示例#1
0
def dup_ff_prs_gcd(f, g, K):
    """
    Computes polynomial GCD using subresultants over a field.

    Returns ``(h, cff, cfg)`` such that ``a = gcd(f, g)``, ``cff = quo(f, h)``,
    and ``cfg = quo(g, h)``.

    **Examples**

    >>> from sympy.polys.domains import QQ
    >>> from sympy.polys.euclidtools import dup_ff_prs_gcd

    >>> f = QQ.map([1, 0, -1])
    >>> g = QQ.map([1, -3, 2])

    >>> dup_ff_prs_gcd(f, g, QQ)
    ([1/1, -1/1], [1/1, 1/1], [1/1, -2/1])

    """
    result = _dup_ff_trivial_gcd(f, g, K)

    if result is not None:
        return result

    h = dup_subresultants(f, g, K)[-1]
    h = dup_monic(h, K)

    cff = dup_exquo(f, h, K)
    cfg = dup_exquo(g, h, K)

    return h, cff, cfg
示例#2
0
def dup_ff_prs_gcd(f, g, K):
    """
    Computes polynomial GCD using subresultants over a field.

    Returns ``(h, cff, cfg)`` such that ``a = gcd(f, g)``, ``cff = quo(f, h)``,
    and ``cfg = quo(g, h)``.

    **Examples**

    >>> from sympy.polys.domains import QQ
    >>> from sympy.polys.euclidtools import dup_ff_prs_gcd

    >>> f = QQ.map([1, 0, -1])
    >>> g = QQ.map([1, -3, 2])

    >>> dup_ff_prs_gcd(f, g, QQ)
    ([1/1, -1/1], [1/1, 1/1], [1/1, -2/1])

    """
    result = _dup_ff_trivial_gcd(f, g, K)

    if result is not None:
        return result

    h = dup_subresultants(f, g, K)[-1]
    h = dup_monic(h, K)

    cff = dup_exquo(f, h, K)
    cfg = dup_exquo(g, h, K)

    return h, cff, cfg
示例#3
0
def dup_rr_lcm(f, g, K):
    """
    Computes polynomial LCM over a ring in ``K[x]``.

    **Examples**

    >>> from sympy.polys.domains import ZZ
    >>> from sympy.polys.euclidtools import dup_rr_lcm

    >>> f = ZZ.map([1, 0, -1])
    >>> g = ZZ.map([1, -3, 2])

    >>> dup_rr_lcm(f, g, ZZ)
    [1, -2, -1, 2]

    """
    fc, f = dup_primitive(f, K)
    gc, g = dup_primitive(g, K)

    c = K.lcm(fc, gc)

    h = dup_exquo(dup_mul(f, g, K),
                  dup_gcd(f, g, K), K)

    return dup_mul_ground(h, c, K)
示例#4
0
def test_dup_div():
    f, g, q, r = [5,4,3,2,1], [1,2,3], [5,-6,0], [20,1]

    assert dup_div(f, g, ZZ) == (q, r)
    assert dup_quo(f, g, ZZ) == q
    assert dup_rem(f, g, ZZ) == r

    raises(ExactQuotientFailed, lambda: dup_exquo(f, g, ZZ))

    f, g, q, r = [5,4,3,2,1,0], [1,2,0,0,9], [5,-6], [15,2,-44,54]

    assert dup_div(f, g, ZZ) == (q, r)
    assert dup_quo(f, g, ZZ) == q
    assert dup_rem(f, g, ZZ) == r

    raises(ExactQuotientFailed, lambda: dup_exquo(f, g, ZZ))
示例#5
0
def dup_sqf_part(f, K):
    """
    Returns square-free part of a polynomial in ``K[x]``.

    **Examples**

    >>> from sympy.polys.domains import ZZ
    >>> from sympy.polys.sqfreetools import dup_sqf_part

    >>> dup_sqf_part([ZZ(1), ZZ(0), -ZZ(3), -ZZ(2)], ZZ)
    [1, -1, -2]

    """
    if not K.has_CharacteristicZero:
        return dup_gf_sqf_part(f, K)

    if not f:
        return f

    if K.is_negative(dup_LC(f, K)):
        f = dup_neg(f, K)

    gcd = dup_gcd(f, dup_diff(f, 1, K), K)
    sqf = dup_exquo(f, gcd, K)

    if K.has_Field or not K.is_Exact:
        return dup_monic(sqf, K)
    else:
        return dup_primitive(sqf, K)[1]
示例#6
0
def dup_zz_cyclotomic_poly(n, K):
    """Efficiently generate n-th cyclotomic polnomial. """
    h = [K.one, -K.one]

    for p, k in factorint(n).iteritems():
        h = dup_exquo(dup_inflate(h, p, K), h, K)
        h = dup_inflate(h, p**(k - 1), K)

    return h
示例#7
0
文件: factortools.py 项目: haz/sympy
def dup_zz_cyclotomic_poly(n, K):
    """Efficiently generate n-th cyclotomic polnomial. """
    h = [K.one,-K.one]

    for p, k in factorint(n).iteritems():
        h = dup_exquo(dup_inflate(h, p, K), h, K)
        h = dup_inflate(h, p**(k-1), K)

    return h
示例#8
0
def dup_rr_prs_gcd(f, g, K):
    """
    Computes polynomial GCD using subresultants over a ring.

    Returns ``(h, cff, cfg)`` such that ``a = gcd(f, g)``, ``cff = quo(f, h)``,
    and ``cfg = quo(g, h)``.

    **Examples**

    >>> from sympy.polys.domains import ZZ
    >>> from sympy.polys.euclidtools import dup_rr_prs_gcd

    >>> f = ZZ.map([1, 0, -1])
    >>> g = ZZ.map([1, -3, 2])

    >>> dup_rr_prs_gcd(f, g, ZZ)
    ([1, -1], [1, 1], [1, -2])

    """
    result = _dup_rr_trivial_gcd(f, g, K)

    if result is not None:
        return result

    fc, F = dup_primitive(f, K)
    gc, G = dup_primitive(g, K)

    c = K.gcd(fc, gc)

    h = dup_subresultants(F, G, K)[-1]
    _, h = dup_primitive(h, K)

    if K.is_negative(dup_LC(h, K)):
        c = -c

    h = dup_mul_ground(h, c, K)

    cff = dup_exquo(f, h, K)
    cfg = dup_exquo(g, h, K)

    return h, cff, cfg
示例#9
0
def dup_rr_prs_gcd(f, g, K):
    """
    Computes polynomial GCD using subresultants over a ring.

    Returns ``(h, cff, cfg)`` such that ``a = gcd(f, g)``, ``cff = quo(f, h)``,
    and ``cfg = quo(g, h)``.

    **Examples**

    >>> from sympy.polys.domains import ZZ
    >>> from sympy.polys.euclidtools import dup_rr_prs_gcd

    >>> f = ZZ.map([1, 0, -1])
    >>> g = ZZ.map([1, -3, 2])

    >>> dup_rr_prs_gcd(f, g, ZZ)
    ([1, -1], [1, 1], [1, -2])

    """
    result = _dup_rr_trivial_gcd(f, g, K)

    if result is not None:
        return result

    fc, F = dup_primitive(f, K)
    gc, G = dup_primitive(g, K)

    c = K.gcd(fc, gc)

    h = dup_subresultants(F, G, K)[-1]
    _, h = dup_primitive(h, K)

    if K.is_negative(dup_LC(h, K)):
        c = -c

    h = dup_mul_ground(h, c, K)

    cff = dup_exquo(f, h, K)
    cfg = dup_exquo(g, h, K)

    return h, cff, cfg
示例#10
0
def _dup_cyclotomic_decompose(n, K):
    H = [[K.one, -K.one]]

    for p, k in factorint(n).iteritems():
        Q = [dup_exquo(dup_inflate(h, p, K), h, K) for h in H]
        H.extend(Q)

        for i in xrange(1, k):
            Q = [dup_inflate(q, p, K) for q in Q]
            H.extend(Q)

    return H
示例#11
0
文件: factortools.py 项目: haz/sympy
def _dup_cyclotomic_decompose(n, K):
    H = [[K.one,-K.one]]

    for p, k in factorint(n).iteritems():
        Q = [ dup_exquo(dup_inflate(h, p, K), h, K) for h in H ]
        H.extend(Q)

        for i in xrange(1, k):
            Q = [ dup_inflate(q, p, K) for q in Q ]
            H.extend(Q)

    return H
示例#12
0
def test_dmp_primitive():
    assert dmp_primitive([[]], 1, ZZ) == ([], [[]])
    assert dmp_primitive([[1]], 1, ZZ) == ([1], [[1]])

    f, g, F = [ZZ(3), ZZ(2), ZZ(1)], [ZZ(1)], []

    for i in xrange(0, 5):
        g = dup_mul(g, f, ZZ)
        F.insert(0, g)

    assert dmp_primitive(F, 1, ZZ) == (f, [dup_exquo(c, f, ZZ) for c in F])

    cont, f = dmp_primitive(f_4, 2, ZZ)
    assert dmp_one_p(cont, 1, ZZ) and f == f_4
    cont, f = dmp_primitive(f_5, 2, ZZ)
    assert dmp_one_p(cont, 1, ZZ) and f == f_5
    cont, f = dmp_primitive(f_6, 3, ZZ)
    assert dmp_one_p(cont, 2, ZZ) and f == f_6
示例#13
0
def dup_ff_lcm(f, g, K):
    """
    Computes polynomial LCM over a field in ``K[x]``.

    **Examples**

    >>> from sympy.polys.domains import QQ
    >>> from sympy.polys.euclidtools import dup_ff_lcm

    >>> f = [QQ(1,2), QQ(7,4), QQ(3,2)]
    >>> g = [QQ(1,2), QQ(1), QQ(0)]

    >>> dup_ff_lcm(f, g, QQ)
    [1/1, 7/2, 3/1, 0/1]

    """
    h = dup_exquo(dup_mul(f, g, K), dup_gcd(f, g, K), K)

    return dup_monic(h, K)
示例#14
0
def test_dmp_primitive():
    assert dmp_primitive([[]], 1, ZZ) == ([], [[]])
    assert dmp_primitive([[1]], 1, ZZ) == ([1], [[1]])

    f, g, F = [ZZ(3),ZZ(2),ZZ(1)], [ZZ(1)], []

    for i in xrange(0, 5):
        g = dup_mul(g, f, ZZ)
        F.insert(0, g)

    assert dmp_primitive(F, 1, ZZ) == (f,
        [ dup_exquo(c, f, ZZ) for c in F ])

    cont, f = dmp_primitive(f_4, 2, ZZ)
    assert dmp_one_p(cont, 1, ZZ) and f == f_4
    cont, f = dmp_primitive(f_5, 2, ZZ)
    assert dmp_one_p(cont, 1, ZZ) and f == f_5
    cont, f = dmp_primitive(f_6, 3, ZZ)
    assert dmp_one_p(cont, 2, ZZ) and f == f_6
示例#15
0
def dup_ff_lcm(f, g, K):
    """
    Computes polynomial LCM over a field in ``K[x]``.

    **Examples**

    >>> from sympy.polys.domains import QQ
    >>> from sympy.polys.euclidtools import dup_ff_lcm

    >>> f = [QQ(1,2), QQ(7,4), QQ(3,2)]
    >>> g = [QQ(1,2), QQ(1), QQ(0)]

    >>> dup_ff_lcm(f, g, QQ)
    [1/1, 7/2, 3/1, 0/1]

    """
    h = dup_exquo(dup_mul(f, g, K),
                  dup_gcd(f, g, K), K)

    return dup_monic(h, K)
示例#16
0
def dup_rr_lcm(f, g, K):
    """
    Computes polynomial LCM over a ring in ``K[x]``.

    **Examples**

    >>> from sympy.polys.domains import ZZ
    >>> from sympy.polys.euclidtools import dup_rr_lcm

    >>> f = ZZ.map([1, 0, -1])
    >>> g = ZZ.map([1, -3, 2])

    >>> dup_rr_lcm(f, g, ZZ)
    [1, -2, -1, 2]

    """
    fc, f = dup_primitive(f, K)
    gc, g = dup_primitive(g, K)

    c = K.lcm(fc, gc)

    h = dup_exquo(dup_mul(f, g, K), dup_gcd(f, g, K), K)

    return dup_mul_ground(h, c, K)
示例#17
0
def dup_gcdex(f, g, K):
    """
    Extended Euclidean algorithm in ``F[x]``.

    Returns ``(s, t, h)`` such that ``h = gcd(f, g)`` and ``s*f + t*g = h``.

    **Examples**

    >>> from sympy.polys.domains import QQ
    >>> from sympy.polys.euclidtools import dup_gcdex

    >>> f = QQ.map([1, -2, -6, 12, 15])
    >>> g = QQ.map([1, 1, -4, -4])

    >>> dup_gcdex(f, g, QQ)
    ([-1/5, 3/5], [1/5, -6/5, 2/1], [1/1, 1/1])

    """
    s, h = dup_half_gcdex(f, g, K)

    F = dup_sub_mul(h, s, f, K)
    t = dup_exquo(F, g, K)

    return s, t, h
示例#18
0
def dup_gcdex(f, g, K):
    """
    Extended Euclidean algorithm in ``F[x]``.

    Returns ``(s, t, h)`` such that ``h = gcd(f, g)`` and ``s*f + t*g = h``.

    **Examples**

    >>> from sympy.polys.domains import QQ
    >>> from sympy.polys.euclidtools import dup_gcdex

    >>> f = QQ.map([1, -2, -6, 12, 15])
    >>> g = QQ.map([1, 1, -4, -4])

    >>> dup_gcdex(f, g, QQ)
    ([-1/5, 3/5], [1/5, -6/5, 2/1], [1/1, 1/1])

    """
    s, h = dup_half_gcdex(f, g, K)

    F = dup_sub_mul(h, s, f, K)
    t = dup_exquo(F, g, K)

    return s, t, h
示例#19
0
def dup_gff_list(f, K):
    """
    Compute greatest factorial factorization of ``f`` in ``K[x]``.

    **Examples**

    >>> from sympy.polys.domains import ZZ
    >>> from sympy.polys.sqfreetools import dup_gff_list

    >>> f = ZZ.map([1, 2, -1, -2, 0, 0])

    >>> dup_gff_list(f, ZZ)
    [([1, 0], 1), ([1, 2], 4)]

    """
    if not f:
        raise ValueError("greatest factorial factorization doesn't exist for a zero polynomial")

    f = dup_monic(f, K)

    if not dup_degree(f):
        return []
    else:
        g = dup_gcd(f, dup_shift(f, K.one, K), K)
        H = dup_gff_list(g, K)

        for i, (h, k) in enumerate(H):
            g = dup_mul(g, dup_shift(h, -K(k), K), K)
            H[i] = (h, k + 1)

        f = dup_exquo(f, g, K)

        if not dup_degree(f):
            return H
        else:
            return [(f, 1)] + H