipapi import get as get_ipy
  from numpy.linalg import norm, inv
  from pylada.jobs import JobFolder
  from pylada.escan import read_input, exec_input, ReducedKDensity
  from pylada.crystal.binary import zinc_blende
  from pylada.crystal import layer_iterator

  ip = get_ipy()

  input = read_input(input)
  kescan = exec_input(repr(input.escan).replace('Escan', 'KEscan')).functional

  lattice = zinc_blende()
  lattice.sites[0].type = 'Si', 'Ge'
  lattice.sites[1].type = 'Si', 'Ge'
  lattice.scale = 5.45
  lattice.find_space_group()

  density = 10e0 * max([1e0/norm(u) for u in inv(lattice.cell)])

  rootjobs = ip.user_ns.get('current_jobfolder', JobFolder())
  for n0 in range(nmin, nmax, nstep):
    # create structure
    cell, dir = direction(n0)
    structure = lattice.to_structure(cell) # reduction not necessary if cell function done right.
    N0 = int(len([0 for layer in layer_iterator(structure, dir)]) * x+1e-8)
    for i, layer in enumerate(layer_iterator(structure, dir)):
      for atom in layer: atom.type = 'Si' if i < N0 else 'Ge'
    xp = float(len([0 for atom in structure.atoms if atom.type == 'Si']))
    xp /= float(len(structure.atoms))
    assert abs(xp - x) < 1e-12
    # name and scale.
    structure.name = "{0[0]}{0[1]}{0[2]}/x_{1:0<4.3}/n_{2}".format(dir, x, n0)
    structure.scale = scale(structure)
    # creates job-folder.
    jobfolder = rootjobs / structure.name
    jobfolder.jobparams['structure'] = structure.copy()
    jobfolder.functional = kescan.copy()
    jobfolder.functional.kpoints = ReducedKDensity(density, (0.5, 0.5, 0.5))
    jobfolder.functional.reference = None
    jobfolder.functional.fft_mesh = fftmesh(structure.cell)
    jobfolder.functional.nbstates = int(len(structure.atoms) * 4 * 1.5+0.5)

  if 'current_jobfolder' not in ip.user_ns: ip.user_ns["current_jobfolder"] = rootjobs
  ip.magic("savejobs " + path)
  return
示例#7
0
文件: emass.py 项目: mdavezac/LaDa
from math import fabs as abs
from numpy import array
from pylada.crystal import fill_structure
from pylada.escan import read_input
from pylada.escan.emass import Functional

input = read_input("input.py", namespace = {"Escan": Functional})

G = array([0,0,0], dtype="float64")
X = array([0,0,1], dtype="float64")
structure = fill_structure(input.vff.lattice.cell, input.vff.lattice)
input.escan.nbstates = len(structure.atoms) * 4 + 4
input.escan.tolerance = 1e-12

orig = input.escan( structure, direction=(0,0,1), outdir="results/emass/100", \
                      do_relax_kpoint=False, type="e" )
assert abs(orig.mass[0] - 0.4381) < 0.01 # Gamma conduction emass 

result = input.escan( structure, direction=((0,0,1), (1,1,1)), outdir="results/hmass", \
                      do_relax_kpoint=False, type="h", bandgap=orig.extract_bg )
assert abs(result.mass[0][0] - 0.2769) < 0.01 # Gamma conduction heavy hmass (100 direction)
assert abs(result.mass[0][2] - 0.2059) < 0.01 # Gamma conduction light hmass (100 direction)
assert abs(result.mass[1][0] - 0.6885) < 0.01 # Gamma conduction heavy hmass (111 direction)
assert abs(result.mass[1][2] - 0.1460) < 0.01 # Gamma conduction light hmass (111 direction)
示例#8
0
#  your option) any later version.
# 
#  PyLaDa is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even
#  the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General
#  Public License for more details.
# 
#  You should have received a copy of the GNU General Public License along with PyLaDa.  If not, see
#  <http://www.gnu.org/licenses/>.
###############################

from numpy import array
from pylada.escan import read_input, exec_input, ReducedBPoints
from pylada.crystal.binary import zinc_blende

X = array( [1,0,0], dtype="float64" )
G = array( [0,0,0], dtype="float64" )
L = array( [0.5,0.5,0.5], dtype="float64" )
W = array( [0, 0.5,1], dtype="float64" )

input = read_input('input.py')
kescan = exec_input(repr(input.escan).replace('Escan', 'KEscan')).functional

structure = zinc_blende().to_structure(subs={'A':'Si', 'B':'Si'}) 
structure.scale = 5.45

kescan.fft_mesh = 14, 14, 14
kescan.kpoints = ReducedBPoints(density=20) + (X, G) + (G, L)
result = kescan( structure, outdir='results/kescan', 
                 nbstates = len(structure.atoms) * 4 + 4,
                 eref = None )
示例#9
0
def create_start(path, nall = 3, nrand = 5, nmax=100, density=10e0, input='input.py'):
  """ Creates dictionary with input structures for Si/Ge. 
  
      :Parameters:
        path : str
          Path to output dictionary.
        nall : int
          All structure with ``nall`` (excluded) unit-cells are included in the final dictionary.
        nrand : int
          Structures between ``nall`` (included) and ``nrand`` (excluded) unit-cells are
          also considered for inclusion in the final dictionary. However, only
          ``nmax`` are randomly chosen in the end.
        nmax : int
          Structures between ``nall`` (included) and ``nrand`` (excluded) unit-cells are
          also considered for inclusion in the final dictionary. However, only
          ``nmax`` are randomly chosen in the end.
        density : float
          Kpoint density for escan calculations,
        input : str
          Path to input file containing escan functional.
       
      Creates a job-dictionary with a number of structures sampled from an
      exhaustive list of structures to evaluate using escan.
  """
  from random import shuffle
  from itertools import chain
  from IPython.ipapi import get as get_ipy
  from numpy.linalg import norm, inv
  from pylada.enumeration import Enum
  from pylada.crystal.binary import zinc_blende
  from pylada.jobs import JobFolder
  from pylada.escan import read_input, exec_input, ReducedKDensity
  from pylada.crystal.gruber import Reduction

  input = read_input(input)
  kescan = exec_input(repr(input.escan).replace('Escan', 'KEscan')).functional

  enum = Enum(zinc_blende())
  enum.sites[0].type = 'Si', 'Ge'
  enum.sites[1].type = 'Si', 'Ge'
  enum.scale = 5.45
  enum.find_space_group()
  density = density * max([1e0/norm(u) for u in inv(enum.cell * enum.scale).T])

  strs = [u for  n in range(nall, nrand) for u in enum.xn(n)]
  shuffle(strs)
  strs = [enum.as_structure(*u) for u in strs[:nmax]]
  alls = [structure for n in range(nall) for structure in enum.structures(n)]

  jobs = JobFolder()
  for i, structure in enumerate(chain(alls, strs)):
    structure.name = str(i)
    nSi = len([a.type for a in structure.atoms if a.type == 'Si'])
    structure.scale = float(nSi) / float(n) * enum.scale + float(n - nSi) / float(n) * 5.69

    jobfolder = jobs / structure.name
    jobfolder.jobparams['structure'] = structure.copy()
    jobfolder.structure.cell = Reduction()(jobfolder.structure.cell)
    jobfolder.functional = kescan.copy()
    jobfolder.functional.kpoints = ReducedKDensity(density, (0.5, 0.5, 0.5))
    jobfolder.functional.reference = None
    jobfolder.functional.fft_mesh = fftmesh(structure.cell)
    jobfolder.functional.nbstates = int(len(structure.atoms) * 4 * 1.5+0.5)

  ip = get_ipy()
  ip.user_ns["current_jobfolder"] = jobfolder.root
  ip.magic("savejobs " + path)
  return