示例#1
0
def test_gcdex_diophantine():
    assert gcdex_diophantine(
        Poly(x ** 4 - 2 * x ** 3 - 6 * x ** 2 + 12 * x + 15),
        Poly(x ** 3 + x ** 2 - 4 * x - 4),
        Poly(x ** 2 - 1),
    ) == (
        Poly((-(x ** 2) + 4 * x - 3) / 5),
        Poly((x ** 3 - 7 * x ** 2 + 16 * x - 10) / 5),
    )
    assert gcdex_diophantine(
        Poly(x ** 3 + 6 * x + 7), Poly(x ** 2 + 3 * x + 2), Poly(x + 1)
    ) == (Poly(1 / 13, x, domain="QQ"), Poly(-1 / 13 * x + 3 / 13, x, domain="QQ"))
示例#2
0
def weak_normalizer(a, d, DE, z=None):
    """
    Weak normalization.

    Explanation
    ===========

    Given a derivation D on k[t] and f == a/d in k(t), return q in k[t]
    such that f - Dq/q is weakly normalized with respect to t.

    f in k(t) is said to be "weakly normalized" with respect to t if
    residue_p(f) is not a positive integer for any normal irreducible p
    in k[t] such that f is in R_p (Definition 6.1.1).  If f has an
    elementary integral, this is equivalent to no logarithm of
    integral(f) whose argument depends on t has a positive integer
    coefficient, where the arguments of the logarithms not in k(t) are
    in k[t].

    Returns (q, f - Dq/q)
    """
    z = z or Dummy('z')
    dn, ds = splitfactor(d, DE)

    # Compute d1, where dn == d1*d2**2*...*dn**n is a square-free
    # factorization of d.
    g = gcd(dn, dn.diff(DE.t))
    d_sqf_part = dn.quo(g)
    d1 = d_sqf_part.quo(gcd(d_sqf_part, g))

    a1, b = gcdex_diophantine(
        d.quo(d1).as_poly(DE.t), d1.as_poly(DE.t), a.as_poly(DE.t))
    r = (a - Poly(z, DE.t) * derivation(d1, DE)).as_poly(DE.t).resultant(
        d1.as_poly(DE.t))
    r = Poly(r, z)

    if not r.expr.has(z):
        return (Poly(1, DE.t), (a, d))

    N = [i for i in r.real_roots() if i in ZZ and i > 0]

    q = reduce(mul,
               [gcd(a - Poly(n, DE.t) * derivation(d1, DE), d1) for n in N],
               Poly(1, DE.t))

    dq = derivation(q, DE)
    sn = q * a - d * dq
    sd = q * d
    sn, sd = sn.cancel(sd, include=True)

    return (q, (sn, sd))
示例#3
0
文件: rde.py 项目: Abhityagi16/sympy
def weak_normalizer(a, d, DE, z=None):
    """
    Weak normalization.

    Given a derivation D on k[t] and f == a/d in k(t), return q in k[t]
    such that f - Dq/q is weakly normalized with respect to t.

    f in k(t) is said to be "weakly normalized" with respect to t if
    residue_p(f) is not a positive integer for any normal irreducible p
    in k[t] such that f is in R_p (Definition 6.1.1).  If f has an
    elementary integral, this is equivalent to no logarithm of
    integral(f) whose argument depends on t has a positive integer
    coefficient, where the arguments of the logarithms not in k(t) are
    in k[t].

    Returns (q, f - Dq/q)
    """
    z = z or Dummy('z')
    dn, ds = splitfactor(d, DE)

    # Compute d1, where dn == d1*d2**2*...*dn**n is a square-free
    # factorization of d.
    g = gcd(dn, dn.diff(DE.t))
    d_sqf_part = dn.quo(g)
    d1 = d_sqf_part.quo(gcd(d_sqf_part, g))

    a1, b = gcdex_diophantine(d.quo(d1).as_poly(DE.t), d1.as_poly(DE.t),
        a.as_poly(DE.t))
    r = (a - Poly(z, DE.t)*derivation(d1, DE)).as_poly(DE.t).resultant(
        d1.as_poly(DE.t))
    r = Poly(r, z)

    if not r.has(z):
        return (Poly(1, DE.t), (a, d))

    N = [i for i in r.real_roots() if i in ZZ and i > 0]

    q = reduce(mul, [gcd(a - Poly(n, DE.t)*derivation(d1, DE), d1) for n in N],
        Poly(1, DE.t))

    dq = derivation(q, DE)
    sn = q*a - d*dq
    sd = q*d
    sn, sd = sn.cancel(sd, include=True)

    return (q, (sn, sd))
示例#4
0
def spde(a, b, c, n, DE):
    """
    Rothstein's Special Polynomial Differential Equation algorithm.

    Explanation
    ===========

    Given a derivation D on k[t], an integer n and ``a``,``b``,``c`` in k[t] with
    ``a != 0``, either raise NonElementaryIntegralException, in which case the
    equation a*Dq + b*q == c has no solution of degree at most ``n`` in
    k[t], or return the tuple (B, C, m, alpha, beta) such that B, C,
    alpha, beta in k[t], m in ZZ, and any solution q in k[t] of degree
    at most n of a*Dq + b*q == c must be of the form
    q == alpha*h + beta, where h in k[t], deg(h) <= m, and Dh + B*h == C.

    This constitutes step 4 of the outline given in the rde.py docstring.
    """
    zero = Poly(0, DE.t)

    alpha = Poly(1, DE.t)
    beta = Poly(0, DE.t)

    while True:
        if c.is_zero:
            return (zero, zero, 0, zero, beta)  # -1 is more to the point
        if (n < 0) is True:
            raise NonElementaryIntegralException

        g = a.gcd(b)
        if not c.rem(g).is_zero:  # g does not divide c
            raise NonElementaryIntegralException

        a, b, c = a.quo(g), b.quo(g), c.quo(g)

        if a.degree(DE.t) == 0:
            b = b.to_field().quo(a)
            c = c.to_field().quo(a)
            return (b, c, n, alpha, beta)

        r, z = gcdex_diophantine(b, a, c)
        b += derivation(a, DE)
        c = z - derivation(r, DE)
        n -= a.degree(DE.t)

        beta += alpha * r
        alpha *= a
示例#5
0
def spde(a, b, c, n, DE):
    """
    Rothstein's Special Polynomial Differential Equation algorithm.

    Given a derivation D on k[t], an integer n and a, b, c in k[t] with
    a != 0, either raise NonElementaryIntegralException, in which case the
    equation a*Dq + b*q == c has no solution of degree at most n in
    k[t], or return the tuple (B, C, m, alpha, beta) such that B, C,
    alpha, beta in k[t], m in ZZ, and any solution q in k[t] of degree
    at most n of a*Dq + b*q == c must be of the form
    q == alpha*h + beta, where h in k[t], deg(h) <= m, and Dh + B*h == C.

    This constitutes step 4 of the outline given in the rde.py docstring.
    """
    zero = Poly(0, DE.t)

    alpha = Poly(1, DE.t)
    beta = Poly(0, DE.t)
    pow_a = 0

    while True:
        if (n < 0) is True:
            if c.is_zero:
                return (zero, zero, 0, zero, beta)
            raise NonElementaryIntegralException

        g = a.gcd(b)
        if not c.rem(g).is_zero:  # g does not divide c
            raise NonElementaryIntegralException

        a, b, c = a.quo(g), b.quo(g), c.quo(g)

        if a.degree(DE.t) == 0:
            b = b.to_field().quo(a)
            c = c.to_field().quo(a)
            return (b, c, n, alpha, beta)

        r, z = gcdex_diophantine(b, a, c)
        b += derivation(a, DE)
        c = z - derivation(r, DE)
        n -= a.degree(DE.t)
        alpha *= a
        beta += (a**pow_a)*r
        pow_a += 1
示例#6
0
def prde_spde(a, b, Q, n, DE):
    """
    Special Polynomial Differential Equation algorithm: Parametric Version.

    Given a derivation D on k[t], an integer n, and a, b, q1, ..., qm in k[t]
    with deg(a) > 0 and gcd(a, b) == 1, return (A, B, Q, R, n1), with
    Qq = [q1, ..., qm] and R = [r1, ..., rm], such that for any solution
    c1, ..., cm in Const(k) and q in k[t] of degree at most n of
    a*Dq + b*q == Sum(ci*gi, (i, 1, m)), p = (q - Sum(ci*ri, (i, 1, m)))/a has
    degree at most n1 and satisfies A*Dp + B*p == Sum(ci*qi, (i, 1, m))
    """
    R, Z = list(zip(*[gcdex_diophantine(b, a, qi) for qi in Q]))

    A = a
    B = b + derivation(a, DE)
    Qq = [zi - derivation(ri, DE) for ri, zi in zip(R, Z)]
    R = list(R)
    n1 = n - a.degree(DE.t)

    return (A, B, Qq, R, n1)
示例#7
0
def prde_spde(a, b, Q, n, DE):
    """
    Special Polynomial Differential Equation algorithm: Parametric Version.

    Given a derivation D on k[t], an integer n, and a, b, q1, ..., qm in k[t]
    with deg(a) > 0 and gcd(a, b) == 1, return (A, B, Q, R, n1), with
    Qq = [q1, ..., qm] and R = [r1, ..., rm], such that for any solution
    c1, ..., cm in Const(k) and q in k[t] of degree at most n of
    a*Dq + b*q == Sum(ci*gi, (i, 1, m)), p = (q - Sum(ci*ri, (i, 1, m)))/a has
    degree at most n1 and satisfies A*Dp + B*p == Sum(ci*qi, (i, 1, m))
    """
    R, Z = zip(*[gcdex_diophantine(b, a, qi) for qi in Q])

    A = a
    B = b + derivation(a, DE)
    Qq = [zi - derivation(ri, DE) for ri, zi in zip(R, Z)]
    R = list(R)
    n1 = n - a.degree(DE.t)

    return (A, B, Qq, R, n1)
示例#8
0
文件: rde.py 项目: vchekan/sympy
def spde(a, b, c, n, DE):
    """
    Rothstein's Special Polynomial Differential Equation algorithm.

    Given a derivation D on k[t], an integer n and a, b, c in k[t] with
    a != 0, either raise NonElementaryIntegralException, in which case the
    equation a*Dq + b*q == c has no solution of degree at most n in
    k[t], or return the tuple (B, C, m, alpha, beta) such that B, C,
    alpha, beta in k[t], m in ZZ, and any solution q in k[t] of degree
    at most n of a*Dq + b*q == c must be of the form
    q == alpha*h + beta, where h in k[t], deg(h) <= m, and Dh + B*h == C.

    This constitutes step 4 of the outline given in the rde.py docstring.
    """
    # TODO: Rewrite this non-recursively
    zero = Poly(0, DE.t)
    if n < 0:
        if c.is_zero:
            return (zero, zero, 0, zero, zero)
        raise NonElementaryIntegralException

    g = a.gcd(b)
    if not c.rem(g).is_zero:  # g does not divide c
        raise NonElementaryIntegralException

    a, b, c = a.quo(g), b.quo(g), c.quo(g)
    if a.degree(DE.t) == 0:
        b = b.to_field().quo(a)
        c = c.to_field().quo(a)
        return (b, c, n, Poly(1, DE.t), zero)

    r, z = gcdex_diophantine(b, a, c)
    u = (a, b + derivation(a, DE), z - derivation(r, DE), n - a.degree(DE.t),
        DE)
    B, C, m, alpha, beta = spde(*u)

    return (B, C, m, a*alpha, a*beta + r)
示例#9
0
def test_gcdex_diophantine():
    assert gcdex_diophantine(Poly(x**4 - 2*x**3 - 6*x**2 + 12*x + 15),
    Poly(x**3 + x**2 - 4*x - 4), Poly(x**2 - 1)) == \
        (Poly((-x**2 + 4*x - 3)/5), Poly((x**3 - 7*x**2 + 16*x - 10)/5))
示例#10
0
def test_gcdex_diophantine():
    assert gcdex_diophantine(Poly(x**4 - 2*x**3 - 6*x**2 + 12*x + 15),
    Poly(x**3 + x**2 - 4*x - 4), Poly(x**2 - 1)) == \
        (Poly((-x**2 + 4*x - 3)/5), Poly((x**3 - 7*x**2 + 16*x - 10)/5))