示例#1
0
def run(N, M, S):
    nseed(S)
    rseed(S)
    edges = set()
    start = randrange(0, N)
    cur = start

    # Inizia con un super-ciclo, tanto per farlo connesso
    for i in xrange(0, N):
        edges.add((i, (i+1)%N))

    # E poi tutto il resto, a caso
    for i in xrange(N, M):
        next = randrange(0, N)
        while next == cur or is_in(edges, (cur, next)) or (i == M-1 and next == start):
            next = randrange(0, N)
        edges.add((cur, next))
        cur = next
    stop = cur

    # Genera una permutazione dei vertici
    perm = range(N)
    shuffle(perm)

    print N, M, perm[start]+1, perm[stop]+1
    for edge in edges:
        if randint(0, 1) == 0:
            print perm[edge[0]]+1, perm[edge[1]]+1
        else:
            print perm[edge[1]]+1, perm[edge[0]]+1
示例#2
0
def run(N, M, P, Q, C, S):
    global randseq
    nseed(S)
    rseed(S)
    last = 0
    randseq = []
    for i in xrange(M+1):
        last += randint(1,10)
        randseq += [last]
    shuffle( randseq )
    #print N, M, P, Q, C, S
    origM = M
    M -= 2*(P+Q)
    e = eso(M, P, Q)
    seqs = [flatten(e)]
    for i in xrange( N-1 ):
        if randint(0,N) < C:
            e = eso(M, P, Q)
        else:
            e = gen_equiv( e )
        seqs += [flatten(e)] 
    seqs = list(set(seqs))
    shuffle( seqs )
    print len(seqs), origM
    for i in xrange(len(seqs)):
        print "%s" % seqs[i]
示例#3
0
def run_hard(N, M, X0, X1, P, Seed):
    """
    N: numero segmenti
    M: numero fontane
    X0: inizio linea
    X1: fine linea
    P: lunghezza percentuale del salto
    """
    nseed(Seed)
    rseed(Seed)

    fountains, segments = line_test(N/3, M/3, X0, X1, randbetween(X0, X1), 
        randbetween(1, MAXX), P)
    fountains2, segments2 = line_test(N/3-1, M/3, X0, X1, segments[-1][0], 
        randbetween(1, MAXX), P)
    fountains3, segments3 = line_test(N/3-1, M/3, X0, X1, segments2[-1][0], 
        randbetween(1, MAXX), P)

    F = fountains|fountains2|fountains3
    S = segments+segments2+segments3

    print len(S)-1, len(F)

    for s in S:
        print s[0], s[1]
    for f in F:
        print f[0], f[1]
示例#4
0
def run(N, M, S):
    nseed(S)
    rseed(S)
    edges = []
    start = 0
    cur = start

    # Inizia con un super-ciclo, tanto per farlo connesso
    for i in xrange(0, N):
        edges.append((i, (i + 1) % N))

    # E poi tutto il resto, a caso
    for i in xrange(N, M - 1):
        next = randrange(0, N)
        while next == cur:
            next = randrange(0, N)
        edges.append((cur, next))
        cur = next
    edges.append((cur, 0))

    # Genera una permutazione dei vertici
    perm = range(N)
    shuffle(perm)

    print N, M
    for edge in edges:
        print perm[edge[0]], perm[edge[1]]
示例#5
0
def setup_env() -> argparse.Namespace:
    setup_logger()

    args = parse_arguments()

    # setup seed value
    if args.rand_seed == -1:
        myseed = 1
        myseed = int(timer() * 1e9 % 2**32)
    else:
        myseed = args.rand_seed
    rseed(myseed)
    np.random.seed(myseed)

    # build command string to repeat this run
    # FIXME if an option is a flag this does not work, sorry
    recap = f"python3 mypy_ex.py"
    for a, v in args._get_kwargs():
        if a == "rand_seed":
            recap += f" --rand_seed {myseed}"
        else:
            recap += f" --{a} {v}"

    logmain = logging.getLogger(f"c.{__name__}.setup_env")
    logmain.info(recap)

    return args
示例#6
0
文件: gen.py 项目: Carlovan/oii
def run(N, S, M, A):
    nseed(S)
    rseed(S)
    print N

    # Decide quali elementi saranno presi, in modo che 1 sia nel
    # periodo o nell'antiperiodo
    numeri = range(1, N)
    shuffle(numeri)
    numeri = [0] + numeri

    # Crea un array di base che contiene numeri brutti per le
    # posizioni che non saranno mai raggiunte
    salti = []
    for i in xrange(N):
        salti.append(randint(0, N-1))

    # Modifica alcuni numeri in modo che venga compiuto il percorso
    # voluto
    for i in xrange(A+M-1):
        dist = numeri[i+1] - numeri[i]
        if dist < 0:
            dist += N
        salti[numeri[i]] = dist
    dist = numeri[A] - numeri[A+M-1]
    if dist < 0:
        dist += N
    salti[numeri[A+M-1]] = dist

    print " ".join(map(str, salti))
示例#7
0
文件: gen.py 项目: matteosusca/oii
def run(N, S, M, A):
    nseed(S)
    rseed(S)
    print N

    # Decide quali elementi saranno presi, in modo che 1 sia nel
    # periodo o nell'antiperiodo
    numeri = range(1, N)
    shuffle(numeri)
    numeri = [0] + numeri

    # Crea un array di base che contiene numeri brutti per le
    # posizioni che non saranno mai raggiunte
    salti = []
    for i in xrange(N):
        salti.append(randint(0, N - 1))

    # Modifica alcuni numeri in modo che venga compiuto il percorso
    # voluto
    for i in xrange(A + M - 1):
        dist = numeri[i + 1] - numeri[i]
        if dist < 0:
            dist += N
        salti[numeri[i]] = dist
    dist = numeri[A] - numeri[A + M - 1]
    if dist < 0:
        dist += N
    salti[numeri[A + M - 1]] = dist

    print " ".join(map(str, salti))
示例#8
0
文件: gen.py 项目: PaoloGraziani/TA1
def run(N, M, S):
    nseed(S)
    rseed(S)
    edges = set()
    start = randrange(0, N)
    cur = start

    # Inizia con un super-ciclo, tanto per farlo connesso
    for i in xrange(0, N):
        edges.add((i, (i + 1) % N))

    # E poi tutto il resto, a caso
    for i in xrange(N, M):
        next = randrange(0, N)
        while next == cur or is_in(edges, (cur, next)) or (i == M - 1
                                                           and next == start):
            next = randrange(0, N)
        edges.add((cur, next))
        cur = next
    stop = cur

    # Genera una permutazione dei vertici
    perm = range(N)
    shuffle(perm)

    print N, M, perm[start] + 1, perm[stop] + 1
    for edge in edges:
        if randint(0, 1) == 0:
            print perm[edge[0]] + 1, perm[edge[1]] + 1
        else:
            print perm[edge[1]] + 1, perm[edge[0]] + 1
示例#9
0
def run(N, A, Mg, Mb, Mt, S):
    nseed(S)
    rseed(S)
    grafo = ugraph(N)
    grafo.addedges(Mg+Mb+Mt)
    grafo.shuffle()
    #Attrazioni
    attr = sample(xrange(1, N), A)
    #Lista degli archi
    archi = list(grafo)
    shuffle(archi)
    #Collegamenti gratuiti
    gratis = archi[:Mg]
    archi = archi[Mg:]
    shuffle(archi)
    #Collegamenti bus
    bus = archi[:Mb]
    archi = archi[Mb:]
    shuffle(archi)
    #Collegamenti traghetto
    trag = archi
    del archi

    print N, A, Mg, Mb, Mt
    for x in attr:
        print x
    for x in gratis:
        print x[0], x[1]
    for x in bus:
        print x[0], x[1]
    for x in trag:
        print x[0], x[1]
示例#10
0
def shuffle(data, seed=None):
    if seed is not None:
        rseed(seed)
    questions = data[QUESTIONS]
    list(map(rshuffle, questions))
    align(questions)
    list(map(rshuffle, questions))
示例#11
0
def run(N, M, P, Q, C, S):
    global randseq
    nseed(S)
    rseed(S)
    last = 0
    randseq = []
    for i in xrange(M + 1):
        last += randint(1, 10)
        randseq += [last]
    shuffle(randseq)
    #print N, M, P, Q, C, S
    origM = M
    M -= 2 * (P + Q)
    e = eso(M, P, Q)
    seqs = [flatten(e)]
    for i in xrange(N - 1):
        if randint(0, N) < C:
            e = eso(M, P, Q)
        else:
            e = gen_equiv(e)
        seqs += [flatten(e)]
    seqs = list(set(seqs))
    shuffle(seqs)
    print len(seqs), origM
    for i in xrange(len(seqs)):
        print "%s" % seqs[i]
示例#12
0
def run_line(N, M, X0, X1, P, Seed):
    """
    N: numero segmenti
    M: numero fontane
    X0: inizio linea
    X1: fine linea
    P: lunghezza percentuale del salto
    """
    nseed(Seed)
    rseed(Seed)

    y = randbetween(1, MAXX)
    fountains = set((randbetween(X0, X1), y) for i in xrange(M))
    while len(fountains) < M:
        fountains |= set(
            (randbetween(X0, X1), y) for i in xrange(M - len(fountains)))

    print N, M
    xi = randbetween(X0, X1)
    print xi, y

    for i in xrange(N):
        l1 = xi - X0
        l2 = X1 - xi
        f = random()
        if f < float(l1) / (l1 + l2):
            d = int(float(l1 * P) / 100)
            xi = randbetween(X0, xi - d - 1)
        else:
            d = int(float(l2 * P) / 100)
            xi = randbetween(X1, xi + d + 1)
        print xi, y

    for f in fountains:
        print f[0], f[1]
示例#13
0
def run_hard(N, M, X0, X1, P, Seed):
    """
    N: numero segmenti
    M: numero fontane
    X0: inizio linea
    X1: fine linea
    P: lunghezza percentuale del salto
    """
    nseed(Seed)
    rseed(Seed)

    fountains, segments = line_test(N / 3, M / 3, X0, X1, randbetween(X0, X1),
                                    randbetween(1, MAXX), P)
    fountains2, segments2 = line_test(N / 3 - 1, M / 3, X0, X1,
                                      segments[-1][0], randbetween(1, MAXX), P)
    fountains3, segments3 = line_test(N / 3 - 1, M / 3,
                                      X0, X1, segments2[-1][0],
                                      randbetween(1, MAXX), P)

    F = fountains | fountains2 | fountains3
    S = segments + segments2 + segments3

    print len(S) - 1, len(F)

    for s in S:
        print s[0], s[1]
    for f in F:
        print f[0], f[1]
示例#14
0
def run(N, ST, D, S):
    nseed(S)
    rseed(S)
    transitions = []
    characters = [0 for _ in xrange(N)]
    for i in xrange(N - 1, 0, -1):
        min_delta = -i
        max_delta = N - 1 - i
        good_characters = []
        for j, t in enumerate(transitions):
            if min(t) >= min_delta and max(t) <= max_delta:
                good_characters += [j]
        choice = randint(0, len(good_characters) + 1)
        if choice == len(good_characters):
            # Aggiungi un nuovo elemento.
            transitions.append([
                randint(max(min_delta, -D), min(max_delta, D))
                for _ in xrange(ST)
            ])
            characters[i] = len(transitions) - 1
        else:
            characters[i] = good_characters[choice]
    characters[0] = randint(0, len(transitions))
    C = len(transitions)
    print N, ST, C
    for cur_st in range(0, ST):
        for cur_c in range(0, C):
            print cur_st, cur_c, randint(0, ST), transitions[cur_c][cur_st]
    for i in xrange(0, N):
        print characters[i]
示例#15
0
def haikunate(delimiter='-', tokenlength=4, tokenhex=False, tokenchars='0123456789', seed=None):
    """
    Generate Heroku-like random names to use in your applications.

    :param delimiter: Delimiter
    :type delimiter: str
    :param tokenlength: TokenLength
    :type tokenlength: int
    :param tokenhex: TokenHex
    :type tokenhex: bool
    :param tokenchars: TokenChars
    :type tokenchars: str
    :param seed: Seed for random
    :type seed: str or int
    :returns: haikunated string
    :rtype: str
    """

    if seed:
        rseed(seed)

    if tokenhex:
        tokenchars = '0123456789abcdef'

    adjective = choice(ADJECTIVES)
    noun = choice(NOUNS)
    token = ''.join(choice(tokenchars) for _ in range(tokenlength))

    sections = [adjective, noun, token]
    return delimiter.join(filter(None, sections))
def haikunate(delimiter='-',
              tokenlength=4,
              tokenhex=False,
              tokenchars='0123456789',
              seed=None):
    """
    Generate Heroku-like random names to use in your applications.

    :param delimiter: Delimiter
    :type delimiter: str
    :param tokenlength: TokenLength
    :type tokenlength: int
    :param tokenhex: TokenHex
    :type tokenhex: bool
    :param tokenchars: TokenChars
    :type tokenchars: str
    :param seed: Seed for random
    :type seed: str or int
    :returns: haikunated string
    :rtype: str
    """

    if seed:
        rseed(seed)

    if tokenhex:
        tokenchars = '0123456789abcdef'

    adjective = choice(ADJECTIVES)
    noun = choice(NOUNS)
    token = ''.join(choice(tokenchars) for _ in range(tokenlength))

    sections = [adjective, noun, token]
    return delimiter.join(filter(None, sections))
示例#17
0
def run(N, A, Mg, Mb, Mt, S):
    nseed(S)
    rseed(S)
    grafo = ugraph(N)
    grafo.addedges(Mg + Mb + Mt)
    grafo.shuffle()
    #Attrazioni
    attr = sample(xrange(1, N), A)
    #Lista degli archi
    archi = list(grafo)
    shuffle(archi)
    #Collegamenti gratuiti
    gratis = archi[:Mg]
    archi = archi[Mg:]
    shuffle(archi)
    #Collegamenti bus
    bus = archi[:Mb]
    archi = archi[Mb:]
    shuffle(archi)
    #Collegamenti traghetto
    trag = archi
    del archi

    print N, A, Mg, Mb, Mt
    for x in attr:
        print x
    for x in gratis:
        print x[0], x[1]
    for x in bus:
        print x[0], x[1]
    for x in trag:
        print x[0], x[1]
示例#18
0
def run_line(N, M, X0, X1, P, Seed):
    """
    N: numero segmenti
    M: numero fontane
    X0: inizio linea
    X1: fine linea
    P: lunghezza percentuale del salto
    """
    nseed(Seed)
    rseed(Seed)

    y = randbetween(1, MAXX)
    fountains = set((randbetween(X0, X1), y) for i in xrange(M))
    while len(fountains)<M:
        fountains |= set((randbetween(X0, X1), y) for i in xrange(M-len(fountains)))

    print N, M
    xi = randbetween(X0, X1)
    print xi, y

    for i in xrange(N):
        l1 = xi - X0
        l2 = X1 - xi
        f = random()
        if f < float(l1)/(l1+l2):
            d = int(float(l1 * P)/100)
            xi = randbetween(X0, xi - d - 1)
        else:
            d = int(float(l2 * P)/100)
            xi = randbetween(X1, xi + d + 1)
        print xi, y

    for f in fountains:
        print f[0], f[1]
示例#19
0
def run_random(N, S):
    """Genera una stringa completamente casuale.

    """
    nseed(S)
    rseed(S)
    print N
    print "".join(map(lambda x: choice("qwertyuiopasdfghjklzxcvbnm"), range(N)))
示例#20
0
    def getPoint(self, seed=None, **kwargs):

        #seed if requested
        if seed:
            rseed(seed)

        #Create total config
        return NetworkConfig(segmentconfigs=[ seg.config(**kwargs) for seg in self.__segments(**kwargs)])
示例#21
0
def run_random(N, S):
    """Genera una stringa completamente casuale.

    """
    nseed(S)
    rseed(S)
    print N
    print "".join(map(lambda x: choice("qwertyuiopasdfghjklzxcvbnm"),
                      range(N)))
示例#22
0
    def explore(self, count=1, seed=None, **kwargs):
        #seed once if required
        if seed: rseed(seed)

        #collect "count" number of points
        self.points=NetworkConfigs([self.getPoint(**kwargs) for _ in xrange(count)])

        #return
        return self.points
示例#23
0
def run(N, M, T, S):
    nseed(S)
    rseed(S)
    if T == 0:
        g = graph.dgraph(N)
    else:
        g = graph.dag(N)
    g.addedges(M)
    g.shuffle()
    print g
示例#24
0
def run(N, S, P, T, X, Y, K, Seed):
    nseed(Seed)
    rseed(Seed)
    piano_stazioni = [randint(N) for i in xrange(P)]
    piano_stazioni.sort()
    piano_stazioni.reverse()

    stazioni=set()
    rect=[randint(X)+1,randint(X-1)+1,randint(Y)+1,randint(Y-1)+1]
    if rect[1] >= rect[0]:
        rect[1] += 1
    if rect[3] >= rect[2]:
        rect[3] += 1
    new=[randint(X)+1,randint(Y)+1]
    if K == 2:
        new=[rect[0],rect[2]]
    direction = randint(2)
    vertices = [[new[0], new[1]]]
    for i in xrange(N):
        old=list(new)
        direction = direction if (randint(4) == 0 and K != 2) else 1-direction
        if direction == 0:
            new[0]=randcentered(1,X,old[0] + (2*randint(2)-1)*(T*P/N))
            if old[0] <= new[0]:
                new[0] += 1
            if K == 2:
                new[0] = rect[0] if old[0] == rect[1] else rect[1]
        else:
            new[1]=randcentered(1,Y,old[1] + (2*randint(2)-1)*(T*P/N))
            if old[1] <= new[1]:
                new[1] += 1
            if K == 2:
                new[1] = rect[2] if old[1] == rect[3] else rect[3]
        vertices += [[ new[0], new[1]]]
        while (len(piano_stazioni) > 0 and piano_stazioni[-1] == i):
            piano_stazioni.pop()
            stazione_corrente = (randbetween(old[0],new[0]),randbetween(old[1],new[1]))
            for r in xrange(TRIES):
                if stazione_corrente in stazioni:
                    stazione_corrente = (randbetween(old[0],new[0]),randbetween(old[1],new[1]))
            stazioni.add(stazione_corrente)
    for i in xrange(S-len(stazioni)):
            stazione_corrente = (randint(X)+1,randint(Y)+1)
            for r in xrange(TRIES):
                if stazione_corrente in stazioni:
                    stazione_corrente = (randint(X)+1,randint(Y)+1)
            stazioni.add(stazione_corrente)

    stazioni = list(stazioni)
    print N, len(stazioni)
    for v in vertices:
        print v[0], v[1]
    shuffle(stazioni)
    for s in stazioni:
        print s[0], s[1]
示例#25
0
文件: rforest.py 项目: ai-se/RAAT
def SMOTE(data=None, atleast=50, atmost=100, k=5, resample=False):
    "Synthetic Minority Oversampling Technique"

    def knn(a, b):
        return sorted(b, key=lambda F: euclidean(a[:-1], F[:-1]))

    def extrapolate(one, two):
        new = len(one) * [None]
        new[:-1] = [
            min(a, b) + rand(0, 1) * (abs(a - b))
            for a, b in zip(one[:-1], two[:-1])
        ]
        new[-1] = int(one[-1])
        return new

    def populate(data):
        newData = []
        for _ in xrange(atleast):
            for one in data:
                neigh = knn(one, data)[1:k + 1]
                try:
                    two = choice(neigh)
                except IndexError:
                    two = one
                newData.append(extrapolate(one, two))
        return [choice(newData) for _ in xrange(atleast)]

    def depopulate(data):
        if resample:
            newer = []
            for _ in xrange(atmost):
                orig = choice(data)
                newer.append(extrapolate(orig, knn(orig, data)[1]))
            return newer
        else:
            return [choice(data).tolist() for _ in xrange(atmost)]

    newCells = []
    rseed(1)
    klass = lambda df: df[df.columns[-1]]
    count = Counter(klass(data))

    for u in count.keys():
        if count[u] <= atleast:
            newCells.extend(
                populate([r for r in data.as_matrix() if r[-1] == u]))
        if count[u] >= atmost:
            newCells.extend(
                depopulate([r for r in data.as_matrix() if r[-1] == u]))
        else:
            newCells.extend(
                [r.tolist() for r in data.as_matrix() if r[-1] == u])

    return pd.DataFrame(newCells, columns=data.columns)
示例#26
0
 def lista_pacientes(self):
     #return [Paciente(3) for i in range(1)]
     rseed(self.seed)
     cantidad_pacientes = [int(uniform(0, 4.75)), int(uniform(0, 4)), int(uniform(0.45, 4.34)),
                           int(uniform(0, 2.89)), int(uniform(0, 5)), int(uniform(0.35, 4.44)),
                           int(uniform(0, 5.28)), int(uniform(0, 4.24)), int(uniform(0, 4.12))]
     lista_pacientes = []
     for i, cant in enumerate(cantidad_pacientes):
         for _ in range(cant):
             lista_pacientes.append(Paciente(i+1))
     return lista_pacientes
示例#27
0
  def go(self):
    rseed(1)
    for planner in ['xtrees', 'cart', 'HOW', 'baseln0', 'baseln1']:
      out = [planner]
      predRows = []
      train_DF = createTbl(self.train[self._n], isBin=True)
      test_df = createTbl(self.test[self._n], isBin=True)
      actual = np.array(Bugs(test_df))
      before = self.pred(train_DF, test_df,
                         tunings=self.tunedParams,
                         smoteit=True)

      base = lambda X: sorted(X)[-1] - sorted(X)[0]
      newRows = lambda newTab: map(lambda Rows: Rows.cells[:-1], newTab._rows)
      after = lambda newTab: self.pred(train_DF, newTab, tunings=self.tunedParams
                                       , smoteit=True)
      frac = lambda aft: sum([0 if a < 1 else 1 for a in aft]
                             ) / sum([0 if b < 1 else 1 for b in before])
      predRows = [row.cells for predicted, row in zip(before
                             , createTbl(self.test[self._n]
                             , isBin=False)._rows) if predicted > 0]

      predTest = genTable(test_df, rows=predRows)

      for _ in xrange(self.reps):
        "Apply Different Planners"
        if planner == 'xtrees':
          newTab = xtrees(train=self.train[-1],
                        test_DF=predTest,
                        bin=False,
                        majority=True).main()

        elif planner == 'cart' or planner == 'CART':
          newTab = xtrees(train=self.train[-1],
                      test_DF=predTest,
                      bin=False,
                      majority=False).main()

        elif planner == 'HOW':
          newTab = HOW(train=self.train[-1],
                  test=self.test[-1],
                  test_df=predTest).main()

        elif planner == 'baseln0':
          newTab = strawman(train=self.train[-1], test=self.test[-1]).main()

        elif planner == 'baseln1':
          newTab = strawman(train=self.train[-1]
                            , test=self.test[-1], prune=True).main()

        out.append(frac(after(newTab)))

      self.logResults(out)
      yield out
示例#28
0
def run(K, N, C, S):
    nseed(S)
    rseed(S)
    print K
    print N
    l = genera(0, K, C)
    l1 = []
    for i in xrange(N-C):
        j = randint(0, len(l))
        l1 += [genint(l[j][0], l[j][1]+1)]
    l = l+l1
    shuffle(l)
    for x, y in l:
        print x, y
示例#29
0
def run(N, M, S):
    nseed(S)
    rseed(S)
    print N, M
    partenza=range(1,N+1)
    shuffle(partenza)
    for i in partenza:
        print i
    for i in range(M):
        idx=randint(1,N)
        print partenza[idx], partenza[idx-1]
        t=partenza[idx];
        partenza[idx]=partenza[idx-1]
        partenza[idx-1]=t
示例#30
0
def run(K, N, C, S):
    nseed(S)
    rseed(S)
    print K
    print N
    l = genera(0, K, C)
    l1 = []
    for i in xrange(N - C):
        j = randint(0, len(l))
        l1 += [genint(l[j][0], l[j][1] + 1)]
    l = l + l1
    shuffle(l)
    for x, y in l:
        print x, y
示例#31
0
def run(N, M, S):
    nseed(S)
    rseed(S)
    print N, M
    partenza = range(1, N + 1)
    shuffle(partenza)
    for i in partenza:
        print i
    for i in range(M):
        idx = randint(1, N)
        print partenza[idx], partenza[idx - 1]
        t = partenza[idx]
        partenza[idx] = partenza[idx - 1]
        partenza[idx - 1] = t
示例#32
0
def run(T, K, N, C, S):
    nseed(S); rseed(S)
    print(T)
    print(K)
    print(N)
    if C > 0:
        l = covering_family(0,K,N,C)
    else:
        l =  covering_family(0, K//2-randint(K//5), N//2, max(1,N//4))
        l += covering_family(K//2+randint(K//5),K,(N+1)//2,max(1,N//4))
    shuffle(l)
    assert len(l) == N
    for x, y in l:
        assert 0 <= x <= y < K
        print(x, y)
    def __init__(self):
        """ Initializes the class. """

        self.Helpers = Helpers("Data", False)

        self.dim = self.Helpers.confs["qnn"]["data"]["dim"]
        self.dir_train = self.Helpers.confs["qnn"]["data"]["dir_train"]
        self.seed = self.Helpers.confs["qnn"]["data"]["seed"]

        nseed(self.seed)
        rseed(self.seed)

        self.data = []
        self.labels = []
        self.paths = []

        self.Helpers.logger.info("Data Helper Class initialization complete.")
示例#34
0
def where(data):
    """
  Recursive FASTMAP clustering.
  """
    rseed(0)
    if isinstance(data, pd.core.frame.DataFrame):
        data = data.as_matrix()
    if not isinstance(data, np.ndarray):
        raise TypeError(
            'Incorrect data format. Must be a pandas Data Frame, or a numpy nd-array.'
        )

    N = np.shape(data)[0]
    clusters = []
    norm = np.max(data, axis=0)[:-1] - np.min(data, axis=0)[:-1]

    def aDist(one, two):
        return np.sqrt(
            np.sum((np.array(one[:-1]) / norm - np.array(two[:-1]) / norm)**2))

    def farthest(one, rest):
        return sorted(rest, key=lambda F: aDist(F, one))[-1]

    def recurse(dataset):
        R, C = np.shape(dataset)  # No. of Rows and Col
        # Find the two most distance points.
        one = dataset[randi(0, R - 1)]
        mid = farthest(one, dataset)
        two = farthest(mid, dataset)

        # Project each case on
        def proj(test):
            a = aDist(one, test)
            b = aDist(two, test)
            c = aDist(one, two)
            return (a**2 - b**2 + c**2) / (2 * c)

        if R < np.sqrt(N):
            clusters.append(dataset)
        else:
            _ = recurse(sorted(dataset, key=lambda F: proj(F))[:int(R / 2)])
            _ = recurse(sorted(dataset, key=lambda F: proj(F))[int(R / 2):])

    recurse(data)
    return clusters
示例#35
0
def run(N, R, S):
    nseed(S)
    rseed(S)
    print N
    out = [];
    new = randint(0,7)
    for i in range(R):
        old = new
        new = randint(0,7)
        if random() < 0.5:
            out.append([old,new])
        else:
            out.append([new,old])
    for i in range(R+1,N+1):
        out.append([randint(0,7),randint(0,7)])
    shuffle(out)
    for i in out:
        print i[0], i[1]
示例#36
0
文件: where.py 项目: vivekaxl/ChinExp
def where(data):
  """
  Recursive FASTMAP clustering.
  """
  rseed(0)
  if isinstance(data, pd.core.frame.DataFrame):
    data = data.as_matrix()
  if not isinstance(data, np.ndarray):
    raise TypeError('Incorrect data format. Must be a pandas Raw_Data Frame, or a numpy nd-array.')

  N = np.shape(data)[0]
  clusters = []
  norm = np.max(data, axis=0)[:-1] -np.min(data, axis=0)[:-1]

  def aDist(one, two):
    return np.sqrt(np.sum((np.array(one[:-1])/norm-np.array(two[:-1])/norm)**2))

  def farthest(one,rest):
    return sorted(rest, key=lambda F: aDist(F,one))[-1]

  def recurse(dataset, step=0):
    R, C = np.shape(dataset) # No. of Rows and Col
    # Find the two most distance points.
    one=dataset[randi(0,R-1)]
    mid=farthest(one, dataset)
    two=farthest(mid, dataset)

    # Project each case on
    def proj(test):
      a = aDist(mid, test)
      b = aDist(two, test)
      c = aDist(mid, two)
      return (a**2-b**2+c**2)/(2*c)

    # if R < np.sqrt(N/2): # since we need 64 cells
    if R < 16: # since we need 64 cells
      clusters.append(dataset)
    else:
      _ = recurse(sorted(dataset,key=lambda F:proj(F))[:int(R/2)], step+1)
      _ = recurse(sorted(dataset,key=lambda F:proj(F))[int(R/2):], step+1)

  recurse(data)
  return clusters
示例#37
0
def run(N, M, K, W, S):
    nseed(S)
    rseed(S)
    def wh():
        return randint(1,W+1)
    out = ugraph(N,type='tree',w=wh)
    out.addedges(M-N+1)
    out.shuffle()
    air = sample( range(1,N+1), K )
    C = randint(1, K)
    if len(air) > 1:
        while air[C] == 1:
            C = randint(1, K)
    print N, M, air[C], K
    for i in range(K):
        print air[i],
    print
    s = split(str(out), '\n')
    print join(s[1:-1], '\n')
示例#38
0
def run_con_fibstr_cattiva(N, S):
    """Genera una stringa di Fibonacci e ci mette attorno roba casuale
    usando gli stessi due simboli.

    """
    nseed(S)
    rseed(S)
    print N
    alphabet = set("qwertyuiopasdfghjklzxcvbnm")
    x = choice(list(alphabet))
    alphabet.remove(x)
    y = choice(list(alphabet))
    fibs = fibonacci(N)
    fiblen = randrange(3, len(fibs))
    before = randint(0, N - fibs[fiblen])
    after = N - fibs[fiblen] - before

    print "".join(map(lambda z: choice([x, y]), range(before))) + \
        genera_fibstr(x, y, fiblen) + \
        "".join(map(lambda z: choice([x, y]), range(after)))
示例#39
0
def run_con_fibstr_cattiva(N, S):
    """Genera una stringa di Fibonacci e ci mette attorno roba casuale
    usando gli stessi due simboli.

    """
    nseed(S)
    rseed(S)
    print N
    alphabet = set("qwertyuiopasdfghjklzxcvbnm")
    x = choice(list(alphabet))
    alphabet.remove(x)
    y = choice(list(alphabet))
    fibs = fibonacci(N)
    fiblen = randrange(3, len(fibs))
    before = randint(0, N-fibs[fiblen])
    after = N-fibs[fiblen]-before

    print "".join(map(lambda z: choice([x, y]), range(before))) + \
        genera_fibstr(x, y, fiblen) + \
        "".join(map(lambda z: choice([x, y]), range(after)))
示例#40
0
文件: cStat.py 项目: cnibr/MACS
def MLEPoissonPosteriorRatio (sample_number, burn, count1, count2):
    """MLE method to calculate ratio distribution of two Posterior Poisson distributions.

    MLE of Posterior Poisson is Gamma(k+1,1) if there is only one observation k.

    sample_number: number of sampling. It must be greater than burn, however there is no check.
    burn: number of samples being burned.
    count1: observed counts of condition 1
    count2: observed counts of condition 2

    return: list of log2-ratios
    """
    rseed(1)
    ratios = pyarray('f',[])
    ra = ratios.append
    for i in xrange(sample_number):
        x1 = rgamma(count1+1,1)
        x2 = rgamma(count2+1,1)
        ra( log(x1,2) - log(x2,2) )
    return ratios[int(burn):]
示例#41
0
文件: cStat.py 项目: mkhushi/MACS
def MLEPoissonPosteriorRatio(sample_number, burn, count1, count2):
    """MLE method to calculate ratio distribution of two Posterior Poisson distributions.

    MLE of Posterior Poisson is Gamma(k+1,1) if there is only one observation k.

    sample_number: number of sampling. It must be greater than burn, however there is no check.
    burn: number of samples being burned.
    count1: observed counts of condition 1
    count2: observed counts of condition 2

    return: list of log2-ratios
    """
    rseed(1)
    ratios = pyarray('f', [])
    ra = ratios.append
    for i in xrange(sample_number):
        x1 = rgamma(count1 + 1, 1)
        x2 = rgamma(count2 + 1, 1)
        ra(log(x1, 2) - log(x2, 2))
    return ratios[int(burn):]
示例#42
0
def run(N, M, K, W, S):
    nseed(S)
    rseed(S)

    def wh():
        return randint(1, W + 1)

    out = ugraph(N, type='tree', w=wh)
    out.addedges(M - N + 1)
    out.shuffle()
    air = sample(range(1, N + 1), K)
    C = randint(1, K)
    if len(air) > 1:
        while air[C] == 1:
            C = randint(1, K)
    print N, M, air[C], K
    for i in range(K):
        print air[i],
    print
    s = split(str(out), '\n')
    print join(s[1:-1], '\n')
示例#43
0
def run(N, L, S):
    nseed(S)
    rseed(S)
    out = []
    #Numero di indicazioni per ogni nazione
    indic_nazioni = list(multinomial(L - N, [1. / N] * N))
    for i in range(len(indic_nazioni)):
        indic_nazioni[i] += 1
    #Numero di ragazzi in ogni nazione
    ragazzi = [0] * N
    for i in range(N):
        for j in range(indic_nazioni[i]):
            temp = randint(1, MAXR / indic_nazioni[i])
            ragazzi[i] += temp
            out.append("{0} {1}".format(i,
                                        temp if random() > .93 else temp - 1))
    shuffle(out)
    print N, L
    for x in ragazzi:
        print x
    for x in out:
        print x
示例#44
0
def main(argc, argv):
	t0 = time()

	seed = (argc > 1 and int(argv[1])) or 123456789
	xmin = 1000000000000
	ymin = 1000000000000
	xmax = 5000000000000
	ymax = 5000000000000

	rseed(seed)

	for b in xrange(2, 64 + 1):
		for i in xrange(5000):
			x = rint(xmin, xmax)
			y = rint(ymin, ymax)

			assert(karatsuba_multiply(x, y, b) == (x * y))

	t1 = time()
	dt = t1 - t0

	print("[main] dt=%fs" % dt)
	return 0
示例#45
0
def run(N, L, S):
	nseed(S)
	rseed(S)
	risolvi = random() > 0.5
	print "risolvi:", risolvi
	print N, L
	out = []
	#Numero di indicazioni per ogni nazione
	indic_nazioni = list(multinomial(L-N, [1./N]*N))
	for i in range(len(indic_nazioni)):
		indic_nazioni[i] += 1
	#Numero di ragazzi in ogni nazione
	ragazzi = [0]*N
	for i in range(N):
		for j in range(indic_nazioni[i]):
			temp = randint(1, MAXR/indic_nazioni[i]);
			ragazzi[i] += temp
			out.append("{0} {1}".format(i, temp if (risolvi or (random() > .85)) else temp-1))
	shuffle(out)
	for x in ragazzi:
		print x
	for x in out:
		print x
示例#46
0
def main(argc, argv):
    t0 = time()

    seed = (argc > 1 and int(argv[1])) or 123456789
    xmin = 1000000000000
    ymin = 1000000000000
    xmax = 5000000000000
    ymax = 5000000000000

    rseed(seed)

    for b in xrange(2, 64 + 1):
        for i in xrange(5000):
            x = rint(xmin, xmax)
            y = rint(ymin, ymax)

            assert (karatsuba_multiply(x, y, b) == (x * y))

    t1 = time()
    dt = t1 - t0

    print("[main] dt=%fs" % dt)
    return 0
示例#47
0
def run(R, C, S):
    nseed(S)
    rseed(S)
    #True se la parola e' presente
    risolvi = random() > 0.5
    #La matrice con le lettere
    matr = []
    for i in xrange(R):
        temp = []
        for j in xrange(C):
            temp.append(choice(uppercase))
        matr.append(temp)
    lung_parola = randint((R+C)/10+2, R+C if risolvi else (R+C)/2)
    parola = ""
    posr, posc = 0, 0
    for i in xrange(lung_parola):
        parola += matr[posr][posc]
        if random() > 0.5:
            if posr < R-1:
                posr += 1
            else:
                posc += 1
        else:
            if posc < C-1:
                posc += 1
            else:
                posr += 1
    if not risolvi:
        for i in xrange(randint(0, (R+C)/2-2)):
            parola += choice(uppercase)
    print parola
    for i in xrange(R):
        temp = ""
        for j in xrange(C):
            temp += matr[i][j]
        print temp
示例#48
0
def run(R, C, T, S):
    nseed(S)
    rseed(S)
    #La matrice con le lettere
    matr = []
    for i in xrange(R):
        temp = []
        for j in xrange(C):
            temp.append(choice(uppercase))
        matr.append(temp)
    lung_parola = randint((R + C) / 10 + 2, R + C if T == 1 else (R + C) / 2)
    parola = ""
    posr, posc = 0, 0
    for i in xrange(lung_parola):
        parola += matr[posr][posc]
        if random() > 0.5:
            if posr < R - 1:
                posr += 1
            else:
                posc += 1
        else:
            if posc < C - 1:
                posc += 1
            else:
                posr += 1
    if T == 0:
        for i in xrange(randint(0, (R + C) / 2 - 2)):
            parola += choice(uppercase)

    print R, C
    print parola
    for i in xrange(R):
        temp = ""
        for j in xrange(C):
            temp += matr[i][j]
        print temp
import os
os.environ['PYTHONHASHSEED'] = '42'
from numpy.random import seed, shuffle
from random import seed as rseed
from tensorflow.random import set_seed
seed(42)
rseed(42)
set_seed(42)
import random
import pickle
import shutil
import models
from utils import *
from dataGenerator import *
from datasetProcess import *
from tensorflow.keras.models import load_model
from tensorflow.keras.utils import plot_model
from tensorflow.python.keras import backend as K
import pandas as pd
import argparse


def evaluateEfficiency(args):

    #--------------------------------------------------
    flops, params = get_flops(args)
    print("============================")
    print('fusion:', args.fusionType)
    print('lstm type:', args.lstmType)
    print('input mode:', args.mode)
    print('----------------------------')
示例#50
0
def SMOTE(data=None, k=5, atleast=100, atmost=100, bugIndx=2, resample=False):
    def Bugs(tbl):
        cells = [i.cells[-bugIndx] for i in tbl._rows]
        return cells

    def minority(data):
        unique = list(set(sorted(Bugs(data))))
        counts = len(unique) * [0]
        #     set_trace()
        for n in xrange(len(unique)):
            for d in Bugs(data):
                if unique[n] == d:
                    counts[n] += 1
        return unique, counts

    def knn(one, two):
        pdistVect = []
        #    set_trace()
        for ind, n in enumerate(two):
            pdistVect.append([ind, euclidean(one.cells[:-1], n.cells[:-1])])
        indices = sorted(pdistVect, key=lambda F: F[1])
        return [two[n[0]] for n in indices]

    def extrapolate(one, two):
        new = one
        #    set_trace()
        if bugIndx == 2:
            new.cells[3:-1] = [
                max(min(a, b),
                    min(min(a, b) + rand() * (abs(a - b)), max(a, b)))
                for a, b in zip(one.cells[3:-1], two.cells[3:-1])
            ]
            new.cells[-2] = int(new.cells[-2])
        else:
            new.cells[3:] = [
                min(a, b) + rand() * (abs(a - b))
                for a, b in zip(one.cells[3:], two.cells[3:])
            ]
            new.cells[-1] = int(new.cells[-1])
        return new

    def populate(data):
        newData = []
        # reps = (len(data) - atleast)
        for _ in xrange(atleast):
            for one in data:
                neigh = knn(one, data)[1:k + 1]
                # If you're thinking the following try/catch statement is bad coding
                # etiquette i i .
                try:
                    two = choice(neigh)
                except IndexError:
                    two = one
                newData.append(extrapolate(one, two))
        # data.extend(newData)
        return newData

    def depopulate(data):
        if resample:
            newer = []
            for _ in xrange(atmost):
                orig = choice(data)
                newer.append(extrapolate(orig, knn(orig, data)[1]))
            return newer
        else:
            return [choice(data) for _ in xrange(atmost)]

    newCells = []
    rseed(1)
    unique, counts = minority(data)
    rows = data._rows
    for u, n in zip(unique, counts):
        if n < atleast:
            newCells.extend(populate([r for r in rows if r.cells[-2] == u]))
        if n > atmost:
            newCells.extend(depopulate([r for r in rows if r.cells[-2] == u]))
        else:
            newCells.extend([r for r in rows if r.cells[-2] == u])

    return clone(data, rows=[k.cells for k in newCells])
示例#51
0
Parametri:
* N (numero)
* S (seed)

Constraint:
* 1 <= N <= %d
""" % (MAXN)


def run(N):
    print N
    print " ".join(map(str, [randint(-70, 99) for i in xrange(0, N * N)]))


if __name__ == "__main__":
    if len(argv) != 3:
        print usage
        exit(1)

    N, S = map(int, argv[1:])
    assert (1 <= N <= MAXN)

    # su seed non positivo copia un input di esempio dal .tex
    if S <= 0:
        print extract_input()[-S],
        exit(0)
    nseed(S)
    rseed(S)
    run(N)
示例#52
0
        division_points.sort()
        
        partition = [ division_points[i+1] - division_points[i] for i in xrange(M) ]
        
        for L in partition:
            interval = fill_interval(L,H)
            for a in interval:
                print a,

    

if __name__ == "__main__":
    if len(argv) != 5:
        print usage
        exit(1)

    N, H, M, S = map(int, argv[1:])
    
    # Finche' generiamo elementi distinti, non ha senso avere L<3.
    assert (1 <= N <= MAXN)
    assert (1 <= H <= MAXH)

    # su seed non positivo copia un input di esempio dal .tex
    if S <= 0:
        print extract_input(cmsbooklet=True)[-S],
        exit(0)
    nseed(S)
    rseed(S)
    
    run(N,H,M)
示例#53
0
def seed(z):
	rseed(z)
	random.seed(z)
示例#54
0
文件: defects.py 项目: rahlk/RAAT
def _test(file='ant'):
    rseed(1)
    for file in ['ivy', 'lucene', 'jedit', 'poi', 'ant']:
        print('## %s\n' % (file))
        R = [r for r in run(dataName=file, reps=10, _tuneit=False).go()]
        rdivDemo(R, isLatex=False)
示例#55
0
def SMOTE(data=None, k=5, atleast=10, atmost=51, bugIndx=2, resample=False):

  def Bugs(tbl):
    cells = [i.cells[-bugIndx] for i in tbl._rows]
    return cells

  def minority(data):
    unique = list(set(sorted(Bugs(data))))
    counts = len(unique) * [0]
#     set_trace()
    for n in xrange(len(unique)):
      for d in Bugs(data):
        if unique[n] == d:
          counts[n] += 1
    return unique, counts

  def knn(one, two):
    pdistVect = []
#    set_trace()
    for ind, n in enumerate(two):
      pdistVect.append([ind, euclidean(one.cells[:-1], n.cells[:-1])])
    indices = sorted(pdistVect, key=lambda F: F[1])
    return [two[n[0]] for n in indices]

  def extrapolate(one, two):
    new = one
#    set_trace()
    if bugIndx == 2:
      new.cells[3:-1] = [max(min(a, b),
                             min(min(a, b) + rand() * (abs(a - b)),
                                 max(a, b))) for a, b in zip(one.cells[3:-1],
                                                             two.cells[3:-1])]
      new.cells[-2] = int(new.cells[-2])
    else:
      new.cells[3:] = [min(a, b) + rand() * (abs(a - b)) for
                       a, b in zip(one.cells[3:], two.cells[3:])]
      new.cells[-1] = int(new.cells[-1])
    return new

  def populate(data):
    newData = []
    # reps = (len(data) - atleast)
    for _ in xrange(atleast):
      for one in data:
        neigh = knn(one, data)[1:k + 1]
        # If you're thinking the following try/catch statement is bad coding
        # etiquette i i .
        try:
          two = choice(neigh)
        except IndexError:
          two = one
        newData.append(extrapolate(one, two))
    # data.extend(newData)
    return newData

  def depopulate(data):
    if resample:
      newer = []
      for _ in xrange(atmost):
        orig = choice(data)
        newer.append(extrapolate(orig, knn(orig, data)[1]))
      return newer
    else:
      return [choice(data) for _ in xrange(atmost)]

  newCells = []
  rseed(1)
  unique, counts = minority(data)
  rows = data._rows
  for u, n in zip(unique, counts):
    if n < atleast:
      newCells.extend(populate([r for r in rows if r.cells[-2] == u]))
    if n > atmost:
      newCells.extend(depopulate([r for r in rows if r.cells[-2] == u]))
    else:
      newCells.extend([r for r in rows if r.cells[-2] == u])

  return clone(data, rows=[k.cells for k in newCells])