示例#1
0
 def testNewPres(self):
     # pres = [x*self.MB2PA for x in (500.,850.,1000.)]
     pres = (500.,850.,1000.)
     vgd0ptr = vgd.vgd_new_pres(pres)
     vkind = vgd.vgd_get(vgd0ptr, 'KIND')
     vvers = vgd.vgd_get(vgd0ptr, 'VERS')
     self.assertEqual((vkind,vvers),vgd.VGD_KIND_VER['pres'])
示例#2
0
 def test_24qd(self):
     import os, sys
     import numpy as np
     import rpnpy.librmn.all as rmn
     import rpnpy.vgd.all as vgd
     g = rmn.defGrid_ZE(90, 45, 35., 250., 0.5, 0.5, 0., 180., 1., 270.)
     lvls = (500.,850.,1000.)
     v = vgd.vgd_new_pres(lvls)
     ip1list = vgd.vgd_get(v, 'VIPT')
     datyp   = rmn.FST_DATYP_LIST['float_IEEE_compressed']
     npdtype = rmn.dtype_fst2numpy(datyp)
     rshape  = (g['ni'], g['nj'], len(ip1list))
     r = rmn.FST_RDE_META_DEFAULT.copy()
     r.update(g)
     r.update({
         'nomvar': 'MASK',   'nk'    : len(ip1list),
         'dateo' : rmn.newdate(rmn.NEWDATE_PRINT2STAMP, 20160302, 1800000),
         'ip2'   : 6,        'deet'  : 3600, 'npas'  : 6,
         'etiket': 'my_etk', 'datyp' : datyp,
         'd'     : np.empty(rshape, dtype=npdtype, order='FORTRAN')
         })
     r['d'][:,:,:] = 0.
     r['d'][10:-11,5:-6,:] = 1.
     fileNameOut = 'newfromscratch.fst'
     fileIdOut = rmn.fstopenall(fileNameOut, rmn.FST_RW)
     r2d = r.copy()
     for k in range(len(ip1list)):
         r2d.update({'nk':1, 'ip1':ip1list[k], 'd':np.asfortranarray(r['d'][:,:,k])})
         rmn.fstecr(fileIdOut, r2d['d'], r2d)
     rmn.writeGrid(fileIdOut, g)
     vgd.vgd_write(v, fileIdOut)
     rmn.fstcloseall(fileIdOut)
     os.unlink(fileNameOut)  # Remove test file
示例#3
0
 def testNewPres(self):
     # pres = [x*self.MB2PA for x in (500.,850.,1000.)]
     pres = (500.,850.,1000.)
     vgd0ptr = vgd.vgd_new_pres(pres)
     vkind = vgd.vgd_get(vgd0ptr, 'KIND')        
     vvers = vgd.vgd_get(vgd0ptr, 'VERS')
     self.assertEqual((vkind,vvers),vgd.VGD_KIND_VER['pres'])
示例#4
0
 def test_24qd(self):
     import os, sys
     import numpy as np
     import rpnpy.librmn.all as rmn
     import rpnpy.vgd.all as vgd
     g = rmn.defGrid_ZE(90, 45, 35., 250., 0.5, 0.5, 0., 180., 1., 270.)
     lvls = (500., 850., 1000.)
     v = vgd.vgd_new_pres(lvls)
     ip1list = vgd.vgd_get(v, 'VIPT')
     datyp = rmn.FST_DATYP_LIST['float_IEEE_compressed']
     npdtype = rmn.dtype_fst2numpy(datyp)
     rshape = (g['ni'], g['nj'], len(ip1list))
     r = rmn.FST_RDE_META_DEFAULT.copy()
     r.update(g)
     r.update({
         'nomvar':
         'MASK',
         'nk':
         len(ip1list),
         'dateo':
         rmn.newdate(rmn.NEWDATE_PRINT2STAMP, 20160302, 1800000),
         'ip2':
         6,
         'deet':
         3600,
         'npas':
         6,
         'etiket':
         'my_etk',
         'datyp':
         datyp,
         'd':
         np.empty(rshape, dtype=npdtype, order='FORTRAN')
     })
     r['d'][:, :, :] = 0.
     r['d'][10:-11, 5:-6, :] = 1.
     fileNameOut = 'newfromscratch.fst'
     fileIdOut = rmn.fstopenall(fileNameOut, rmn.FST_RW)
     r2d = r.copy()
     for k in range(len(ip1list)):
         r2d.update({
             'nk': 1,
             'ip1': ip1list[k],
             'd': np.asfortranarray(r['d'][:, :, k])
         })
         rmn.fstecr(fileIdOut, r2d['d'], r2d)
     rmn.writeGrid(fileIdOut, g)
     vgd.vgd_write(v, fileIdOut)
     rmn.fstcloseall(fileIdOut)
     os.unlink(fileNameOut)  # Remove test file
def build_fst(params, y_int, m_int):
    '''
    (dict) -> (int, dict)
    builds the file as per the parameters defined in the params dict
    
    returns the file_id
    '''

    # makes an empty .fst file
    day = time.gmtime()
    temp = ''
    for x in day:
        temp += str(x)
    #new_nc = '/home/ords/aq/alh002/pyscripts/workdir/pv_files/TEST5.fst'
    new_nc = '/home/ords/aq/alh002/pyscripts/workdir/pv_files/SHIFTED_POTVOR_file_{0}_{1}.fst'.format(
        y_int + 2008, m_int + 1)
    tmp = open(new_nc, 'w+')
    tmp.close()
    output_file = new_nc

    try:
        file_id = rmn.fnom(output_file)
        open_fst = rmn.fstouv(file_id, rmn.FST_RW)
        print(file_id, open_fst)

        MACC_grid = rmn.encodeGrid(params)
        print("Grids created.")
        print 'Grid Shape:' + str(MACC_grid['shape'])

        rmn.writeGrid(file_id, MACC_grid)
        toc_record = vgd.vgd_new_pres(const_pressure,
                                      ip1=MACC_grid['ig1'],
                                      ip2=MACC_grid['ig2'])
        vgd.vgd_write(toc_record, file_id)

        return file_id, MACC_grid

    except:
        rmn.fstfrm(file_id)
        rmn.fclos(file_id)
        raise
示例#6
0
def plotFSTs(season=season, spcs=spcs, spcsFiles=spcsFiles, outputName = outputName, saveDir=saveDir):
    # print minimum outputs
    rmn.fstopt(rmn.FSTOP_MSGLVL,rmn.FSTOPI_MSG_CATAST)

    mInds = []
    for m in season:
        mInds += [monthList.index(m)]

    if os.path.exists(saveDir) == False:
        nu.makeDir(saveDir)

    for spcInd, nomvar in enumerate(spcs):
        try:
            filename = os.path.join(saveDir, 'output_file_{0}_{1}.fst'.format(outputName, nomvar))
            print('Creating and saving to {}'.format(filename))
            tmp = open(filename, 'w+'); tmp.close()

            output_file = filename
            file_id = rmn.fnom(output_file)
            open_fst = rmn.fstouv(file_id, rmn.FST_RW)
            open_file = spcsFiles[spcInd]
            print "Parameter: " + nomvar
            seaSpcData = get_var(pyg.open(open_file), nomvar, mInds)
            nc_lnsp = pyg.open(lnsp_file)
            pressures = get_pressures(nc_lnsp, mInds)

            timelen, levlen, latlen, lonlen = seaSpcData.shape
            #NOTE: uncomment the following three lines to prep data for basemap use
            #lonShiftSSData = shift_lon(seaSpcData)
            #vertInterpSSData = vert_interp(pressures, lonShiftSSData)
            #meanSSData = np.mean(vertInterpSSData, axis=0)
            #NOTE: uncommment the following four liness to use for fst plotting
            vertInterpSSData = vert_interp(pressures, seaSpcData)
            meanSSData = np.mean(vertInterpSSData, axis=0)  # temp
            for lvl, ray in enumerate(meanSSData):
                meanSSData[lvl] = np.flipud(ray)
            scaleFac = scaleSpcs[allSpcs.index(nomvar)]
            scaledSSData = meanSSData*scaleFac

            #define grid for this file - note that the MACC grid in the file is
            #defined for lons -180 to 180, but the python defGrid_L can't deal
            #with that and defines the grid from 0 to 360 so will have to reorder
            #the MACC fields a bit, or they end up 180 deg out of phase
            # Also necessary to add one more longitude to wrap around
            dlatlon = 360./lonlen   # this is equal to the resolution of the grid

            params0 = {
                    'grtyp' : 'Z',
                    'grref' : 'L',
                    'nj'    : latlen,
                    'ni'    : lonlen,
                    'lat0'  : -90.,
                    'lon0'  : 0.,
                    'dlat'  : dlatlon,
                    'dlon'  : dlatlon
                    }

            MACC_grid= rmn.encodeGrid(params0)
            print("Grids created.")
            print 'Grid Shape:' + str(MACC_grid['shape'])

            # copies the default record
            new_record = rmn.FST_RDE_META_DEFAULT.copy()
            tic_record = rmn.FST_RDE_META_DEFAULT.copy()
            tac_record = rmn.FST_RDE_META_DEFAULT.copy()

            try:
                rmn.writeGrid(file_id, MACC_grid)

                tac = rmn.fstinl(file_id, nomvar='>>')[0]
                tic = rmn.fstinl(file_id, nomvar='^^')[0]

                tic_record.update(rmn.fstprm(tic))
                tac_record.update(rmn.fstprm(tac))

                tic_record.update({'datyp' : rmn.FST_DATYP_LIST['float']})
                tac_record.update({'datyp' : rmn.FST_DATYP_LIST['float']})

                rmn.fsteff(tic)
                rmn.fsteff(tac)

                tic_record.update({'d': MACC_grid['ay']})
                tac_record.update({'d': MACC_grid['ax']})
                toc_record = vgd.vgd_new_pres(const_pressure, ip1=MACC_grid['ig1'], ip2=MACC_grid['ig2'])

                rmn.fstecr(file_id, tic_record)  # write the dictionary record to the file as a new record
                rmn.fstecr(file_id, tac_record)  # write the dictionary record to the file as a new record
                vgd.vgd_write(toc_record, file_id)

            except:
                raise

            for rp1 in xrange(len(const_pressure)):  # writes a record for every level (as a different ip1)
                try:
                    # converts rp1 into a ip1 with pressure kind
                    ip1 = rmn.convertIp(rmn.CONVIP_ENCODE, const_pressure[rp1], rmn.KIND_PRESSURE)
                    new_record.update(MACC_grid)
                    new_record.update({  # Update with specific meta
                        'nomvar': nomvar,
                        'typvar': 'C',
                        'etiket': 'MACCRean',
                        'ni'    : MACC_grid['ni'],
                        'nj'    : MACC_grid['nj'],
                        'ig1'   : tic_record['ip1'],
                        'ig2'   : tic_record['ip2'],
                        'ig3'   : tic_record['ip3'],
                        'ig4'   : tic_record['ig4'],
                        'dateo' : rmn.newdate(rmn.NEWDATE_PRINT2STAMP, 20120101, 0000000),
                        'deet'  : 0,  # Timestep in sec
                        'ip1'   : ip1
                        })

                    #tmp_nparray = np.asfortranarray(monthly_mean[rp1])
                    tmp = scaledSSData[rp1]
                    tmp = np.transpose(tmp)
                    # data array is structured as tmp = monthly_mean[level] where monthly_mean is [level, lat, lon]
                    new_record.update({'d': tmp.astype(np.float32)}) # Updates with data array in the form (lon x lat)

                    print "Defined a new record with dimensions ({0}, {1})".format(new_record['ni'], new_record['nj'])
                    rmn.fstecr(file_id, new_record)  # write the dictionary record to the file as a new record

                except:
                    #rmn.closeall(file_id)
                    rmn.fstfrm(file_id)
                    rmn.fclos(file_id)
                    raise
            rmn.fstfrm(file_id)
            rmn.fclos(file_id)
            print('{} complete~'.format(filename))
        except:
            rmn.fstfrm(file_id)
            rmn.fclos(file_id)
            raise
    print('Finished plotting all FSTs. ')
示例#7
0
    def test_51(self):
        """
        Vertical Interpolation
        
        See also:
        scipy.interpolate.interp1d
        """
        import os, sys, datetime
        import numpy as np
        from scipy.interpolate import interp1d as scipy_interp1d
        import rpnpy.librmn.all as rmn
        import rpnpy.vgd.all as vgd

        MB2PA = 100.

        # Restrict to the minimum the number of messages printed by librmn
        rmn.fstopt(rmn.FSTOP_MSGLVL, rmn.FSTOPI_MSG_CATAST)

        # Open Input file
        hour = 48
        fdate = datetime.date.today().strftime('%Y%m%d') + '00_0' + str(hour)
        CMCGRIDF = os.getenv('CMCGRIDF').strip()
        fileNameOut = os.path.join(CMCGRIDF, 'prog', 'regeta', fdate)
        try:
            fileIdIn = rmn.fstopenall(fileNameOut, rmn.FST_RO)
        except:
            sys.stderr.write("Problem opening the input file: %s\n" %
                             fileNameOut)
            sys.exit(1)

        try:
            # Get the vgrid def present in the file
            # and the full list of ip1
            # and the surface reference field name for the coor
            vIn = vgd.vgd_read(fileIdIn)
            ip1listIn0 = vgd.vgd_get(vIn, 'VIPT')
            rfldNameIn = vgd.vgd_get(vIn, 'RFLD')
            vkind = vgd.vgd_get(vIn, 'KIND')
            vver = vgd.vgd_get(vIn, 'VERS')
            VGD_KIND_VER_INV = dict(
                (v, k) for k, v in vgd.VGD_KIND_VER.items())
            vtype = VGD_KIND_VER_INV[(vkind, vver)]
            print(
                "CB51: Found vgrid type=%s (kind=%d, vers=%d) with %d levels, RFLD=%s"
                % (vtype, vkind, vver, len(ip1listIn0), rfldNameIn))

            # Trim the list of thermo ip1 to actual levels in files for TT
            # since the vgrid in the file is a super set of all levels
            # and get their "key"
            ip1Keys = []
            rshape = None
            for ip1 in ip1listIn0:
                (lval, lkind) = rmn.convertIp(rmn.CONVIP_DECODE, ip1)
                key = rmn.fstinf(fileIdIn,
                                 nomvar='TT',
                                 ip2=hour,
                                 ip1=rmn.ip1_all(lval, lkind))
                if key is not None:
                    print("CB51: Found TT at ip1=%d, ip2=%d" % (ip1, hour))
                    ip1Keys.append((ip1, key['key']))
                    if rshape is None:
                        rshape = key['shape']
            rshape = (rshape[0], rshape[1], len(ip1Keys))

            # Read every level for TT at ip2=hour, re-use 2d array while reading
            # and store the data in a 3d array
            # with lower level at nk, top at 0 as in the model
            r2d = {'d': None}
            r3d = None
            k = 0
            gIn = None
            for ip1, key in ip1Keys:
                try:
                    r2d = rmn.fstluk(key, dataArray=r2d['d'])
                    print("CB51: Read TT at ip1=%d, ip2=%d" % (ip1, hour))
                    if r3d is None:
                        r3d = r2d.copy()
                        r3d['d'] = np.empty(rshape,
                                            dtype=r2d['d'].dtype,
                                            order='FORTRAN')
                    r3d['d'][:, :, k] = r2d['d'][:, :]
                    k += 1
                    if gIn is None:
                        gIn = rmn.readGrid(fileIdIn, r2d)
                        print("CB51: Read the horizontal grid descriptors")
                except:
                    pass

            # Add the vgrid and the actual ip1 list in the r3d dict, update shape and nk
            r3d['vgd'] = vIn
            r3d['ip1list'] = [x[0] for x in ip1Keys]
            r3d['shape'] = rshape
            r3d['nk'] = rshape[2]

            # Read the Input reference fields
            rfldIn = None
            if rfldNameIn:
                rfldIn = rmn.fstlir(fileIdIn, nomvar=rfldNameIn, ip2=hour)
                if rfldNameIn.strip() == 'P0':
                    rfldIn['d'][:] *= MB2PA
                print(
                    "CB51: Read input RFLD=%s at ip2=%d [min=%7.0f, max=%7.0f]"
                    % (rfldNameIn, hour, rfldIn['d'].min(), rfldIn['d'].max()))

        except:
            raise  # pass
        finally:
            # Close file even if an error occured above
            rmn.fstcloseall(fileIdIn)

        # Define the destination vertical grid/levels
        try:
            lvlsOut = (500., 850., 1000.)
            vOut = vgd.vgd_new_pres(lvlsOut)
            ip1listOut = vgd.vgd_get(vOut, 'VIPT')
            rfldNameOut = vgd.vgd_get(vIn, 'RFLD')
            rfldOut = None  # in this case, Pressure levels, there are no RFLD
            print("CB51: Defined a Pres vgrid with lvls=%s" % str(lvlsOut))
        except:
            sys.stderr.write("Problem creating a new vgrid\n")
            sys.exit(1)

        # Get input and output 3d pressure cubes
        try:
            ## if rfldIn is None:
            ##     rfldIn =
            pIn = vgd.vgd_levels(vIn, ip1list=r3d['ip1list'], rfld=rfldIn['d'])
            print(
                "CB51: Computed input  pressure cube, k0:[min=%7.0f, max=%7.0f],  nk:[min=%7.0f, max=%7.0f]"
                % (pIn[:, :, 0].min(), pIn[:, :, 0].max(), pIn[:, :, -1].min(),
                   pIn[:, :, -1].max()))
            if rfldOut is None:
                rfldOut = rfldIn  # provide a dummy rfld for array shape
            pOut = vgd.vgd_levels(vOut, ip1list=ip1listOut, rfld=rfldOut['d'])
            print(
                "CB51: Computed output pressure cube, k0:[min=%7.0f, max=%7.0f],  nk:[min=%7.0f, max=%7.0f]"
                % (pOut[:, :, 0].min(), pOut[:, :, 0].max(),
                   pOut[:, :, -1].min(), pOut[:, :, -1].max()))
        except:
            raise
            sys.stderr.write("Problem computing pressure cubes\n")
            sys.exit(1)

        # Use scipy.interpolate.interp1d to vertically interpolate
        try:
            ## f = scipy_interp1d(fromLvls, toLvls, kind='cubic',
            ##                    assume_sorted=True, bounds_error=False,
            ##                    fill_value='extrapolate', copy=False)

            ## # Unfortunately, looks like interp1d take colomn data
            ## f = scipy_interp1d(pIn, r3d['d'], kind='cubic',
            ##                    bounds_error=False,
            ##                    fill_value='extrapolate', copy=False)
            ## r3dout = f(pOut)

            ## # Unfortunately, assume_sorted, 'extrapolate' not support in my version
            ## extrap_value = 'extrapolate' # -99999.
            ## # Way too slow, needs a C implementation
            extrap_value = -999.
            ## for j in range(rshape[1]):
            ##     for i in range(rshape[0]):
            ##         f = scipy_interp1d(pIn[i,j,:], r3d['d'][i,j,:],
            ##                            kind='cubic',
            ##                            bounds_error=False,
            ##                            fill_value=extrap_value, copy=False)
            ##         r1d = f(pOut[i,j,:])
            ##         #print i,j,r1d
        except:
            raise
            sys.stderr.write("Problem Interpolating data\n")
            sys.exit(1)
示例#8
0
    def test_24(self):
        """
        Edit: New file from scratch

        This example shows how to
        * Create a record meta and data from scratch
        * Create grid descriptors for the data
        * Create vgrid descriptor for the data
        * write the recod data + meta
        * write the grid descriptors
        * write the vgrid descriptor

        See also:
        rpnpy.librmn.fstd98.fstopt
        rpnpy.librmn.fstd98.fstopenall
        rpnpy.librmn.fstd98.fstcloseall
        rpnpy.librmn.fstd98.fsrecr
        rpnpy.librmn.fstd98.dtype_fst2numpy
        rpnpy.librmn.grids.encodeGrid
        rpnpy.librmn.grids.defGrid_ZE
        rpnpy.librmn.grids.writeGrid
        rpnpy.librmn.base.newdate
        rpnpy.vgd.base.vgd_new
        rpnpy.vgd.base.vgd_new_pres
        rpnpy.vgd.base.vgd_new_get
        rpnpy.vgd.base.vgd_write
        rpnpy.librmn.const
        rpnpy.vgd.const
        """
        import os, sys
        import numpy as np
        import rpnpy.librmn.all as rmn
        import rpnpy.vgd.all as vgd

        # Restrict to the minimum the number of messages printed by librmn
        rmn.fstopt(rmn.FSTOP_MSGLVL, rmn.FSTOPI_MSG_CATAST)

        # Create Record grid
        gp = {
            'grtyp': 'Z',
            'grref': 'E',
            'ni': 90,
            'nj': 45,
            'lat0': 35.,
            'lon0': 250.,
            'dlat': 0.5,
            'dlon': 0.5,
            'xlat1': 0.,
            'xlon1': 180.,
            'xlat2': 1.,
            'xlon2': 270.
        }
        g = rmn.encodeGrid(gp)
        print("CB24: Defined a %s/%s grid of shape=%d, %d" %
              (gp['grtyp'], gp['grref'], gp['ni'], gp['nj']))

        # Create Record vgrid
        lvls = (500., 850., 1000.)
        v = vgd.vgd_new_pres(lvls)
        ip1list = vgd.vgd_get(v, 'VIPT')
        print("CB24: Defined a Pres vgrid with lvls=%s" % str(lvls))

        # Create Record data + meta
        datyp = rmn.FST_DATYP_LIST['float_IEEE_compressed']
        npdtype = rmn.dtype_fst2numpy(datyp)
        rshape = (g['ni'], g['nj'], len(ip1list))
        r = rmn.FST_RDE_META_DEFAULT.copy()  # Copy default record meta
        r.update(g)  # Update with grid info
        r.update({  # Update with specific meta and data array
            'nomvar':
            'MASK',
            'dateo':
            rmn.newdate(rmn.NEWDATE_PRINT2STAMP, 20160302, 1800000),
            'nk':
            len(ip1list),
            'ip1':
            0,  # level, will be set later, level by level
            'ip2':
            6,  # Forecast of 6h
            'deet':
            3600,  # Timestep in sec
            'npas':
            6,  # Step number
            'etiket':
            'my_etk',
            'nbits':
            32,  # Keep full 32 bits precision for that field
            'datyp':
            datyp,  # datyp (above) float_IEEE_compressed
            'd':
            np.empty(rshape, dtype=npdtype, order='FORTRAN')
        })
        print("CB24: Defined a new record of shape=%d, %d" %
              (r['ni'], r['nj']))

        # Compute record values
        r['d'][:, :, :] = 0.
        r['d'][10:-11, 5:-6, :] = 1.

        # Open Files
        fileNameOut = 'newfromscratch.fst'
        try:
            fileIdOut = rmn.fstopenall(fileNameOut, rmn.FST_RW)
        except:
            sys.stderr.write("Problem opening the file: %s, %s\n" %
                             fileNameOut)
            sys.exit(1)

        # Write record data + meta + grid + vgrid to file
        try:
            r2d = r.copy()
            r2d['nk'] = 1
            for k in range(len(ip1list)):
                r2d['ip1'] = ip1list[k]
                r2d['d'] = np.asfortranarray(r['d'][:, :, k])
                rmn.fstecr(fileIdOut, r2d['d'], r2d)
                print("CB24: wrote %s at ip1=%d" % (r2d['nomvar'], r2d['ip1']))
            rmn.writeGrid(fileIdOut, g)
            print("CB24: wrote the grid descriptors")
            vgd.vgd_write(v, fileIdOut)
            print("CB24: wrote the vgrid descriptor")
        except:
            raise
        finally:
            # Properly close files even if an error occured above
            # This is important when editing to avoid corrupted files
            rmn.fstcloseall(fileIdOut)
            os.unlink(fileNameOut)  # Remove test file
示例#9
0
    def test_24(self):
        """
        Edit: New file from scratch

        This example shows how to
        * Create a record meta and data from scratch
        * Create grid descriptors for the data
        * Create vgrid descriptor for the data
        * write the recod data + meta
        * write the grid descriptors
        * write the vgrid descriptor

        See also:
        rpnpy.librmn.fstd98.fstopt
        rpnpy.librmn.fstd98.fstopenall
        rpnpy.librmn.fstd98.fstcloseall
        rpnpy.librmn.fstd98.fsrecr
        rpnpy.librmn.fstd98.dtype_fst2numpy
        rpnpy.librmn.grids.encodeGrid
        rpnpy.librmn.grids.defGrid_ZE
        rpnpy.librmn.grids.writeGrid
        rpnpy.librmn.base.newdate
        rpnpy.vgd.base.vgd_new
        rpnpy.vgd.base.vgd_new_pres
        rpnpy.vgd.base.vgd_new_get
        rpnpy.vgd.base.vgd_write
        rpnpy.librmn.const
        rpnpy.vgd.const
        """
        import os, sys
        import numpy as np
        import rpnpy.librmn.all as rmn
        import rpnpy.vgd.all as vgd
        
        # Restrict to the minimum the number of messages printed by librmn
        rmn.fstopt(rmn.FSTOP_MSGLVL,rmn.FSTOPI_MSG_CATAST)

        # Create Record grid
        gp = {
            'grtyp' : 'Z',
            'grref' : 'E',
            'ni'    : 90,
            'nj'    : 45,
            'lat0'  : 35.,
            'lon0'  : 250.,
            'dlat'  : 0.5,
            'dlon'  : 0.5,
            'xlat1' : 0.,
            'xlon1' : 180.,
            'xlat2' : 1.,
            'xlon2' : 270.
        }
        g = rmn.encodeGrid(gp)
        print("CB24: Defined a %s/%s grid of shape=%d, %d" %
              (gp['grtyp'], gp['grref'], gp['ni'], gp['nj']))
            
        # Create Record vgrid
        lvls = (500.,850.,1000.)
        v = vgd.vgd_new_pres(lvls)
        ip1list = vgd.vgd_get(v, 'VIPT')
        print("CB24: Defined a Pres vgrid with lvls=%s" % str(lvls))
        
        # Create Record data + meta
        datyp   = rmn.FST_DATYP_LIST['float_IEEE_compressed']
        npdtype = rmn.dtype_fst2numpy(datyp)
        rshape  = (g['ni'], g['nj'], len(ip1list))
        r = rmn.FST_RDE_META_DEFAULT.copy() # Copy default record meta
        r.update(g)                         # Update with grid info
        r.update({                          # Update with specific meta and data array
            'nomvar': 'MASK',
            'dateo' : rmn.newdate(rmn.NEWDATE_PRINT2STAMP, 20160302, 1800000),
            'nk'    : len(ip1list),
            'ip1'   : 0,     # level, will be set later, level by level
            'ip2'   : 6,     # Forecast of 6h
            'deet'  : 3600,  # Timestep in sec
            'npas'  : 6,     # Step number
            'etiket': 'my_etk',
            'nbits' : 32,    # Keep full 32 bits precision for that field
            'datyp' : datyp, # datyp (above) float_IEEE_compressed
            'd'     : np.empty(rshape, dtype=npdtype, order='FORTRAN')
            })
        print("CB24: Defined a new record of shape=%d, %d" % (r['ni'], r['nj']))

        
        # Compute record values
        r['d'][:,:,:] = 0.
        r['d'][10:-11,5:-6,:] = 1.
        
        # Open Files
        fileNameOut = 'newfromscratch.fst'
        try:
            fileIdOut = rmn.fstopenall(fileNameOut, rmn.FST_RW)
        except:
            sys.stderr.write("Problem opening the file: %s, %s\n" % fileNameOut)
            sys.exit(1)

        # Write record data + meta + grid + vgrid to file
        try:
            r2d = r.copy()
            r2d['nk']  = 1
            for k in range(len(ip1list)):
                r2d['ip1'] = ip1list[k]
                r2d['d'] = np.asfortranarray(r['d'][:,:,k])
                rmn.fstecr(fileIdOut, r2d['d'], r2d)
                print("CB24: wrote %s at ip1=%d" % (r2d['nomvar'], r2d['ip1']))
            rmn.writeGrid(fileIdOut, g)
            print("CB24: wrote the grid descriptors")
            vgd.vgd_write(v, fileIdOut)
            print("CB24: wrote the vgrid descriptor")
        except:
            raise
        finally:
            # Properly close files even if an error occured above
            # This is important when editing to avoid corrupted files
            rmn.fstcloseall(fileIdOut)
            os.unlink(fileNameOut)  # Remove test file
示例#10
0
    def test_51(self):
        """
        Vertical Interpolation
        
        See also:
        scipy.interpolate.interp1d
        """
        import os, sys, datetime
        import numpy as np
        from scipy.interpolate import interp1d as scipy_interp1d
        import rpnpy.librmn.all as rmn
        import rpnpy.vgd.all as vgd

        MB2PA = 100.

        # Restric to the minimum the number of messages printed by librmn
        rmn.fstopt(rmn.FSTOP_MSGLVL,rmn.FSTOPI_MSG_CATAST)

        # Open Input file
        hour        = 48
        fdate       = datetime.date.today().strftime('%Y%m%d') + '00_0' + str(hour)
        CMCGRIDF    = os.getenv('CMCGRIDF').strip()
        fileNameOut = os.path.join(CMCGRIDF, 'prog', 'regeta', fdate)
        try:
            fileIdIn = rmn.fstopenall(fileNameOut, rmn.FST_RO)
        except:
            sys.stderr.write("Problem opening the input file: %s\n" % fileNameOut)
            sys.exit(1)

        try:
            # Get the vgrid def present in the file
            # and the full list of ip1
            # and the surface reference field name for the coor
            vIn        = vgd.vgd_read(fileIdIn)
            ip1listIn0 = vgd.vgd_get(vIn, 'VIPT')
            rfldNameIn = vgd.vgd_get(vIn, 'RFLD')
            vkind    = vgd.vgd_get(vIn, 'KIND')
            vver     = vgd.vgd_get(vIn, 'VERS')
            VGD_KIND_VER_INV = dict((v, k) for k, v in vgd.VGD_KIND_VER.iteritems())
            vtype = VGD_KIND_VER_INV[(vkind,vver)]
            print("CB51: Found vgrid type=%s (kind=%d, vers=%d) with %d levels, RFLD=%s" %
                  (vtype, vkind, vver, len(ip1listIn0), rfldNameIn))

            # Trim the list of thermo ip1 to actual levels in files for TT
            # since the vgrid in the file is a super set of all levels
            # and get their "key"
            ip1Keys = []
            rshape  = None
            for ip1 in ip1listIn0:
                (lval, lkind) = rmn.convertIp(rmn.CONVIP_DECODE, ip1)
                key = rmn.fstinf(fileIdIn, nomvar='TT', ip2=hour, ip1=rmn.ip1_all(lval, lkind))
                if key is not None:
                    print("CB51: Found TT at ip1=%d, ip2=%d" % (ip1, hour))
                    ip1Keys.append((ip1, key['key']))
                    if rshape is None:
                        rshape = key['shape']
            rshape = (rshape[0], rshape[1], len(ip1Keys))
            
            # Read every level for TT at ip2=hour, re-use 2d array while reading
            # and store the data in a 3d array
            # with lower level at nk, top at 0 as in the model
            r2d = {'d' : None}
            r3d = None
            k = 0
            gIn = None
            for ip1, key in ip1Keys:
                try:
                    r2d = rmn.fstluk(key, dataArray=r2d['d'])
                    print("CB51: Read TT at ip1=%d, ip2=%d" % (ip1, hour))
                    if r3d is None:
                        r3d = r2d.copy()
                        r3d['d'] = np.empty(rshape, dtype=r2d['d'].dtype, order='FORTRAN')
                    r3d['d'][:,:,k] = r2d['d'][:,:]
                    k += 1
                    if gIn is None:
                        gIn = rmn.readGrid(fileIdIn, r2d)
                        print("CB51: Read the horizontal grid descriptors")
                except:
                    pass

            # Add the vgrid and the actual ip1 list in the r3d dict, update shape and nk
            r3d['vgd']     = vIn
            r3d['ip1list'] = [x[0] for x in ip1Keys]
            r3d['shape']   = rshape
            r3d['nk']      = rshape[2]

            # Read the Input reference fields
            rfldIn = None
            if rfldNameIn:
                rfldIn = rmn.fstlir(fileIdIn, nomvar=rfldNameIn, ip2=hour)
                if rfldNameIn.strip() == 'P0':
                    rfldIn['d'][:] *= MB2PA
                print("CB51: Read input RFLD=%s at ip2=%d [min=%7.0f, max=%7.0f]" % (rfldNameIn, hour, rfldIn['d'].min(), rfldIn['d'].max()))
                
        except:
            raise # pass
        finally:
            # Close file even if an error occured above
            rmn.fstcloseall(fileIdIn)

        # Define the destination vertical grid/levels
        try:
            lvlsOut     = (500.,850.,1000.)
            vOut        = vgd.vgd_new_pres(lvlsOut)
            ip1listOut  = vgd.vgd_get(vOut, 'VIPT')
            rfldNameOut = vgd.vgd_get(vIn, 'RFLD')
            rfldOut     = None  # in this case, Pressure levels, there are no RFLD
            print("CB51: Defined a Pres vgrid with lvls=%s" % str(lvlsOut))
        except:
            sys.stderr.write("Problem creating a new vgrid\n")
            sys.exit(1)

        # Get input and output 3d pressure cubes
        try:
            ## if rfldIn is None:
            ##     rfldIn = 
            pIn  = vgd.vgd_levels(vIn,  ip1list=r3d['ip1list'], rfld=rfldIn['d'])
            print("CB51: Computed input  pressure cube, k0:[min=%7.0f, max=%7.0f],  nk:[min=%7.0f, max=%7.0f]" % (pIn[:,:,0].min(), pIn[:,:,0].max(), pIn[:,:,-1].min(), pIn[:,:,-1].max()))
            if rfldOut is None:
                rfldOut = rfldIn  # provide a dummy rfld for array shape
            pOut = vgd.vgd_levels(vOut, ip1list=ip1listOut,     rfld=rfldOut['d'])
            print("CB51: Computed output pressure cube, k0:[min=%7.0f, max=%7.0f],  nk:[min=%7.0f, max=%7.0f]" % (pOut[:,:,0].min(), pOut[:,:,0].max(), pOut[:,:,-1].min(), pOut[:,:,-1].max()))
        except:
            raise
            sys.stderr.write("Problem computing pressure cubes\n")
            sys.exit(1)

        # Use scipy.interpolate.interp1d to vertically interpolate
        try:
            ## f = scipy_interp1d(fromLvls, toLvls, kind='cubic',
            ##                    assume_sorted=True, bounds_error=False,
            ##                    fill_value='extrapolate', copy=False)
            
            ## # Unfortunately, looks like interp1d take colomn data
            ## f = scipy_interp1d(pIn, r3d['d'], kind='cubic',
            ##                    bounds_error=False,
            ##                    fill_value='extrapolate', copy=False)
            ## r3dout = f(pOut)
            
            ## # Unfortunately, assume_sorted, 'extrapolate' not support in my version
            ## extrap_value = 'extrapolate' # -99999.
            ## # Way too slow, needs a C implementation
            extrap_value = -999.
            ## for j in xrange(rshape[1]):
            ##     for i in xrange(rshape[0]):
            ##         f = scipy_interp1d(pIn[i,j,:], r3d['d'][i,j,:],
            ##                            kind='cubic',
            ##                            bounds_error=False,
            ##                            fill_value=extrap_value, copy=False)
            ##         r1d = f(pOut[i,j,:])
            ##         #print i,j,r1d
        except:
            raise
            sys.stderr.write("Problem Interpolating data\n")
            sys.exit(1)