示例#1
0
def test_Q():
    assert_raises(ValueError, rft.Q, -1)
    assert_raises(ValueError, rft.Q, 0)
    x = np.arange(-9, 10)
    for dim in range(1, 4):
        res = rft.Q(dim)
        assert_almost_equal(res(x), hermitenorm(dim - 1)(x))
示例#2
0
def test_Q():
    assert_raises(ValueError, rft.Q, -1)
    assert_raises(ValueError, rft.Q, 0)
    x = np.arange(-9, 10)
    for dim in range(1, 4):
        res = rft.Q(dim)
        assert_almost_equal(res(x), hermitenorm(dim - 1)(x))
示例#3
0
def test_polynomial2():
    # EC density of chi^2(1) is 2 * EC density of Gaussian so polynomial part is
    # a factor of 2 as well.
    for dim in range(1,10):
        q = rft.ChiSquared(dfn=1).quasi(dim)
        h = hermitenorm(dim-1)
        yield assert_almost_equal, q.c, 2*h.c
示例#4
0
文件: rft.py 项目: neurospin/nipy
def Q(dim, dfd=np.inf):
    """ Q polynomial

    If dfd == inf (the default), then
    Q(dim) is the (dim-1)-st Hermite polynomial 

    H_j(x) = (-1)^j * e^{x^2/2} * (d^j/dx^j e^{-x^2/2})

    If dfd != inf, then it is the polynomial Q defined in

    Worsley, K.J. (1994). 'Local maxima and the expected Euler
    characteristic of excursion sets of \chi^2, F and t fields.'
    Advances in Applied Probability, 26:13-42.
    """
    m = dfd
    j = dim
    if j > 0:
        poly = hermitenorm(j - 1)
        poly = np.poly1d(np.around(poly.c))
        if np.isfinite(m):
            for l in range((j - 1) / 2 + 1):
                f = np.exp(
                    gammaln((m + 1) / 2.0)
                    - gammaln((m + 2 - j + 2 * l) / 2.0)
                    - 0.5 * (j - 1 - 2 * l) * (np.log(m / 2.0))
                )
                poly.c[2 * l] *= f
        return np.poly1d(poly.c)
    else:
        raise ValueError, "Q defined only for dim > 0"
示例#5
0
文件: misc.py 项目: julienguy/redfit
def gaussflux(pixbound, cen, sig, h_order=0):
    """
    For monotonically increasing pixel boundaries specified by 'pixbound'
    in some abscissa units, consider a Gaussian with unit integrated
    amplitude that expresses a density per those same abscissa units,
    centered on 'cen' and with sigma parameter 'sig', and return
    the average value of that Gaussian between the boundaries
    (i.e., its pixel-averaged value for possibly non-uniform pixels.)
    
    Can specify a Gauss-Hermite order (a la scipy.special.hermitenorm)
    via the 'h_order' argument, which defaults to zero.
    
    (bolton@utah@iac 2014mayo)
    (Added Hermite orders: bolton@utah@iac 2014junio)
    """
    # Calculate the pixel widths and test for monotonicity:
    pixdiff = pixbound[1:] - pixbound[:-1]
    if (pixdiff.min <= 0):
        print 'pixbound must be monotonically increasing!'
        return 0
    # Make sure scalar arguments are scalars:
    if (n.asarray(cen).size != 1):
        print 'cen argument must be scalar!'
        return 0
    if (n.asarray(sig).size != 1):
        print 'sig argument must be scalar!'
        return 0
    # Compute and return:
    if h_order > 0:
        u = (pixbound - cen) / sig
        int_term = - spc.hermitenorm(h_order-1)(u) * n.exp(-0.5 * u**2) / \
                n.sqrt(2. * n.pi)
    else:
        int_term = 0.5 * spc.erf((pixbound - cen) / (n.sqrt(2.) * sig))
    return (int_term[1:] - int_term[:-1]) / pixdiff
示例#6
0
def test_polynomial2():
    # EC density of chi^2(1) is 2 * EC density of Gaussian so polynomial part is
    # a factor of 2 as well.
    for dim in range(1, 10):
        q = rft.ChiSquared(dfn=1).quasi(dim)
        h = hermitenorm(dim - 1)
        yield assert_almost_equal, q.c, 2 * h.c
示例#7
0
文件: cedmd.py 项目: thw1021/SKDMD
    def gen_grad_dict_dot_f(self, Xdot, X):
        """
        compute the gradient of phi dot product with f

        :type Xdot: np.ndarray
        :param Xdot: time derivative of state

        :return: generated_gradPhi_dot_f_array
        :rtype: np.ndarray
        """

        num_sample, num_components = Xdot.shape

        if self.dict == 'hermite':
            # normalized hermite polynomial
            ## compute [ [d[H0(x1).. H0(xn)]/dx1,...,d[HN(x1).. HN(xn)]/dx1 ],
            #            ...
            #            [d[H0(x1).. H0(xn)]/dxn,...,d[HN(x1).. HN(xn)]/dxn ] ]
            generated_feature_array_list = []
            feature_list_ddx_list = []
            for i_component in range(num_components):
                feature_list = []
                for order in range(self.hermite_order + 1):
                    phi_i = hermitenorm(order)
                    phi_i_dx = np.poly1d.deriv(phi_i)
                    phi_i_X = np.polyval(phi_i, X)
                    # update i_component with the derivative one
                    phi_i_X[:,
                            i_component] = np.polyval(phi_i_dx, X[:,
                                                                  i_component])
                    feature_list.append(phi_i_X)
                feature_list_ddx_list.append(feature_list)

                # generate feature array from feature list for each i_component
                generated_feature_array = self.gen_cross_component_features(
                    feature_list=feature_list,
                    num_sample=num_sample,
                    num_components=num_components)

                # dot product f with the gradient
                Xdot_i_component = Xdot[:, i_component]
                Xdot_i_matrix = np.diag(Xdot_i_component)
                generated_feature_array_list.append(
                    np.matmul(Xdot_i_matrix, generated_feature_array))

            # summing up the dot product for each component
            generated_gradPhi_dot_f_array = np.sum(
                generated_feature_array_list, axis=0)

        elif self.dict == 'rff_gaussian':
            generated_gradPhi_dot_f_array = self.gen_rff_features_dot(Xdot, X)

        elif self.dict == 'nystrom':
            pass

        else:
            raise NotImplementedError("the type of " + self.dict +
                                      " is not implemented yet!")

        return generated_gradPhi_dot_f_array
示例#8
0
def gaussflux(pixbound, cen, sig, h_order=0):
    """
    For monotonically increasing pixel boundaries specified by 'pixbound'
    in some abscissa units, consider a Gaussian with unit integrated
    amplitude that expresses a density per those same abscissa units,
    centered on 'cen' and with sigma parameter 'sig', and return
    the average value of that Gaussian between the boundaries
    (i.e., its pixel-averaged value for possibly non-uniform pixels.)

    Can specify a Gauss-Hermite order (a la scipy.special.hermitenorm)
    via the 'h_order' argument, which defaults to zero.

    (bolton@utah@iac 2014mayo)
    (Added Hermite orders: bolton@utah@iac 2014junio)
    """
    # Calculate the pixel widths and test for monotonicity:
    pixdiff = pixbound[1:] - pixbound[:-1]
    if (pixdiff.min <= 0):
        print('pixbound must be monotonically increasing!')
        return 0
    # Make sure scalar arguments are scalars:
    if (n.asarray(cen).size != 1):
        print('cen argument must be scalar!')
        return 0
    if (n.asarray(sig).size != 1):
        print('sig argument must be scalar!')
        return 0
    # Compute and return:
    if h_order > 0:
        u = (pixbound - cen) / sig
        int_term = - spc.hermitenorm(h_order-1)(u) * n.exp(-0.5 * u**2) / \
                n.sqrt(2. * n.pi)
    else:
        int_term = 0.5 * spc.erf((pixbound - cen) / (n.sqrt(2.) * sig))
    return (int_term[1:] - int_term[:-1]) / pixdiff
示例#9
0
文件: Hermite.py 项目: dimtsap/UQpy
    def get_polys(self, x):
        """
        Calculates the normalized Hermite polynomials evaluated at sample points.

        **Inputs:**

        * **x** (`ndarray`):
            `ndarray` containing the samples.

        **Outputs:**

        (`list`):
            Returns a list of 'ndarrays' with the design matrix and the
            normalized polynomials.
        """
        a, b = -np.inf, np.inf
        mean_ = Polynomials.get_mean(self)
        std_ = Polynomials.get_std(self)
        x_ = Polynomials.standardize_normal(x, mean_, std_)

        norm = Normal(0, 1)
        pdf_st = norm.pdf

        p = []
        for i in range(self.degree):
            p.append(special.hermitenorm(i, monic=False))

        return Polynomials.normalized(self.degree, x_, a, b, pdf_st, p)
示例#10
0
    def __init__(self, filename):
        """
        Initialize GaussHermitePSF from input file
        """        
        #- Check that this file is a current generation Gauss Hermite PSF
        fx = fits.open(filename, memmap=False)
        self._polyparams = hdr = fx[1].header
        if 'PSFTYPE' not in hdr:
            raise ValueError, 'Missing PSFTYPE keyword'
            
        if hdr['PSFTYPE'] != 'GAUSS-HERMITE2':
            raise ValueError, 'PSFTYPE %s is not GAUSS-HERMITE' % hdr['PSFTYPE']
            
        if 'PSFVER' not in hdr:
            raise ValueError, "PSFVER missing; this version not supported"
            
        if hdr['PSFVER'] < '1':
            raise ValueError, "Only GAUSS-HERMITE versions 1.0 and greater are supported"
            
        #- Calculate number of spectra from FIBERMIN and FIBERMAX (inclusive)
        self.nspec = hdr['FIBERMAX'] - hdr['FIBERMIN'] + 1
        
        #- Other necessary keywords
        self.npix_x = hdr['NPIX_X']
        self.npix_y = hdr['NPIX_Y']
        
        #- Load the parameters into self.coeff dictionary keyed by PARAM
        #- with values as TraceSets for evaluating the Legendre coefficients
        data = fx[1].data
        self.coeff = dict()
        for p in data:
            domain = (p['WAVEMIN'], p['WAVEMAX'])
            for p in data:
                name = p['PARAM'].strip()
                self.coeff[name] = TraceSet(p['COEFF'], domain=domain)
        
        #- Pull out x and y as special tracesets
        self._x = self.coeff['X']
        self._y = self.coeff['Y']

        #- Create inverse y -> wavelength mapping
        self._w = self._y.invert()
        self._wmin = np.min(self.wavelength(None, 0))
        self._wmin_all = np.max(self.wavelength(None, 0))
        self._wmax = np.max(self.wavelength(None, self.npix_y-1))
        self._wmax_all = np.min(self.wavelength(None, self.npix_y-1))
                
        #- Filled only if needed
        self._xsigma = None
        self._ysigma = None

        #- Cache hermitenorm polynomials so we don't have to create them
        #- every time xypix is called
        self._hermitenorm = list()
        maxdeg = max(hdr['GHDEGX'], hdr['GHDEGY'], hdr['GHDEGX2'], hdr['GHDEGY2'])
        for i in range(maxdeg+1):
            self._hermitenorm.append( sp.hermitenorm(i) )

        fx.close()
示例#11
0
def test_polynomial1():

    # Polynomial part of Gaussian densities are Hermite polynomials.

    for dim in range(1,10):
        q = rft.Gaussian().quasi(dim)
        h = hermitenorm(dim-1)
        yield assert_almost_equal, q.c, h.c
示例#12
0
文件: pce.py 项目: DCoppitters/RHEIA
    def get_psi_sq(self):
        """

        Calculate the term <psii,psij>

        Returns
        -------
        psi_sq : array
            the term <psii,psij>

        """
        dim = self.my_experiment.dimension

        multindices = self.basis['multi-indices']

        n_terms = len(multindices)

        psi_sq = np.ones(n_terms, )

        for i in range(n_terms):
            for j in range(dim):
                deg = multindices[i][j]

                if self.my_experiment.polytypes[j] == 'Legendre':

                    x_i, w_i = special.p_roots(deg + 1)
                    '''
                    Integrate exactly the SQUARE
                    of the Legendre polynomial. For example,
                    if the Legendre polynomial is of order (deg),
                    the numerical integration must be exact
                    till order (deg**2). Thus, we need at least
                    (deg+1) abscissas' and weights.
                    '''
                    poly = special.legendre(deg)**2
                    psi_sq[i] *= 1.0 / 2 * sum(w_i * poly(x_i))

                elif self.my_experiment.polytypes[j] == 'Hermite':

                    x_i, w_i = special.he_roots(deg + 1)
                    '''
                    special.he_roots(deg) and
                    np.polynomial.hermite_e.hermegauss(deg)
                    returns the same abscissas'
                    but different weights (!). There is a factor 2
                    between the two. Given the fact that the integral of
                    the standard Gaussian must be 1,
                    np.polynomial.hermite_e.hermegauss(deg)
                    provides the right weights.
                    '''
                    poly = special.hermitenorm(deg)**2

                    # 2*w_i*poly(x_i)
                    psi_sq[i] *= 1.0 / np.sqrt(2 * np.pi) * sum(
                        w_i * poly(x_i))

        return psi_sq
def shapelet1d(n, x0=0, s=1):
    def sqfac(k):
        fac = 1.
        for i in xrange(k):
            fac *= np.sqrt(i + 1)
        return fac

    u = lambda x: (x - x0) / s
    fn = lambda x: (1. / (2 * np.pi)**0.25) * (1. / sqfac(n)) * hermitenorm(n)(
        u(x)) * np.exp(-0.25 * u(x)**2)
    return fn
示例#14
0
 def test_custom_hermitenorm(self):
     #need to compare our custom hermite norm function to the scipy one
     m = 3 #degree of the polynomial
     u = np.random.uniform(0,10,size=10)
     #generate scipy polynomial
     scipy_poly = sp.hermitenorm(m)
     #evalulate at point u
     scipy_out = scipy_poly(u)
     #now try our custom fuction
     custom_out = custom_hermitenorm(m,u)
     #check if they're the same
     self.assertTrue(np.all(scipy_out == custom_out))
示例#15
0
    def gen_dict_feature(self, X):
        """
        generate nonlinear feature given data + nonlinear transformation given
        X = | x_1,.....,x_n @ time_step = 1|
            | x_1,.....,x_n @ time_step = M|
            X.shape = (num_samples, num_components)

        .. note::
            Computational time:
                * The computational time scales with the number of features mainly, which is determined by number of components and polynomial order

        :type X: np.ndarray
        :param X: input data with shape = (num_samples, num_components)

        :return: generated_feature_array with shape (num_samples, num_features)
        :rtype: np.ndarray
        """

        num_sample, num_components = X.shape
        generated_feature_array = None

        if self.dict == 'hermite':
            # normalized hermite polynomial
            ## compute feature list = [[H0(x1).. H0(xn)],...,[HN(x1).. HN(xn)] ]
            feature_list = []
            for order in range(self.hermite_order + 1):
                phi_i = hermitenorm(order)
                phi_i_X = np.polyval(phi_i, X)
                feature_list.append(phi_i_X)

            # create feature array from feature list
            generated_feature_array = self.gen_cross_component_features(
                feature_list=feature_list,
                num_sample=num_sample,
                num_components=num_components)

        elif self.dict == 'rff_gaussian':
            # isotropic gaussian kernel exp(-||x||^2/2\sigma)
            generated_feature_array = self.gen_rff_features(X=X)

        elif self.dict == 'rff_gaussian_state':
            generated_feature_array = self.gen_rff_features_include_state(X=X)

        elif self.dict == 'nystrom':
            pass

        else:
            raise NotImplementedError("we haven't implemented that!")

        return generated_feature_array
示例#16
0
def shapelet1d(n,x0=0,s=1):

    """Make a 1D shapelet template to be used in the construction of 2D shapelets

    n 	: Integer representing energy quantum number
    x0 	: Integer defining the centroid
    s 	: Float which is the same as beta parameter in refregier

    """
    def sqfac(k):
        fac = 1.
        for i in xrange(k):
            fac *= np.sqrt(i+1)
        return fac

    u = lambda x: (x-x0)/s
    fn = lambda x: (1./(2*np.pi)**0.25)*(1./sqfac(n))*hermitenorm(n)(u(x))*np.exp(-0.25*u(x)**2) 
    return fn
示例#17
0
文件: gpce.py 项目: vinh-tr-hoang/UQ
 def __init__(self,dim = 1, dist_type = None, var = None, order = None):
     self.dim = dim
     self.order = order
     self.nbpoly = order + 1
     self.var = var
     self.dist_type = dist_type
     #self.coef = np.zeros(self.nbpoly, self.order + 1)
     if dist_type =='norm':
         self.funcs = np.array([sp.hermitenorm(i)for i in range (0, self.order+1)])            
         for i in range(0, self.order+1):
             normalized_const = np.sqrt(sp.factorial(i))
             self.funcs[i] = poly1d(self.funcs[i].c/normalized_const)
     if dist_type =='uniform':
         #The polynomials  are orthogonal over [0,1] with weight function 1.
         self.funcs = np.array([sp.sh_legendre(i)for i in range (0, self.order+1)])
         for i in range(0, self.order+1):
             normalized_const = np.sqrt(1./(2.*i+1.))
             self.funcs[i] = poly1d(self.funcs[i].c/normalized_const)                            
     self.modelcoef = np.zeros((self.nbpoly,))
示例#18
0
        def basis(index, eps):
            """
            BASIS is the multivariate basis

            Parameters
            ----------
            index (int) :
                index of the basis (from 0 to nt)
            eps (int) :
                evaluation points:
                * from -1 to +1 for a uniform distribution,
                * from -inf to onf for a normal distribution.
            
            Return
            ------
            y (float) :
                value of the basis in eps --> y = psi(eps)
            
            AUTHOR: Luca Giaccone ([email protected])
            DATE: 17.12.2018
            HISTORY:
            """
            # check input
            if index > (nt - 1):
                raise ValueError(f'max index possible is nt-1={self.nt-1}')
            if isinstance(eps, (list, tuple)):
                eps = np.array(eps)

            # get multi-index
            i = self.multi_index[index]

            # initialize output
            y = np.ones(eps.shape[0])
            # cycle on distrubutions (nt element)
            for k, dist in enumerate(distrib):
                if dist.upper() == 'U':
                    y = y * np.polyval(legendre(i[k]), eps[..., k])
                elif dist.upper() == 'N':
                    y = y * np.polyval(hermitenorm(i[k]), eps[..., k])

            return y
示例#19
0
文件: rft.py 项目: shirsenh/nipy
def Q(dim, dfd=np.inf):
    """ Q polynomial

    If `dfd` == inf (the default), then Q(dim) is the (dim-1)-st Hermite
    polynomial:

    .. math::

        H_j(x) = (-1)^j * e^{x^2/2} * (d^j/dx^j e^{-x^2/2})

    If `dfd` != inf, then it is the polynomial Q defined in [Worsley1994]_

    Parameters
    ----------
    dim : int
        dimension of polynomial
    dfd : scalar

    Returns
    -------
    q_poly : np.poly1d instance

    References
    ----------
    .. [Worsley1994] Worsley, K.J. (1994). 'Local maxima and the expected Euler
       characteristic of excursion sets of \chi^2, F and t fields.' Advances in
       Applied Probability, 26:13-42.
    """
    m = dfd
    j = dim
    if j <= 0:
        raise ValueError('Q defined only for dim > 0')
    poly = hermitenorm(j - 1)
    poly = np.poly1d(np.around(poly.c))
    if np.isfinite(m):
        for l in range((j - 1) // 2 + 1):
            f = np.exp(
                gammaln((m + 1) / 2.) - gammaln((m + 2 - j + 2 * l) / 2.) -
                0.5 * (j - 1 - 2 * l) * (np.log(m / 2.)))
            poly.c[2 * l] *= f
    return np.poly1d(poly.c)
示例#20
0
文件: Hermite.py 项目: SURGroup/UQpy
    def get_polys(self, x):
        """
        Calculates the normalized Hermite polynomials evaluated at sample points.

        :param x: :class:`numpy.ndarray` containing the samples.
        :return: Α list of :class:`numpy.ndarray` with the design matrix and the
                    normalized polynomials.
        """
        a, b = -np.inf, np.inf
        mean_ = Polynomials.get_mean(self)
        std_ = Polynomials.get_std(self)
        x_ = Polynomials.standardize_normal(x, mean_, std_)

        norm = Normal(0, 1)
        pdf_st = norm.pdf

        p = []
        for i in range(self.degree):
            p.append(special.hermitenorm(i, monic=False))

        return Polynomials.normalized(self.degree, x_, a, b, pdf_st, p)
示例#21
0
def Q(dim, dfd=np.inf):
    r""" Q polynomial

    If `dfd` == inf (the default), then Q(dim) is the (dim-1)-st Hermite
    polynomial:

    .. math::

        H_j(x) = (-1)^j * e^{x^2/2} * (d^j/dx^j e^{-x^2/2})

    If `dfd` != inf, then it is the polynomial Q defined in [Worsley1994]_

    Parameters
    ----------
    dim : int
        dimension of polynomial
    dfd : scalar

    Returns
    -------
    q_poly : np.poly1d instance

    References
    ----------
    .. [Worsley1994] Worsley, K.J. (1994). 'Local maxima and the expected Euler
       characteristic of excursion sets of \chi^2, F and t fields.' Advances in
       Applied Probability, 26:13-42.
    """
    m = dfd
    j = dim
    if j <= 0:
        raise ValueError('Q defined only for dim > 0')
    coeffs = np.around(hermitenorm(j - 1).c)
    if np.isfinite(m):
        for L in range((j - 1) // 2 + 1):
            f = np.exp(gammaln((m + 1) / 2.)
                       - gammaln((m + 2 - j + 2 * L) / 2.)
                       - 0.5 * (j - 1 - 2 * L) * (np.log(m / 2.)))
            coeffs[2 * L] *= f
    return np.poly1d(coeffs)
示例#22
0
    def gen_dict_feature(self, X):
        """
        generate nonlinear feature given data + nonlinear transformation given
        X = | x_1,.....,x_n @ time_step = 1|
            | x_1,.....,x_n @ time_step = M|
            X.shape = (num_samples, num_components)

        .. note::
            Computational time:
                * The computational time scales with the number of features mainly, which is determined by number of components and polynomial order

        :type X: np.ndarray
        :param X: input data with shape = (num_samples, num_components)

        :return: generated_feature_array with shape (num_samples, num_features)
        :rtype: np.ndarray
        """

        num_sample, num_components = X.shape
        generated_feature_array = None

        if self.dict == 'hermite':
            # normalized hermite polynomial
            ## compute feature list = [[H0(x1).. H0(xn)],...,[HN(x1).. HN(xn)] ]
            feature_list = []
            for order in range(self.hermite_order + 1):
                phi_i = hermitenorm(order)
                phi_i_X = np.polyval(phi_i, X)
                feature_list.append(phi_i_X)

            # create feature array from feature list
            generated_feature_array = self.gen_cross_component_features(
                feature_list=feature_list,
                num_sample=num_sample,
                num_components=num_components
            )

        return generated_feature_array
示例#23
0
    def __init__(self, filename):
        """
        Initialize GaussHermitePSF from input file
        """        
        #- Check that this file is a current generation Gauss Hermite PSF
        fx = fits.open(filename, memmap=False)

        #- Read primary header
        phdr = fx[0].header
        if 'PSFTYPE' not in phdr:
            raise ValueError('Missing PSFTYPE keyword')
        if phdr['PSFTYPE'] != 'GAUSS-HERMITE':
            raise ValueError('PSFTYPE {} is not GAUSS-HERMITE'.format(phdr['PSFTYPE']))
        if 'PSFVER' not in phdr:
            raise ValueError("PSFVER missing; this version not supported")
        PSFVER = float(phdr["PSFVER"])
        
        if PSFVER<3 :
            psf_hdu = 1
        else :
            psf_hdu = "PSF"
        
        self._polyparams = hdr = dict(fx[psf_hdu].header)
        if 'PSFTYPE' not in hdr:
            raise ValueError('Missing PSFTYPE keyword')
            
        if hdr['PSFTYPE'] != 'GAUSS-HERMITE':
            raise ValueError('PSFTYPE {} is not GAUSS-HERMITE'.format(hdr['PSFTYPE']))
            
        if 'PSFVER' not in hdr:
            raise ValueError("PSFVER missing; this version not supported")
            
        if hdr['PSFVER'] < '1':
            raise ValueError("Only GAUSS-HERMITE versions 1.0 and greater are supported")
            
        #- Calculate number of spectra from FIBERMIN and FIBERMAX (inclusive)
        self.nspec = hdr['FIBERMAX'] - hdr['FIBERMIN'] + 1
        
        #- Other necessary keywords
        self.npix_x = hdr['NPIX_X']
        self.npix_y = hdr['NPIX_Y']

        #- PSF model error
        if 'PSFERR' in hdr:
            self.psferr = hdr['PSFERR']
        else:
            self.psferr = 0.01

        #- Load the parameters into self.coeff dictionary keyed by PARAM
        #- with values as TraceSets for evaluating the Legendre coefficients
        data = fx[psf_hdu].data
        self.coeff = dict()
        if PSFVER<3 : # old format
            
            for p in data:
                domain = (p['WAVEMIN'], p['WAVEMAX'])
                for p in data:
                    name = p['PARAM'].strip()
                    self.coeff[name] = TraceSet(p['COEFF'], domain=domain)
    
            #- Pull out x and y as special tracesets
            self._x = self.coeff['X']
            self._y = self.coeff['Y']

        else : # new format
            
            domain = (hdr['WAVEMIN'], hdr['WAVEMAX'])
            for p in data:
                name = p['PARAM'].strip()
                self.coeff[name] = TraceSet(p['COEFF'], domain=domain)
            
            self._x = TraceSet(fx["XTRACE"].data, domain=(fx['XTRACE'].header["WAVEMIN"], fx['XTRACE'].header['WAVEMAX']))
            self._y = TraceSet(fx["YTRACE"].data, domain=(fx['YTRACE'].header["WAVEMIN"], fx['YTRACE'].header['WAVEMAX']))
            
        
        #- Create inverse y -> wavelength mapping
        self._w = self._y.invert()

        #- Cache min/max wavelength per fiber at pixel edges
        self._wmin_spec = self.wavelength(None, -0.5)
        self._wmax_spec = self.wavelength(None, self.npix_y-0.5)
        self._wmin = np.min(self._wmin_spec)
        self._wmin_all = np.max(self._wmin_spec)
        self._wmax = np.max(self._wmax_spec)
        self._wmax_all = np.min(self._wmax_spec)

        #- Filled only if needed
        self._xsigma = None
        self._ysigma = None

        #create dict to hold legval cached data
        self.legval_dict = None

        #- Cache hermitenorm polynomials so we don't have to create them
        #- every time xypix is called
        self._hermitenorm = list()
        maxdeg = max(hdr['GHDEGX'], hdr['GHDEGY'])
        for i in range(maxdeg+1):
            self._hermitenorm.append( sp.hermitenorm(i) )

        fx.close()
示例#24
0
import numpy as np
import matplotlib.pyplot as plt
from scipy.special import chebyt, hermitenorm

x = np.linspace(-1, 1, 100)
xx = np.linspace(-5, 5, 100)

t1 = np.polyval(chebyt(1), x)
t2 = np.polyval(chebyt(2), x)
t3 = np.polyval(chebyt(3), x)
t4 = np.polyval(chebyt(4), x)

h1 = np.polyval(hermitenorm(1), x)
h2 = np.polyval(hermitenorm(2), x)
h3 = np.polyval(hermitenorm(3), x)
h4 = np.polyval(hermitenorm(4), x)

plt.rc('mathtext', fontset='stix')
fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(9, 6))
ax1.plot(x, t1, label=r'$T_{1}(x)$')
ax1.plot(x, t2, label=r'$T_{2}(x)$')
ax1.plot(x, t3, label=r'$T_{3}(x)$')
ax1.plot(x, t4, label=r'$T_{4}(x)$')
ax1.legend(loc='best')
ax1.set_xlabel(r'$x$')
ax1.set_title('First four Chebyshev polynomials of the first kind')
ax1.grid()

ax2.plot(xx, h1, label=r'$H_{1}(x)$')
ax2.plot(xx, h2, label=r'$H_{2}(x)$')
ax2.plot(xx, h3, label=r'$H_{3}(x)$')
示例#25
0
    def __init__(self, filename):
        """
        Initialize GaussHermitePSF from input file
        """
        #- Check that this file is a current generation Gauss Hermite PSF
        fx = fits.open(filename, memmap=False)
        self._polyparams = hdr = fx[1].header
        if 'PSFTYPE' not in hdr:
            raise ValueError('Missing PSFTYPE keyword')

        if hdr['PSFTYPE'] != 'GAUSS-HERMITE2':
            raise ValueError('PSFTYPE {} is not GAUSS-HERMITE'.format(hdr['PSFTYPE']))

        if 'PSFVER' not in hdr:
            raise ValueError("PSFVER missing; this version not supported")

        if hdr['PSFVER'] < '1':
            raise ValueError("Only GAUSS-HERMITE versions 1.0 and greater are supported")

        #- Calculate number of spectra from FIBERMIN and FIBERMAX (inclusive)
        self.nspec = hdr['FIBERMAX'] - hdr['FIBERMIN'] + 1

        #- Other necessary keywords
        self.npix_x = hdr['NPIX_X']
        self.npix_y = hdr['NPIX_Y']

        #- PSF model error
        if 'PSFERR' in hdr:
            self.psferr = hdr['PSFERR']
        else:
            self.psferr = 0.01

        #- Load the parameters into self.coeff dictionary keyed by PARAM
        #- with values as TraceSets for evaluating the Legendre coefficients
        data = fx[1].data
        self.coeff = dict()
        for p in data:
            domain = (p['WAVEMIN'], p['WAVEMAX'])
            for p in data:
                name = p['PARAM'].strip()
                self.coeff[name] = TraceSet(p['COEFF'], domain=domain)

        #- Pull out x and y as special tracesets
        self._x = self.coeff['X']
        self._y = self.coeff['Y']

        #- Create inverse y -> wavelength mapping
        self._w = self._y.invert()

        #- Cache min/max wavelength per fiber at pixel edges
        self._wmin_spec = self.wavelength(None, -0.5)
        self._wmax_spec = self.wavelength(None, self.npix_y-0.5)
        self._wmin = np.min(self._wmin_spec)
        self._wmin_all = np.max(self._wmin_spec)
        self._wmax = np.max(self._wmax_spec)
        self._wmax_all = np.min(self._wmax_spec)

        #- Filled only if needed
        self._xsigma = None
        self._ysigma = None

        #- Cache hermitenorm polynomials so we don't have to create them
        #- every time xypix is called
        self._hermitenorm = list()
        maxdeg = max(hdr['GHDEGX'], hdr['GHDEGY'], hdr['GHDEGX2'], hdr['GHDEGY2'])
        for i in range(maxdeg+1):
            self._hermitenorm.append( sp.hermitenorm(i) )

        fx.close()
示例#26
0
def test_polynomial1():
    # Polynomial part of Gaussian densities are Hermite polynomials.
    for dim in range(1, 10):
        q = rft.Gaussian().quasi(dim)
        h = hermitenorm(dim - 1)
        yield assert_almost_equal, q.c, h.c