示例#1
0
def _minimize_level(G):
    r"""
    Utility function. Given a matrix group `G` contained in `SL(2, \ZZ / N\ZZ)`
    for some `N`, test whether or not `G` is the preimage of a subgroup of
    smaller level, and if so, return that subgroup.

    The trivial group is handled specially: instead of returning a group, it
    returns an integer `N`, representing the trivial subgroup of `SL(2, \ZZ /
    N\ZZ)`.

    EXAMPLE::

        sage: M = MatrixSpace(Zmod(9), 2, 2)
        sage: G = MatrixGroup([M(x) for x in [[1,1,0,1],[1,3,0,1],[1,0,3,1],[4,0,0,7]]]); G
        Matrix group over Ring of integers modulo 9 with 4 generators (
        [1 1]  [1 3]  [1 0]  [4 0]
        [0 1], [0 1], [3 1], [0 7]
        )
        sage: sage.modular.arithgroup.congroup_generic._minimize_level(G)
        Matrix group over Ring of integers modulo 3 with 1 generators (
        [1 1]
        [0 1]
        )
        sage: G = MatrixGroup([M(x) for x in [[1,3,0,1],[1,0,3,1],[4,0,0,7]]]); G
        Matrix group over Ring of integers modulo 9 with 3 generators (
        [1 3]  [1 0]  [4 0]
        [0 1], [3 1], [0 7]
        )
        sage: sage.modular.arithgroup.congroup_generic._minimize_level(G)
        3
    """
    from congroup_gamma import Gamma_constructor as Gamma
    Glist = list(G)
    N = G.base_ring().characteristic()
    i = Gamma(N).index()

    for p in N.prime_divisors():
        j = Gamma(N // p).index()
        k = len(
            [g for g in Glist if g.matrix().change_ring(Zmod(N // p)) == 1])
        if k == i // j:
            if N // p == 1:
                return ZZ(1)
            H = MatrixGroup(
                [g.matrix().change_ring(Zmod(N // p)) for g in G.gens()])
            return _minimize_level(H)

    # now sanitize the generators (remove duplicates and copies of the identity)
    new_gens = [x.matrix() for x in G.gens() if x.matrix() != 1]
    all([x.set_immutable() for x in new_gens])
    new_gens = list(Set(new_gens))
    if new_gens == []:
        return ZZ(G.base_ring().characteristic())
    return MatrixGroup(new_gens)
示例#2
0
def _minimize_level(G):
    r"""
    Utility function. Given a matrix group `G` contained in `SL(2, \ZZ / N\ZZ)`
    for some `N`, test whether or not `G` is the preimage of a subgroup of
    smaller level, and if so, return that subgroup.

    The trivial group is handled specially: instead of returning a group, it
    returns an integer `N`, representing the trivial subgroup of `SL(2, \ZZ /
    N\ZZ)`.

    EXAMPLE::

        sage: M = MatrixSpace(Zmod(9), 2, 2)
        sage: G = MatrixGroup([M(x) for x in [[1,1,0,1],[1,3,0,1],[1,0,3,1],[4,0,0,7]]]); G
        Matrix group over Ring of integers modulo 9 with 4 generators (
        [1 1]  [1 3]  [1 0]  [4 0]
        [0 1], [0 1], [3 1], [0 7]
        )
        sage: sage.modular.arithgroup.congroup_generic._minimize_level(G)
        Matrix group over Ring of integers modulo 3 with 1 generators (
        [1 1]
        [0 1]
        )
        sage: G = MatrixGroup([M(x) for x in [[1,3,0,1],[1,0,3,1],[4,0,0,7]]]); G
        Matrix group over Ring of integers modulo 9 with 3 generators (
        [1 3]  [1 0]  [4 0]
        [0 1], [3 1], [0 7]
        )
        sage: sage.modular.arithgroup.congroup_generic._minimize_level(G)
        3
    """
    from .congroup_gamma import Gamma_constructor as Gamma
    Glist = list(G)
    N = G.base_ring().characteristic()
    i = Gamma(N).index()

    for d in N.divisors()[:-1]:
        j = Gamma(d).index()
        k = len([g for g in Glist if g.matrix().change_ring(Zmod(d)) == 1])
        if k == i // j:
            if d == 1:
                return ZZ(1)
            G = MatrixGroup([g.matrix().change_ring(Zmod(d)) for g in G.gens()])
            N = d
            break

    # now sanitize the generators (remove duplicates and copies of the identity)
    new_gens = [x.matrix() for x in G.gens() if x.matrix() != 1]
    all([x.set_immutable() for x in new_gens])
    new_gens = list(Set(new_gens))
    if new_gens == []:
        return ZZ(N)
    return MatrixGroup(new_gens)
示例#3
0
    def pushforward(self, J, *args, **kwds):
        """
        The image of an element or a subgroup.

        INPUT:

        ``J`` -- a subgroup or an element of the domain of ``self``

        OUTPUT:

        The image of ``J`` under ``self``.

        .. NOTE::

            ``pushforward`` is the method that is used when a map is called
            on anything that is not an element of its domain. For historical
            reasons, we keep the alias ``image()`` for this method.

        EXAMPLES::

            sage: F = GF(7); MS = MatrixSpace(F,2,2)
            sage: F.multiplicative_generator()
            3
            sage: G = MatrixGroup([MS([3,0,0,1])])
            sage: a = G.gens()[0]^2
            sage: phi = G.hom([a])
            sage: phi.image(G.gens()[0]) # indirect doctest
            [2 0]
            [0 1]
            sage: H = MatrixGroup([MS(a.list())])
            sage: H
            Matrix group over Finite Field of size 7 with 1 generators (
            [2 0]
            [0 1]
            )

        The following tests against :trac:`10659`::

            sage: phi(H)   # indirect doctest
            Matrix group over Finite Field of size 7 with 1 generators (
            [4 0]
            [0 1]
            )
        """
        phi = self.gap()
        F = self.codomain().base_ring()
        gapJ = to_libgap(J)
        if gapJ.IsGroup():
            from sage.groups.matrix_gps.all import MatrixGroup
            img_gens = [
                x.matrix(F) for x in phi.Image(gapJ).GeneratorsOfGroup()
            ]
            return MatrixGroup(img_gens)
        C = self.codomain()
        return C(phi.Image(gapJ).matrix(F))
示例#4
0
    def to_even_subgroup(self):
        r"""
        Return the smallest even subgroup of `SL(2, \ZZ)` containing self.

        EXAMPLES::

            sage: G = Gamma(3)
            sage: G.to_even_subgroup()
            Congruence subgroup of SL(2,Z) of level 3, preimage of:
             Matrix group over Ring of integers modulo 3 with 1 generators (
            [2 0]
            [0 2]
            )
        """
        if self.is_even():
            return self
        else:
            G = self.image_mod_n()
            H = MatrixGroup([ g.matrix() for g in G.gens()] + [G.matrix_space()(-1)])
            return CongruenceSubgroup_constructor(H)
示例#5
0
    def kernel(self):
        """
        Return the kernel of ``self``, i.e., a matrix group.

        EXAMPLES::

            sage: F = GF(7); MS = MatrixSpace(F,2,2)
            sage: F.multiplicative_generator()
            3
            sage: G = MatrixGroup([MS([3,0,0,1])])
            sage: a = G.gens()[0]^2
            sage: phi = G.hom([a])
            sage: phi.kernel()
            Matrix group over Finite Field of size 7 with 1 generators (
            [6 0]
            [0 1]
            )
        """
        gap_ker = self.gap().Kernel()
        F = self.domain().base_ring()
        from sage.groups.matrix_gps.all import MatrixGroup
        return MatrixGroup([x.matrix(F) for x in gap_ker.GeneratorsOfGroup()])
示例#6
0
def CongruenceSubgroup_constructor(*args):
    r"""
    Attempt to create a congruence subgroup from the given data.

    The allowed inputs are as follows:

    - A :class:`~sage.groups.matrix_gps.matrix_group.MatrixGroup` object. This
      must be a group of matrices over `\ZZ / N\ZZ` for some `N`, with
      determinant 1, in which case the function will return the group of
      matrices in `SL(2, \ZZ)` whose reduction mod `N` is in the given group.

    - A list of matrices over `\ZZ / N\ZZ` for some `N`. The function will then
      compute the subgroup of `SL(2, \ZZ)` generated by these matrices, and
      proceed as above.

    - An integer `N` and a list of matrices (over any ring coercible to `\ZZ /
      N\ZZ`, e.g. over `\ZZ`). The matrices will then be coerced to `\ZZ /
      N\ZZ`.

    The function checks that the input G is valid. It then tests to see if
    `G` is the preimage mod `N` of some group of matrices modulo a proper
    divisor `M` of `N`, in which case it replaces `G` with this group before
    continuing.

    EXAMPLES::

        sage: from sage.modular.arithgroup.congroup_generic import CongruenceSubgroup_constructor as CS
        sage: CS(2, [[1,1,0,1]])
        Congruence subgroup of SL(2,Z) of level 2, preimage of:
         Matrix group over Ring of integers modulo 2 with 1 generators (
        [1 1]
        [0 1]
        )
        sage: CS([matrix(Zmod(2), 2, [1,1,0,1])])
        Congruence subgroup of SL(2,Z) of level 2, preimage of:
         Matrix group over Ring of integers modulo 2 with 1 generators (
        [1 1]
        [0 1]
        )
        sage: CS(MatrixGroup([matrix(Zmod(2), 2, [1,1,0,1])]))
        Congruence subgroup of SL(2,Z) of level 2, preimage of:
         Matrix group over Ring of integers modulo 2 with 1 generators (
        [1 1]
        [0 1]
        )
        sage: CS(SL(2, 2))
        Modular Group SL(2,Z)

    Some invalid inputs::

        sage: CS(SU(2, 7))
        Traceback (most recent call last):
        ...
        TypeError: Ring of definition must be Z / NZ for some N
    """
    from sage.groups.matrix_gps.matrix_group import is_MatrixGroup
    if is_MatrixGroup(args[0]):
        G = args[0]

    elif type(args[0]) == type([]):
        G = MatrixGroup(args[0])

    elif args[0] in ZZ:
        M = MatrixSpace(Zmod(args[0]), 2)
        G = MatrixGroup([M(x) for x in args[1]])

    R = G.matrix_space().base_ring()
    if not hasattr(R, "cover_ring") or R.cover_ring() != ZZ:
        raise TypeError, "Ring of definition must be Z / NZ for some N"

    if not all([x.matrix().det() == 1 for x in G.gens()]):
        raise ValueError, "Group must be contained in SL(2, Z / N)"
    GG = _minimize_level(G)
    if GG in ZZ:
        from all import Gamma
        return Gamma(GG)
    else:
        return CongruenceSubgroupFromGroup(GG)
示例#7
0
def CongruenceSubgroup_constructor(*args):
    r"""
    Attempt to create a congruence subgroup from the given data.

    The allowed inputs are as follows:

    - A :class:`~sage.groups.matrix_gps.matrix_group.MatrixGroup` object. This
      must be a group of matrices over `\ZZ / N\ZZ` for some `N`, with
      determinant 1, in which case the function will return the group of
      matrices in `SL(2, \ZZ)` whose reduction mod `N` is in the given group.

    - A list of matrices over `\ZZ / N\ZZ` for some `N`. The function will then
      compute the subgroup of `SL(2, \ZZ)` generated by these matrices, and
      proceed as above.

    - An integer `N` and a list of matrices (over any ring coercible to `\ZZ /
      N\ZZ`, e.g. over `\ZZ`). The matrices will then be coerced to `\ZZ /
      N\ZZ`.

    The function checks that the input G is valid. It then tests to see if
    `G` is the preimage mod `N` of some group of matrices modulo a proper
    divisor `M` of `N`, in which case it replaces `G` with this group before
    continuing.

    EXAMPLES::

        sage: from sage.modular.arithgroup.congroup_generic import CongruenceSubgroup_constructor as CS
        sage: CS(2, [[1,1,0,1]])
        Congruence subgroup of SL(2,Z) of level 2, preimage of:
         Matrix group over Ring of integers modulo 2 with 1 generators (
        [1 1]
        [0 1]
        )
        sage: CS([matrix(Zmod(2), 2, [1,1,0,1])])
        Congruence subgroup of SL(2,Z) of level 2, preimage of:
         Matrix group over Ring of integers modulo 2 with 1 generators (
        [1 1]
        [0 1]
        )
        sage: CS(MatrixGroup([matrix(Zmod(2), 2, [1,1,0,1])]))
        Congruence subgroup of SL(2,Z) of level 2, preimage of:
         Matrix group over Ring of integers modulo 2 with 1 generators (
        [1 1]
        [0 1]
        )
        sage: CS(SL(2, 2))
        Modular Group SL(2,Z)

    Some invalid inputs::

        sage: CS(SU(2, 7))
        Traceback (most recent call last):
        ...
        TypeError: Ring of definition must be Z / NZ for some N
    """
    from sage.groups.matrix_gps.matrix_group import is_MatrixGroup
    if is_MatrixGroup(args[0]):
        G = args[0]

    elif isinstance(args[0], list):
        G = MatrixGroup(args[0])

    elif args[0] in ZZ:
        M = MatrixSpace(Zmod(args[0]), 2)
        G = MatrixGroup([M(x) for x in args[1]])

    R = G.matrix_space().base_ring()
    if not hasattr(R, "cover_ring") or R.cover_ring() != ZZ:
        raise TypeError("Ring of definition must be Z / NZ for some N")

    if not all([x.matrix().det() == 1 for x in G.gens()]):
        raise ValueError("Group must be contained in SL(2, Z / N)")
    GG = _minimize_level(G)
    if GG in ZZ:
        from .all import Gamma
        return Gamma(GG)
    else:
        return CongruenceSubgroupFromGroup(GG)
示例#8
0
def QuaternionMatrixGroupGF3():
    r"""
    The quaternion group as a set of `2\times 2` matrices over `GF(3)`.

    OUTPUT:

    A matrix group consisting of `2\times 2` matrices with
    elements from the finite field of order 3.  The group is
    the quaternion group, the nonabelian group of order 8 that
    is not isomorphic to the group of symmetries of a square
    (the dihedral group `D_4`).

    .. note::
        This group is most easily available via ``groups.matrix.QuaternionGF3()``.

    EXAMPLES:

    The generators are the matrix representations of the
    elements commonly called `I` and `J`, while `K`
    is the product of `I` and `J`. ::

        sage: from sage.groups.misc_gps.misc_groups import QuaternionMatrixGroupGF3
        sage: Q = QuaternionMatrixGroupGF3()
        sage: Q.order()
        8
        sage: aye = Q.gens()[0]; aye
        [1 1]
        [1 2]
        sage: jay = Q.gens()[1]; jay
        [2 1]
        [1 1]
        sage: kay = aye*jay; kay
        [0 2]
        [1 0]

    TESTS::

        sage: groups.matrix.QuaternionGF3()
        Matrix group over Finite Field of size 3 with 2 generators (
        [1 1]  [2 1]
        [1 2], [1 1]
        )

        sage: Q = QuaternionMatrixGroupGF3()
        sage: QP = Q.as_permutation_group()
        sage: QP.is_isomorphic(QuaternionGroup())
        True
        sage: H = DihedralGroup(4)
        sage: H.order()
        8
        sage: QP.is_abelian(), H.is_abelian()
        (False, False)
        sage: QP.is_isomorphic(H)
        False
    """
    from sage.rings.finite_rings.constructor import FiniteField
    from sage.matrix.matrix_space import MatrixSpace
    from sage.groups.matrix_gps.all import MatrixGroup
    MS = MatrixSpace(FiniteField(3), 2)
    aye = MS([1, 1, 1, 2])
    jay = MS([2, 1, 1, 1])
    return MatrixGroup([aye, jay])