def test_binary_probabilities(self): inner_est = DummyProbEstimator(2) est = BinaryProbabilities(inner_est) # test attr wrap self.assertEqual(est._coefs, inner_est._coefs) preds = est.predict(self.data.values) self.assertEqual(preds.shape, (10,))
def test_sklearn_probabilities(self): # test multi-class self.data['target'] = [0] * 5 + [1] * 3 + [2] * 2 inner_est = linear_model.LogisticRegression() est = wrap_sklearn_like_estimator(inner_est) x = self.data[['a', 'b']] est.fit(x, self.data.target) preds = est.predict(x) self.assertEqual(preds.shape, (10, 3)) # test binary, single output self.data['target'] = [0] * 5 + [1] * 5 est = BinaryProbabilities(inner_est) x = self.data[['a', 'b']] est.fit(x, self.data.target) preds = est.predict(x) self.assertEqual(preds.shape, (10, ))