def make_single_extension(fnlist, newfnlist):
    """Converts fits images to the single-extension format that is more
    compatible with IRAF, CFITSIO, etc. Does this via the pysalt task
    'salt2iraf'.
    
    Inputs:
    fnlist -> List of strings, each one the location of a multi-extension image
    newfnlist -> List of strings, locations for the new single-extension images
    
    """

    #Open various iraf packages
    iraf.pysalt(_doprint=0)
    iraf.saltred(_doprint=0)
    
    #Run salt2iraf on each image
    for i in range(len(fnlist)):
        iraf.salt2iraf(images=fnlist[i],outimages=newfnlist[i],outpref="")
    
    return
示例#2
0
global iraf
from pyraf import iraf
import numpy as np
import pyfits
from glob import glob
import os

iraf.pysalt()
iraf.saltspec()
iraf.saltred()
iraf.set(clobber='YES')
iraf.noao()
iraf.twodspec()
iraf.longslit()


def tofits(filename, data, hdr=None, clobber=False):
    """simple pyfits wrapper to make saving fits files easier."""
    from pyfits import PrimaryHDU, HDUList
    hdu = PrimaryHDU(data)
    if hdr is not None:
        hdu.header = hdr
    hdulist = HDUList([hdu])
    hdulist.writeto(filename, clobber=clobber, output_verify='ignore')


def get_ims(fs, imtype):
    imtypekeys = {'sci': 'OBJECT', 'arc': 'ARC', 'flat': 'FLAT'}
    ims = []
    grangles = []
    for f in fs:
示例#3
0
def load_modules():
    # Define a function to load all of the modules so that they don't' import 
    # unless we need them
    global iraf
    from pyraf import iraf
    iraf.pysalt()
    iraf.saltspec()
    iraf.saltred()
    iraf.set(clobber='YES')
    
    global sys
    import sys

    global os
    import os

    global shutil
    import shutil

    global glob
    from glob import glob
    
    global pyfits
    import pyfits

    global np
    import numpy as np
    
    global lacosmicx
    import lacosmicx
    
    global interp
    from scipy import interp
    
    global signal
    from scipy import signal
    
    global ndimage
    from scipy import ndimage
    
    global interpolate
    from scipy import interpolate
    
    global WCS
    from astropy.wcs import WCS
    
    global optimize
    from scipy import optimize
    
    global ds9
    import pyds9 as ds9
    
    global GaussianProcess
    from sklearn.gaussian_process import GaussianProcess
    
    global pandas
    import pandas
    
    iraf.onedspec()
    iraf.twodspec()
    iraf.longslit()
    iraf.apextract()
    iraf.imutil()
    iraf.rvsao(motd='no')
示例#4
0
def pipeline(rawdir="raw", mode="halpha"):
    """Runs successive steps of the saltfp data reduction, checking along the
    way to see if each step was successful. This is the main driver program of
    the SALT Fabry-Perot pipeline.

    Inputs:
    rawdir -> String, containing the path to the 'raw' directory. By
                  default, this is 'raw'
    mode -> Mode for velocity fitting. Currently the only option is H-Alpha
                line fitting.

    """

    # Set rest wave based on the mode called
    if mode == "halpha":
        rest_wave = 6562.81

    # Create product directory
    if isdir("product"):
        while True:
            yn = raw_input("Product directory already exists. " + "Recreate it? (y/n) ")
            if "n" in yn or "N" in yn:
                break
            elif "y" in yn or "Y" in yn:
                # Confirmation
                yn = raw_input("Are you sure? This takes a while. (y/n) ")
                if ("y" in yn or "Y" in yn) and not ("n" in yn or "N" in yn):
                    rmtree("product")
                    break

    if not isdir("product"):
        # Acquire the list of filenames from the raw directory
        fnlist = sorted(listdir(rawdir))
        for i in range(len(fnlist)):
            fnlist[i] = join(rawdir, fnlist[i])
        # Run the first two steps of imred on the first image
        iraf.pysalt(_doprint=0)
        iraf.saltred(_doprint=0)
        iraf.saltprepare(
            fnlist[0],
            "temp.fits",
            "",
            createvar=False,
            badpixelimage="",
            clobber=True,
            logfile="temp.log",
            verbose=True,
        )
        iraf.saltbias(
            "temp.fits",
            "temp.fits",
            "",
            subover=True,
            trim=True,
            subbias=False,
            masterbias="",
            median=False,
            function="polynomial",
            order=5,
            rej_lo=3.0,
            rej_hi=5.0,
            niter=10,
            plotover=False,
            turbo=False,
            clobber=True,
            logfile="temp.log",
            verbose=True,
        )
        # Create the bad pixel mask
        image = fits.open("temp.fits")
        for i in range(1, len(image)):
            mask = image[i].data != image[i].data
            image[i].data = 1 * mask
        image.writeto("badpixmask.fits", clobber="True")
        image.close()
        # Remove temporary files
        remove("temp.fits")
        remove("temp.log")
        # Run the raw images through the first few data reduction pipeline
        # steps
        imred(fnlist, "product", bpmfile="badpixmask.fits")
        # Delete the temporary bad pixel mask
        remove("badpixmask.fits")
        # Move these raw images into the product directory
        mkdir("product")
        fnlist = sorted(listdir("."))
        for i in range(len(fnlist)):
            if "mfxgbpP" in fnlist[i] and ".fits" in fnlist[i]:
                move(fnlist[i], join("product", fnlist[i]))
    # List of files in the product directory
    fnlist = sorted(listdir("product"))
    for i in range(len(fnlist)):
        fnlist[i] = join("product", fnlist[i])

    # Manual verification of fits images and headers
    firstimage = FPImage(fnlist[0])
    verify = firstimage.verifytog
    firstimage.close()
    if verify is None:
        while True:
            prompt = "Manually verify image contents? (Recommended) (y/n) "
            yn = raw_input(prompt)
            if "n" in yn or "N" in yn:
                print ("Skipping manual verification of image contents " + "(Not recommended)")
                break
            if "y" in yn or "Y" in yn:
                fnlist = verify_images(fnlist)
                break

    # Make separate lists of the different fits files
    (flatlist, list_of_objs, objlists, list_of_filts, filtlists) = separate_lists(fnlist)

    # Masking of pixels outside the aperture
    firstimage = FPImage(objlists[0][0])
    axcen = firstimage.axcen
    firstimage.close()
    if axcen is None:
        print "Masking pixels outside the RSS aperture..."
        axcen, aycen, arad = get_aperture(objlists[0][0])
        aperture_mask(fnlist, axcen, aycen, arad)
    else:
        print "Images have already been aperture-masked."

    # Masking bad pixels from external region file
    for objlist in objlists:
        for i in range(len(objlist)):
            if isfile(splitext(split(objlist[i])[1])[0] + ".reg"):
                print ("Adding regions from file " + splitext(split(objlist[i])[1])[0] + ".reg to the bad pixel mask.")
                mask_regions(objlist[i], splitext(split(objlist[i])[1])[0] + ".reg")

    # Measure stellar FWHMs
    firstimage = FPImage(objlists[0][0])
    fwhm = firstimage.fwhm
    firstimage.close()
    if fwhm is None:
        dofwhm = True
    else:
        while True:
            yn = raw_input("Seeing FWHM has already been measured. " + "Redo this? (y/n) ")
            if "n" in yn or "N" in yn:
                dofwhm = False
                break
            elif "y" in yn or "Y" in yn:
                dofwhm = True
                break
    if dofwhm:
        print "Measuring seeing FWHMs..."
        for objlist in objlists:
            measure_fwhm(objlist)

    # Find image centers using ghost pairs
    for i in range(len(objlists)):
        firstimage = FPImage(objlists[i][0])
        xcen = firstimage.xcen
        deghosted = firstimage.ghosttog
        firstimage.close()
        if deghosted is None:
            if xcen is None:
                ghosttog = True
            else:
                while True:
                    yn = raw_input(
                        "Optical centers already measured for " + "object " + list_of_objs[i] + ". Redo this? (y/n) "
                    )
                    if "n" in yn or "N" in yn:
                        ghosttog = False
                        break
                    elif "y" in yn or "Y" in yn:
                        ghosttog = True
                        break
            if ghosttog:
                print (
                    "Identifying optical centers for object "
                    + list_of_objs[i]
                    + ". This may take a while for crowded fields..."
                )
                find_ghost_centers(objlists[i])

    # Deghost images
    for i in range(len(objlists)):
        firstimage = FPImage(objlists[i][0])
        deghosted = firstimage.ghosttog
        firstimage.close()
        if deghosted is None:
            print "Deghosting images for object " + list_of_objs[i] + "..."
            for j in range(len(objlists[i])):
                deghost(objlists[i][j])
        else:
            print ("Images for object " + list_of_objs[i] + " have already been deghosted.")

    # Image Flattening
    firstimage = FPImage(objlists[0][0])
    flattog = firstimage.flattog
    firstimage.close()
    if flattog is None:
        print "Flattening images..."
        if len(flatlist) == 0:
            while True:
                print "Uh oh! No flatfield exposure found!"
                flatpath = raw_input("Enter path to external flat image: " + "(leave blank to skip flattening) ")
                if flatpath == "" or isfile(flatpath):
                    break
        else:
            combine_flat(flatlist, "flat.fits")
            flatpath = "flat.fits"
        if flatpath != "":
            notflatlist = []
            for objlist in objlists:
                notflatlist += objlist
            flatten(notflatlist, flatpath)
        else:
            print "Skipping image flattening. (Not recommended!)"
    else:
        print "Images have already been flattened."

    # Make separate directories for each object.
    # This is the first bit since 'singext' to create a new directory, because
    # this is the first point where it's really necessary to start treating the
    # images from different tracks very differently.
    for i in range(len(objlists)):
        if isdir(list_of_objs[i].replace(" ", "")):
            while True:
                yn = raw_input("A directory for object " + list_of_objs[i] + " already exists. Recreate? (y/n) ")
                if "n" in yn or "N" in yn:
                    do_copy = False
                    break
                elif "y" in yn or "Y" in yn:
                    do_copy = True
                    rmtree(list_of_objs[i].replace(" ", ""))
                    break
        else:
            do_copy = True
        if do_copy:
            mkdir(list_of_objs[i].replace(" ", ""))
            for j in range(len(objlists[i])):
                copyfile(objlists[i][j], join(list_of_objs[i].replace(" ", ""), split(objlists[i][j])[1]))
        for j in range(len(objlists[i])):
            objlists[i][j] = join(list_of_objs[i].replace(" ", ""), split(objlists[i][j])[1])
    # Update the filter lists
    for i in range(len(filtlists)):
        for j in range(len(filtlists[i])):
            for k in range(len(objlists)):
                for l in range(len(objlists[k])):
                    if split(filtlists[i][j])[1] == split(objlists[k][l])[1]:
                        filtlists[i][j] = objlists[k][l]

    # Image alignment and normalization
    for i in range(len(objlists)):
        firstimage = FPImage(objlists[i][0])
        aligned = firstimage.phottog
        firstimage.close()
        if aligned is None:
            print ("Aligning and normalizing images for object " + list_of_objs[i] + "...")
            align_norm(objlists[i])
        else:
            print ("Images for object " + list_of_objs[i] + " have already been aligned and normalized.")

    # Make a median image for each object
    for i in range(len(objlists)):
        if isfile(join(list_of_objs[i].replace(" ", ""), "median.fits")):
            while True:
                yn = raw_input("Median image for object " + list_of_objs[i] + " already exists. Replace it? (y/n) ")
                if "n" in yn or "N" in yn:
                    break
                elif "y" in yn or "Y" in yn:
                    make_median(objlists[i], join(list_of_objs[i].replace(" ", ""), "median.fits"))
                    break
        else:
            make_median(objlists[i], join(list_of_objs[i].replace(" ", ""), "median.fits"))

    # Wavelength calibrations
    all_rings_list = []
    for i in range(len(list_of_filts)):
        all_rings_list = all_rings_list + filtlists[i]
    firstimage = FPImage(all_rings_list[0])
    calf = firstimage.calf
    firstimage.close()
    if not (calf is None):
        while True:
            yn = raw_input("Wavelength solution already found. " + "Redo it? (y/n) ")
            if "n" in yn or "N" in yn:
                break
            elif "y" in yn or "Y" in yn:
                fit_wave_soln(all_rings_list)
                break
    else:
        fit_wave_soln(all_rings_list)

    # Sky ring removal
    for i in range(len(objlists)):
        for j in range(len(objlists[i])):
            # Check to see if sky rings have already been removed
            image = FPImage(objlists[i][j])
            deringed = image.ringtog
            image.close()
            if deringed is None:
                print "Subtracting sky rings for image " + objlists[i][j]
                sub_sky_rings([objlists[i][j]], [join(list_of_objs[i].replace(" ", ""), "median.fits")])
            else:
                print ("Sky ring subtraction already done for image " + objlists[i][j])

    # Creation of data cube and convolution to uniform PSF
    for i in range(len(objlists)):
        if isdir(list_of_objs[i].replace(" ", "") + "_cube"):
            while True:
                yn = raw_input("A data cube for object " + list_of_objs[i] + " already exists. Recreate? (y/n) ")
                if "n" in yn or "N" in yn:
                    do_create = False
                    break
                elif "y" in yn or "Y" in yn:
                    # Confirmation
                    yn = raw_input("Are you sure? This takes a while. (y/n) ")
                    if ("y" in yn or "Y" in yn) and not ("n" in yn or "N" in yn):
                        do_create = True
                        rmtree(list_of_objs[i].replace(" ", "") + "_cube")
                        break
        else:
            do_create = True
        if do_create:
            mkdir(list_of_objs[i].replace(" ", "") + "_cube")
            for j in range(len(objlists[i])):
                image = FPImage(objlists[i][j])
                fwhm = image.fwhm
                if j == 0:
                    largestfwhm = fwhm
                if fwhm > largestfwhm:
                    largestfwhm = fwhm
                image.close()
            while True:
                prompt = "Enter desired final fwhm or leave blank to use" + " default (" + str(largestfwhm) + " pix) "
                user_fwhm = raw_input(prompt)
                if user_fwhm == "":
                    user_fwhm = largestfwhm
                    break
                else:
                    try:
                        user_fwhm = float(user_fwhm)
                    except ValueError:
                        print "That wasn't a valid number..."
                    else:
                        if user_fwhm < largestfwhm:
                            print ("Final fwhm must exceed " + str(largestfwhm) + " pixels.")
                        else:
                            break
            desired_fwhm = user_fwhm * 1.01
            for j in range(len(objlists[i])):
                make_final_image(
                    objlists[i][j],
                    join(list_of_objs[i].replace(" ", "") + "_cube", split(objlists[i][j])[1]),
                    desired_fwhm,
                    clobber=True,
                )

    # Get final lists for the velocity map fitting for each object
    final_lists = []
    for i in range(len(list_of_objs)):
        final_lists.append([])
        for j in range(len(objlists[i])):
            final_lists[i].append(join(list_of_objs[i].replace(" ", "") + "_cube", split(objlists[i][j])[1]))

    # Shift to solar velocity frame
    for i in range(len(list_of_objs)):
        firstimage = FPImage(final_lists[i][0])
        velshift = firstimage.solarvel
        firstimage.close()
        if velshift is None:
            print ("Performing solar velocity shift for object " + list_of_objs[i] + "...")
            solar_velocity_shift(final_lists[i], rest_wave)
        else:
            print ("Solar velocity shift for object " + list_of_objs[i] + " already done.")

    if not do_velmap:
        sys.exit("Velocity map not made - Voigt-fitting software not found.")

    # Velocity map fitting
    for i in range(len(list_of_objs)):
        if isfile(join(list_of_objs[i].replace(" ", "") + "_cube", "velocity.fits")):
            while True:
                yn = raw_input("Velocity map already fitted for object " + list_of_objs[i] + ". Redo this? (y/n) ")
                if "n" in yn or "N" in yn:
                    domap = False
                    break
                elif "y" in yn or "Y" in yn:
                    # Confirmation
                    yn = raw_input("Are you sure? This takes a while. (y/n) ")
                    if ("y" in yn or "Y" in yn) and not ("n" in yn or "N" in yn):
                        domap = True
                        break
        else:
            domap = True
    if domap:
        print "Fitting velocity map for object " + list_of_objs[i] + "..."
        if mode == "halpha":
            fit_velmap_ha_n2_mode(final_lists[i], list_of_objs[i].replace(" ", "") + "_cube", clobber=True)

    # Clean velocity map
    for i in range(len(list_of_objs)):
        make_clean_map(list_of_objs[i].replace(" ", "") + "_cube", clobber=True)
示例#5
0
def load_modules():
    # Define a function to load all of the modules so that they don't' import 
    # unless we need them
    global iraf
    from pyraf import iraf
    iraf.pysalt()
    iraf.saltspec()
    iraf.saltred()
    iraf.set(clobber='YES')
    
    global sys
    import sys

    global os
    import os

    global shutil
    import shutil

    global glob
    from glob import glob
    
    global pyfits
    import pyfits

    global np
    import numpy as np
    
    global lacosmicx
    import lacosmicx
    
    global interp
    from scipy import interp
    
    global signal
    from scipy import signal
    
    global ndimage
    from scipy import ndimage
    
    global interpolate
    from scipy import interpolate
    
    global WCS
    from astropy.wcs import WCS
    
    global optimize
    from scipy import optimize
    
    global ds9
    import ds9
    
    global GaussianProcess
    from sklearn.gaussian_process import GaussianProcess
    
    global pandas
    import pandas
    
    iraf.onedspec()
    iraf.twodspec()
    iraf.longslit()
    iraf.apextract()
    iraf.imutil()