def _optimize_pulse(system):
    """
    Unpack the `system` record type, optimise the result and assert that it
    succeeded.
    """
    result = cpo.optimize_pulse(system.system, system.controls,
                                system.initial, system.target,
                                **system.kwargs)
    error = " ".join(["Infidelity: {:7.4e}".format(result.fid_err),
                      "reason:", result.termination_reason])
    assert result.goal_achieved, error
    return result
示例#2
0
    def test_symplectic(self):
        """
        Optimise pulse for coupled oscillators with Symplectic dynamics
        assert that fidelity error is below threshold
        """
        g1 = 1.0
        g2 = 0.2
        A0 = Qobj(np.array([[1, 0, g1, 0], 
                           [0, 1, 0, g2], 
                           [g1, 0, 1, 0], 
                           [0, g2, 0, 1]]))
        A_rot = Qobj(np.array([
                            [1, 0, 0, 0],
                            [0, 1, 0, 0],
                            [0, 0, 0, 0],
                            [0, 0, 0, 0]
                            ]))
        
        A_sqz = Qobj(0.4*np.array([
                            [1, 0, 0, 0],
                            [0, -1, 0, 0],
                            [0, 0, 0, 0],
                            [0, 0, 0, 0]
                            ]))
                            
        A_c = [A_rot, A_sqz]
        n_ctrls = len(A_c)
        initial = identity(4)
        A_targ = Qobj(np.array([
                        [0, 0, 1, 0], 
                        [0, 0, 0, 1], 
                        [1, 0, 0, 0], 
                        [0, 1, 0, 0]
                        ]))
        Omg = Qobj(sympl.calc_omega(2))
        S_targ = (-A_targ*Omg*np.pi/2.0).expm()
    
        n_ts = 20
        evo_time = 10
        
        result = cpo.optimize_pulse(A0, A_c, initial, S_targ, 
                        n_ts, evo_time, 
                        fid_err_targ=1e-3, 
                        max_iter=200,
                        dyn_type='SYMPL',
                        init_pulse_type='ZERO', 
                        gen_stats=True)
        assert_(result.goal_achieved, msg="Symplectic goal not achieved")
        assert_almost_equal(result.fid_err, 0.0, decimal=2, 
                            err_msg="Symplectic infidelity too high")
        
        # Repeat with Qobj integration
        resultq = cpo.optimize_pulse(A0, A_c, initial, S_targ, 
                        n_ts, evo_time, 
                        fid_err_targ=1e-3, 
                        max_iter=200,
                        dyn_type='SYMPL',
                        init_pulse_type='ZERO', 
                        dyn_params={'oper_dtype':Qobj},
                        gen_stats=True)
        assert_(result.goal_achieved, msg="Symplectic goal not achieved "
                                        "(Qobj integration)")
        
        # Check same result is achieved using the create objects method
        optim = cpo.create_pulse_optimizer(A0, list(A_c), 
                        initial, S_targ,
                        n_ts, evo_time, 
                        fid_err_targ=1e-3, 
                        dyn_type='SYMPL',
                        init_pulse_type='ZERO', 
                        gen_stats=True)
        dyn = optim.dynamics

        p_gen = optim.pulse_generator
        init_amps = np.zeros([n_ts, n_ctrls])
        for j in range(n_ctrls):
            init_amps[:, j] = p_gen.gen_pulse()
        dyn.initialize_controls(init_amps)

        # Check the exact gradient
        func = optim.fid_err_func_wrapper
        grad = optim.fid_err_grad_wrapper
        x0 = dyn.ctrl_amps.flatten()
        grad_diff = check_grad(func, grad, x0)
        assert_almost_equal(grad_diff, 0.0, decimal=5,
                            err_msg="Frechet gradient outside tolerance "
                                    "(SYMPL)")

        result2 = optim.run_optimization()
        assert_almost_equal(result.fid_err, result2.fid_err, decimal=6, 
                            err_msg="Direct and indirect methods produce "
                                    "different results for Symplectic")
示例#3
0
    def test_07_symplectic(self):
        """
        control.pulseoptim: coupled oscillators (symplectic dynamics)
        assert that fidelity error is below threshold
        """
        g1 = 1.0
        g2 = 0.2
        A0 = Qobj(
            np.array([[1, 0, g1, 0], [0, 1, 0, g2], [g1, 0, 1, 0],
                      [0, g2, 0, 1]]))
        A_rot = Qobj(
            np.array([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]))

        A_sqz = Qobj(0.4 * np.array([[1, 0, 0, 0], [0, -1, 0, 0], [0, 0, 0, 0],
                                     [0, 0, 0, 0]]))

        A_c = [A_rot, A_sqz]
        n_ctrls = len(A_c)
        initial = identity(4)
        A_targ = Qobj(
            np.array([[0, 0, 1, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 1, 0, 0]]))
        Omg = Qobj(sympl.calc_omega(2))
        S_targ = (-A_targ * Omg * np.pi / 2.0).expm()

        n_ts = 20
        evo_time = 10

        result = cpo.optimize_pulse(A0,
                                    A_c,
                                    initial,
                                    S_targ,
                                    n_ts,
                                    evo_time,
                                    fid_err_targ=1e-3,
                                    max_iter=200,
                                    dyn_type='SYMPL',
                                    init_pulse_type='ZERO',
                                    gen_stats=True)
        assert_(result.goal_achieved,
                msg="Symplectic goal not achieved. "
                "Terminated due to: {}, with infidelity: {}".format(
                    result.termination_reason, result.fid_err))
        assert_almost_equal(result.fid_err,
                            0.0,
                            decimal=2,
                            err_msg="Symplectic infidelity too high")

        # Repeat with Qobj integration
        resultq = cpo.optimize_pulse(A0,
                                     A_c,
                                     initial,
                                     S_targ,
                                     n_ts,
                                     evo_time,
                                     fid_err_targ=1e-3,
                                     max_iter=200,
                                     dyn_type='SYMPL',
                                     init_pulse_type='ZERO',
                                     dyn_params={'oper_dtype': Qobj},
                                     gen_stats=True)
        assert_(resultq.goal_achieved,
                msg="Symplectic goal not achieved "
                "(Qobj integration). "
                "Terminated due to: {}, with infidelity: {}".format(
                    resultq.termination_reason, result.fid_err))

        # Check same result is achieved using the create objects method
        optim = cpo.create_pulse_optimizer(A0,
                                           list(A_c),
                                           initial,
                                           S_targ,
                                           n_ts,
                                           evo_time,
                                           fid_err_targ=1e-3,
                                           dyn_type='SYMPL',
                                           init_pulse_type='ZERO',
                                           gen_stats=True)
        dyn = optim.dynamics

        p_gen = optim.pulse_generator
        init_amps = np.zeros([n_ts, n_ctrls])
        for j in range(n_ctrls):
            init_amps[:, j] = p_gen.gen_pulse()
        dyn.initialize_controls(init_amps)

        # Check the exact gradient
        func = optim.fid_err_func_wrapper
        grad = optim.fid_err_grad_wrapper
        x0 = dyn.ctrl_amps.flatten()
        grad_diff = check_grad(func, grad, x0)
        assert_almost_equal(grad_diff,
                            0.0,
                            decimal=5,
                            err_msg="Frechet gradient outside tolerance "
                            "(SYMPL)")

        result2 = optim.run_optimization()
        assert_almost_equal(result.fid_err,
                            result2.fid_err,
                            decimal=6,
                            err_msg="Direct and indirect methods produce "
                            "different results for Symplectic")
示例#4
0
    def test_lindbladian(self):
        """
        Optimise pulse for amplitude damping channel with Lindbladian dyn
        assert that fidelity error is below threshold
        """

        Sx = sigmax()
        Sz = sigmaz()
        Si = identity(2)
        
        Sd = Qobj(np.array([[0, 1], [0, 0]]))
        Sm = Qobj(np.array([[0, 0], [1, 0]]))
        Sd_m = Qobj(np.array([[1, 0], [0, 0]]))
        
        gamma = 0.1
        L0_Ad = gamma*(2*tensor(Sm, Sd.trans()) - 
                    (tensor(Sd_m, Si) + tensor(Si, Sd_m.trans())))
        LC_x = -1j*(tensor(Sx, Si) - tensor(Si, Sx))
        LC_z = -1j*(tensor(Sz, Si) - tensor(Si, Sz))
        
        drift = L0_Ad
        ctrls = [LC_z, LC_x]
        n_ctrls = len(ctrls)
        initial = tensor(Si, Si)
        had_gate = hadamard_transform(1)
        target_DP = tensor(had_gate, had_gate)

        n_ts = 10
        evo_time = 5
        
        result = cpo.optimize_pulse(drift, ctrls, initial, target_DP, 
                        n_ts, evo_time, 
                        fid_err_targ=1e-3, 
                        max_iter=200,
                        init_pulse_type='LIN', 
                        gen_stats=True)
        assert_(result.fid_err < 0.1, 
                msg="Fidelity higher than expected")
                
        # Repeat with Qobj propagation
        result = cpo.optimize_pulse(drift, ctrls, initial, target_DP, 
                        n_ts, evo_time, 
                        fid_err_targ=1e-3, 
                        max_iter=200,
                        init_pulse_type='LIN', 
                        dyn_params={'oper_dtype':Qobj},
                        gen_stats=True)
        assert_(result.fid_err < 0.1, 
                msg="Fidelity higher than expected (Qobj propagation)")
                
        # Check same result is achieved using the create objects method
        optim = cpo.create_pulse_optimizer(drift, ctrls, 
                        initial, target_DP,
                        n_ts, evo_time, 
                        fid_err_targ=1e-3, 
                        init_pulse_type='LIN', 
                        gen_stats=True)
        dyn = optim.dynamics

        p_gen = optim.pulse_generator
        init_amps = np.zeros([n_ts, n_ctrls])
        for j in range(n_ctrls):
            init_amps[:, j] = p_gen.gen_pulse()
        dyn.initialize_controls(init_amps)

        # Check the exact gradient
        func = optim.fid_err_func_wrapper
        grad = optim.fid_err_grad_wrapper
        x0 = dyn.ctrl_amps.flatten()
        grad_diff = check_grad(func, grad, x0)
        assert_almost_equal(grad_diff, 0.0, decimal=7,
                            err_msg="Frechet gradient outside tolerance")

        result2 = optim.run_optimization()
        assert_almost_equal(result.fid_err, result2.fid_err, decimal=3, 
                            err_msg="Direct and indirect methods produce "
                                    "different results for ADC")
def main():
    H0 = setH0()
    Hq_I = q + qd
    Hq_Q = 1j*(q - qd)

    H = [H0, [Hq_I, qI], [Hq_Q, qQ]]
    psitarg = settarg()

    # Time-Independent hamiltonian H0
    H_d = H0
    # Time-Dependent hamiltonian of the drives, ~~ H = H_d + u1(t)*Hq_I + u2(t)*Hq_Q ~~
    H_c = [Hq_I, Hq_Q]
    # Fidelity error target
    fid_err_targ = 1e-10
    # Maximum iterations for the optisation algorithm
    max_iter = 200
    # Maximum (elapsed) time allowed in seconds
    max_wall_time = 120
    # Minimum gradient (sum of gradients squared)
    # as this tends to 0 -> local minima has been found
    min_grad = 1e-20
    # Type of initial guess of the drives
    p_type = 'SAW'
    # Save the results to a text file
    f_ext = "{}_n_ts{}_ptype{}.txt".format("Hi", Ns, p_type)

    # The function that does the GRAPE algorithm
    result = cpo.optimize_pulse(H_d, H_c, psi0, psitarg, Ns, T,
                                fid_err_targ=fid_err_targ, min_grad=min_grad,
                                max_iter=max_iter, max_wall_time=max_wall_time,
                                out_file_ext=f_ext, init_pulse_type=p_type,
                                log_level=log_level, gen_stats=True)

    # Plot
    fig1 = plt.figure()
    # Initial
    ax1 = fig1.add_subplot(2, 1, 1)
    ax1.set_title("Initial control amps")
    ax1.set_xlabel("Time")
    ax1.set_ylabel("Control amplitude")
    ax1.step(result.time,
             np.hstack((result.initial_amps[:, 0],
                        result.initial_amps[-1, 0])),
             where='post')
    ax1.step(result.time,
             np.hstack((result.initial_amps[:, 1],
                        result.initial_amps[-1, 0])),
             where='post')

    # Final
    ax2 = fig1.add_subplot(2, 1, 2)
    ax2.set_title("Optimised Control Sequences")
    ax2.set_xlabel("Time")
    ax2.set_ylabel("Control amplitude")
    ax2.step(result.time,
             np.hstack((result.final_amps[:, 0], result.final_amps[-1, 0])),
             where='post')
    ax2.step(result.time,
             np.hstack((result.final_amps[:, 1], result.final_amps[-1, 0])),
             where='post')

    plt.tight_layout()
    plt.show()

    # Reports the results
    result.stats.report()
    print("Final evolution\n{}\n".format(result.evo_full_final))
    print("********* Summary *****************")
    print("Final fidelity error {}".format(result.fid_err))
    print("Final gradient normal {}".format(result.grad_norm_final))
    print("Terminated due to {}".format(result.termination_reason))
    print("Number of iterations {}".format(result.num_iter))

    # Displays what the Qutip built-in grape algorithm thinks he managed to achive with the drives
    b = Bloch()
    b.add_states(result.evo_full_final)
    b.show()

    # Set results into variables
    QI = result.final_amps[:, 0]
    QQ = result.final_amps[:, 1]

    # Calls our own simulation of the qubit with the given drives from the built in GRAPE algorithm
    fidelitytarg(H, psi0, psitarg, QI, QQ)
示例#6
0
    def test_06_lindbladian(self):
        """
        control.pulseoptim: amplitude damping channel
        Lindbladian dynamics
        assert that fidelity error is below threshold
        """

        Sx = sigmax()
        Sz = sigmaz()
        Si = identity(2)

        Sd = Qobj(np.array([[0, 1], [0, 0]]))
        Sm = Qobj(np.array([[0, 0], [1, 0]]))
        Sd_m = Qobj(np.array([[1, 0], [0, 0]]))

        gamma = 0.1
        L0_Ad = gamma * (2 * tensor(Sm, Sd.trans()) -
                         (tensor(Sd_m, Si) + tensor(Si, Sd_m.trans())))
        LC_x = -1j * (tensor(Sx, Si) - tensor(Si, Sx))
        LC_z = -1j * (tensor(Sz, Si) - tensor(Si, Sz))

        drift = L0_Ad
        ctrls = [LC_z, LC_x]
        n_ctrls = len(ctrls)
        initial = tensor(Si, Si)
        had_gate = hadamard_transform(1)
        target_DP = tensor(had_gate, had_gate)

        n_ts = 10
        evo_time = 5

        result = cpo.optimize_pulse(drift,
                                    ctrls,
                                    initial,
                                    target_DP,
                                    n_ts,
                                    evo_time,
                                    fid_err_targ=1e-3,
                                    max_iter=200,
                                    init_pulse_type='LIN',
                                    gen_stats=True)
        assert_(result.fid_err < 0.1, msg="Fidelity higher than expected")

        # Repeat with Qobj propagation
        result = cpo.optimize_pulse(drift,
                                    ctrls,
                                    initial,
                                    target_DP,
                                    n_ts,
                                    evo_time,
                                    fid_err_targ=1e-3,
                                    max_iter=200,
                                    init_pulse_type='LIN',
                                    dyn_params={'oper_dtype': Qobj},
                                    gen_stats=True)
        assert_(result.fid_err < 0.1,
                msg="Fidelity higher than expected (Qobj propagation)")

        # Check same result is achieved using the create objects method
        optim = cpo.create_pulse_optimizer(drift,
                                           ctrls,
                                           initial,
                                           target_DP,
                                           n_ts,
                                           evo_time,
                                           fid_err_targ=1e-3,
                                           init_pulse_type='LIN',
                                           gen_stats=True)
        dyn = optim.dynamics

        p_gen = optim.pulse_generator
        init_amps = np.zeros([n_ts, n_ctrls])
        for j in range(n_ctrls):
            init_amps[:, j] = p_gen.gen_pulse()
        dyn.initialize_controls(init_amps)

        # Check the exact gradient
        func = optim.fid_err_func_wrapper
        grad = optim.fid_err_grad_wrapper
        x0 = dyn.ctrl_amps.flatten()
        grad_diff = check_grad(func, grad, x0)
        assert_almost_equal(grad_diff,
                            0.0,
                            decimal=7,
                            err_msg="Frechet gradient outside tolerance")

        result2 = optim.run_optimization()
        assert_almost_equal(result.fid_err,
                            result2.fid_err,
                            decimal=3,
                            err_msg="Direct and indirect methods produce "
                            "different results for ADC")
#    dyn_type='GEN_MAT'
# This means that matrices that describe the dynamics are assumed to be
# general, i.e. the propagator can be calculated using:
# expm(combined_dynamics*dt)
#    prop_type='FRECHET'
# and the propagators and their gradients will be calculated using the
# Frechet method, i.e. an exact gradent
#    fid_type='TRACEDIFF'
# and that the fidelity error, i.e. distance from the target, is give
# by the trace of the difference between the target and evolved operators 

result = cpo.optimize_pulse(drift, ctrls, initial, target_DP, n_ts, evo_time, 
                fid_err_targ=fid_err_targ, min_grad=min_grad, 
                max_iter=max_iter, max_wall_time=max_wall_time, 
                amp_lbound=-10.0, amp_ubound=10.0,
#                dyn_params={'oper_dtype':Qobj},
#                prop_type='AUG_MAT', 
#                fid_type='UNIT',
                out_file_ext=f_ext, init_pulse_type=p_type, 
                log_level=log_level, gen_stats=True)

print("***********************************")
print("\nOptimising complete. Stats follow:")
result.stats.report()
print("Final evolution\n{}\n".format(result.evo_full_final))
print("********* Summary *****************")
print("Initial fidelity error {}".format(result.initial_fid_err))
print("Final fidelity error {}".format(result.fid_err))
print("Terminated due to {}".format(result.termination_reason))
print("Number of iterations {}".format(result.num_iter))
#print("wall time: ", result.wall_time
示例#8
0
# and the propagators and their gradients will be calculated using the
# Frechet method, i.e. an exact gradent
#    fid_type='TRACEDIFF'
# and that the fidelity error, i.e. distance from the target, is give
# by the trace of the difference between the target and evolved operators

result = cpo.optimize_pulse(
    drift,
    ctrls,
    initial,
    target_DP,
    n_ts,
    evo_time,
    fid_err_targ=fid_err_targ,
    min_grad=min_grad,
    max_iter=max_iter,
    max_wall_time=max_wall_time,
    amp_lbound=-10.0,
    amp_ubound=10.0,
    #                dyn_params={'oper_dtype':Qobj},
    #                prop_type='AUG_MAT',
    #                fid_type='UNIT',
    out_file_ext=f_ext,
    init_pulse_type=p_type,
    log_level=log_level,
    gen_stats=True)

print("***********************************")
print("\nOptimising complete. Stats follow:")
result.stats.report()
print("Final evolution\n{}\n".format(result.evo_full_final))
print("********* Summary *****************")
示例#9
0
# Fidelity error target
fid_err_targ = 1e-3
# Maximum iterations for the optisation algorithm
max_iter = 3500
# Maximum (elapsed) time allowed in seconds
max_wall_time = 1600
# Minimum gradient (sum of gradients squared)
# as this tends to 0 -> local minima has been found
min_grad = 1e-20
p_type = 'CUSTOM'
for evo_time in evo_times:
	n_ts = int(float(evo_time/0.222))
	result = cpo.optimize_pulse(drift, ctrls, E0, E_targ, n_ts, evo_time,
                             amp_lbound=0,amp_ubound=1,
                fid_err_targ=fid_err_targ, min_grad=min_grad, 
                max_iter=max_iter, max_wall_time=max_wall_time, 
                out_file_ext=None, init_pulse_type=p_type, 
                log_level=log_level, gen_stats=True)
	result.stats.report()
	print("Final evolution\n{}\n".format(result.evo_full_final))
	print("********* Summary *****************")
	print("Initial fidelity error {}".format(result.initial_fid_err))
	print("Final fidelity error {}".format(result.fid_err))
	print("Final gradient normal {}".format(result.grad_norm_final))
	print("Terminated due to {}".format(result.termination_reason))
	print("Number of iterations {}".format(result.num_iter))
	print("Completed in {} HH:MM:SS.US".format(datetime.timedelta(seconds=result.wall_time)))
	print("results for evolution time{}".format(evo_time))


示例#10
0
def testQutipGrape():
    #sys.stdout =
    sys.stdout = open('error file.txt', 'w')
    H_d = Qobj(0 * np.kron(np.kron(I, I), I))
    H_c, labels = get_hks(3)
    U_0 = identity(8)
    #U_targ = hadamard_transform(1)
    #U_targ = Qobj([[np.cos(-10000), 1j*np.sin(-10000)], [1j*np.sin(-10000), np.cos(-10000)]])
    w = np.exp(1j * (math.pi / 4))
    U_targ = Qobj((1 / np.sqrt(8)) * np.array([[1, 1, 1, 1, 1, 1, 1, 1],
                                               [
                                                   1, w,
                                                   np.power(w, 2),
                                                   np.power(w, 3),
                                                   np.power(w, 4),
                                                   np.power(w, 5),
                                                   np.power(w, 6),
                                                   np.power(w, 7)
                                               ],
                                               [
                                                   1,
                                                   np.power(w, 2),
                                                   np.power(w, 4),
                                                   np.power(w, 6), 1,
                                                   np.power(w, 2),
                                                   np.power(w, 4),
                                                   np.power(w, 6)
                                               ],
                                               [
                                                   1,
                                                   np.power(w, 3),
                                                   np.power(w, 6), w,
                                                   np.power(w, 4),
                                                   np.power(w, 7),
                                                   np.power(w, 2),
                                                   np.power(w, 5)
                                               ],
                                               [
                                                   1,
                                                   np.power(w, 4), 1,
                                                   np.power(w, 4), 1,
                                                   np.power(w, 4), 1,
                                                   np.power(w, 4)
                                               ],
                                               [
                                                   1,
                                                   np.power(w, 5),
                                                   np.power(w, 2),
                                                   np.power(w, 7),
                                                   np.power(w, 4), w,
                                                   np.power(w, 6),
                                                   np.power(w, 3)
                                               ],
                                               [
                                                   1,
                                                   np.power(w, 6),
                                                   np.power(w, 4),
                                                   np.power(w, 2), 1,
                                                   np.power(w, 6),
                                                   np.power(w, 4),
                                                   np.power(w, 2)
                                               ],
                                               [
                                                   1,
                                                   np.power(w, 7),
                                                   np.power(w, 6),
                                                   np.power(w, 5),
                                                   np.power(w, 4),
                                                   np.power(w, 3),
                                                   np.power(w, 2), w
                                               ]],
                                              dtype=complex))
    n_ts = 1000
    tTotal = 1000
    amps_low = None
    amps_high = None
    tolerence = 1e-1
    max_iterations = 1e500
    max_runtime = 1e100
    init_options = ["RND", "LIN", "ZERO", "SINE", "SQUARE", "TRIANGLE", "SAW"]
    init_type = init_options[3]

    result = cpo.optimize_pulse(H_d,
                                H_c,
                                U_0,
                                U_targ,
                                num_tslots=n_ts,
                                evo_time=tTotal,
                                amp_lbound=amps_low,
                                amp_ubound=amps_high,
                                fid_err_targ=tolerence,
                                max_iter=max_iterations,
                                max_wall_time=max_runtime,
                                init_pulse_type=init_type,
                                gen_stats=True,
                                log_level=qutip.logging_utils.DEBUG)
    amps = []
    for i in range(len(labels)):
        amps.append(result.final_amps[:, i])
    print(len(amps))
    print(len(amps[0]))
    printResults(amps, n_ts, tTotal / (1.0 * n_ts), labels)
def generate_training_sample(unit_nb, ctrl_init, initial, params, n_ts,
                             evo_time, noise_name, model_dim):
    f_ext = None
    path_template = "training/dim_{}/mtx/idx_{}"
    fid_err_targ = 1e-12
    max_iter = 200000

    max_wall_time = 5 * 60
    min_grad = 1e-20

    #target_DP = 0
    if model_dim == "2x1":
        current_path = (path_template).format(model_dim, unit_nb)
        if pathlib.Path(current_path + ".npz").exists():
            rnd_unit = Qobj(np.load(current_path + ".npz")["arr_0"])
            rnd_unitC = rnd_unit.conj()
            target_DP = tensor(rnd_unit, rnd_unitC)
        else:
            rnd_unit = tensor(rand_unitary(2), identity(2))
            rnd_unitC = rnd_unit.conj()
            np.savez(current_path, rnd_unit.full())
            target_DP = tensor(rnd_unit, rnd_unitC)
    elif model_dim == "2" or model_dim == "4":
        current_path = (path_template).format(model_dim, unit_nb)
        if pathlib.Path(current_path + ".npz").exists():
            rnd_unit = Qobj(np.load(current_path + ".npz")["arr_0"])
            rnd_unitC = rnd_unit.conj()
            target_DP = tensor(rnd_unit, rnd_unitC)
        else:
            rnd_unit = rand_unitary(int(model_dim))
            rnd_unitC = rnd_unit.conj()
            np.savez(current_path, rnd_unit.full())
            target_DP = tensor(rnd_unit, rnd_unitC)

    if noise_name == 'id_aSxbSy_spinChain_2x1':
        ctrls, drift = id_aSxbSy_spinChain_2x1(params)
    elif noise_name == "aSxbSy_id_spinChain_dim_2x1":
        ctrls, drift = aSxbSy_id_spinChain_dim_2x1(params)

    ctrls = [Qobj(ctrls[i]) for i in range(len(ctrls))]

    drift = Qobj(drift)

    result = cpo.optimize_pulse(drift,
                                ctrls,
                                initial,
                                target_DP,
                                n_ts,
                                evo_time,
                                amp_lbound=-1,
                                amp_ubound=1,
                                fid_err_targ=fid_err_targ,
                                min_grad=min_grad,
                                max_iter=max_iter,
                                max_wall_time=max_wall_time,
                                out_file_ext=f_ext,
                                init_pulse_type=ctrl_init,
                                log_level=log_level,
                                gen_stats=True)
    print("Sample number ", unit_nb, " have error ", result.fid_err)

    np.savez("training/dim_{}/NCP_data/idx_{}".format(model_dim, unit_nb),
             result.final_amps)
# Frechet method, i.e. an exact gradent
#    fid_type='TRACEDIFF'
# and that the fidelity error, i.e. distance from the target, is give
# by the trace of the difference between the target and evolved operators

result_s = cpo.optimize_pulse(
    drift,
    ctrls,
    rho0_vec,
    rho_targ_vec,
    n_ts,
    evo_time,
    fid_err_targ=fid_err_targ,
    min_grad=min_grad,
    max_iter=max_iter,
    max_wall_time=max_wall_time,
    amp_lbound=-0.5,
    amp_ubound=0.5,
    #                dyn_params={'oper_dtype':Qobj},
    #                prop_type='AUG_MAT',
    #                fid_type='UNIT',
    accuracy_factor=1,
    out_file_ext=f_ext,
    init_pulse_type=p_type,
    log_level=log_level,
    gen_stats=True)

print("***********************************")
print("\nOptimising complete.")

if REPORT_STATS:
示例#13
0
def generate_training_sample(
    unit_nb, params, argv_number
):  # ctrl_init, noise_params, n_ts,evo_time,noise_name, model_dim, supeop_size):
    f_ext = None
    path_template = "training/dim_{}/mtx/idx_{}"
    fid_err_targ = 1e-12
    max_iter = 200000

    max_wall_time = 5 * 60
    min_grad = 1e-20

    #target_DP = 0
    if params.model_dim == "2x1":
        current_path = (path_template).format(params.model_dim, unit_nb)
        if pathlib.Path(current_path + ".npz").exists():
            rnd_unit = Qobj(np.load(current_path + ".npz")["arr_0"])
            rnd_unitC = rnd_unit.conj()
            target_DP = tensor(rnd_unit, rnd_unitC)
        else:
            rnd_unit = tensor(rand_unitary(2), identity(2))
            rnd_unitC = rnd_unit.conj()
            np.savez(current_path, rnd_unit.full())
            target_DP = tensor(rnd_unit, rnd_unitC)
    elif params.model_dim == "2" or model_dim == "4":
        current_path = (path_template).format(params.model_dim, unit_nb)
        if pathlib.Path(current_path + ".npz").exists():
            rnd_unit = Qobj(np.load(current_path + ".npz")["arr_0"])
            rnd_unitC = rnd_unit.conj()
            target_DP = tensor(rnd_unit, rnd_unitC)
        else:
            rnd_unit = rand_unitary(int(dim))
            rnd_unitC = rnd_unit.conj()
            np.savez(current_path, rnd_unit.full())
            target_DP = tensor(rnd_unit, rnd_unitC)

    if params.noise_name == 'id_aSxbSy_spinChain_2x1':
        ctrls, drift = id_aSxbSy_spinChain_2x1(params.noise_params)
    elif params.noise_name == "aSxbSy_id_spinChain_dim_2x1":
        ctrls, drift = aSxbSy_id_spinChain_dim_2x1(params.noise_params)
    elif params.noise_name == "spinChainDrift_spinChain_dim_2x1":
        ctrls, drift = spinChainDrift_spinChain_dim_2x1(params.noise_params)
    elif params.noise_name == "Sz_id_and_ketbra01_id_Lindbald_spinChain_drift":
        ctrls, drift = Sz_id_and_ketbra01_id_Lindbald_spinChain_drift(
            params.noise_params)
    elif params.noise_name == "ketbra01_id_Lindbald_spinChain_drift":
        ctrls, drift = ketbra01_id_Lindbald_spinChain_drift(
            params.noise_params)
    elif params.noise_name == "Sz_id_and_ketbra01_id_and_reverse_Lindbald_spinChain_drift":
        ctrls, drift = Sz_id_and_ketbra01_id_and_reverse_Lindbald_spinChain_drift(
            params.noise_params)
    elif params.noise_name == "Sz_id_id_Sz_Lindbald_spinChain_drift":
        ctrls, drift = Sz_id_id_Sz_Lindbald_spinChain_drift(
            params.noise_params)

    ctrls = [Qobj(ctrls[i]) for i in range(len(ctrls))]

    drift = Qobj(drift)

    initial = identity(params.supeop_size)

    if argv_number == 0.:

        result = cpo.optimize_pulse(drift,
                                    ctrls,
                                    initial,
                                    target_DP,
                                    params.n_ts,
                                    params.evo_time,
                                    amp_lbound=-1,
                                    amp_ubound=1,
                                    fid_err_targ=fid_err_targ,
                                    min_grad=min_grad,
                                    max_iter=max_iter,
                                    max_wall_time=max_wall_time,
                                    out_file_ext=f_ext,
                                    init_pulse_type=params.ctrl_init,
                                    log_level=log_level,
                                    gen_stats=True)
        print("Sample number ", unit_nb, " have error ", result.fid_err)

        np.savez(
            "training/dim_{}/NCP_data_unbounded/idx_{}".format(
                params.model_dim, unit_nb), result.final_amps)
    else:
        ampsy = np.load("training/dim_{}/NCP_data/idx_{}.npz".format(
            params.model_dim, unit_nb))['arr_0']
        result = my_opt(drift,
                        ctrls,
                        initial,
                        target_DP,
                        params.n_ts,
                        params.evo_time,
                        amp_lbound=-1,
                        amp_ubound=1,
                        fid_err_targ=fid_err_targ,
                        min_grad=min_grad,
                        max_iter=max_iter,
                        max_wall_time=max_wall_time,
                        out_file_ext=f_ext,
                        init_pulse_type=params.ctrl_init,
                        log_level=log_level,
                        gen_stats=True,
                        init_pulse=ampsy)

        print("Sample number ", unit_nb, " have error ", 1 - result.fid_err)

        np.savez(
            "training/dim_{}/DCP_data/DCP_config{}/idx_{}".format(
                params.model_dim, argv_number, unit_nb), result.final_amps)