示例#1
0
    def __init__(self,
                 loc,
                 scale,
                 skewness=None,
                 tailweight=None,
                 distribution=None,
                 validate_args=False,
                 allow_nan_stats=True,
                 name="SinhArcsinh"):
        """Construct SinhArcsinh distribution on `(-inf, inf)`.

    Arguments `(loc, scale, skewness, tailweight)` must have broadcastable shape
    (indexing batch dimensions).  They must all have the same `dtype`.

    Args:
      loc: Floating-point `Tensor`.
      scale:  `Tensor` of same `dtype` as `loc`.
      skewness:  Skewness parameter.  Default is `0.0` (no skew).
      tailweight:  Tailweight parameter. Default is `1.0` (unchanged tailweight)
      distribution: `tf.Distribution`-like instance. Distribution that is
        transformed to produce this distribution.
        Default is `tfd.Normal(0., 1.)`.
        Must be a scalar-batch, scalar-event distribution.  Typically
        `distribution.reparameterization_type = FULLY_REPARAMETERIZED` or it is
        a function of non-trainable parameters. WARNING: If you backprop through
        a `SinhArcsinh` sample and `distribution` is not
        `FULLY_REPARAMETERIZED` yet is a function of trainable variables, then
        the gradient will be incorrect!
      validate_args: Python `bool`, default `False`. When `True` distribution
        parameters are checked for validity despite possibly degrading runtime
        performance. When `False` invalid inputs may silently render incorrect
        outputs.
      allow_nan_stats: Python `bool`, default `True`. When `True`,
        statistics (e.g., mean, mode, variance) use the value "`NaN`" to
        indicate the result is undefined. When `False`, an exception is raised
        if one or more of the statistic's batch members are undefined.
      name: Python `str` name prefixed to Ops created by this class.
    """
        parameters = dict(locals())

        with tf.compat.v2.name_scope(name) as name:
            dtype = dtype_util.common_dtype([loc, scale, skewness, tailweight],
                                            tf.float32)
            loc = tf.convert_to_tensor(value=loc, name="loc", dtype=dtype)
            scale = tf.convert_to_tensor(value=scale,
                                         name="scale",
                                         dtype=dtype)
            tailweight = 1. if tailweight is None else tailweight
            has_default_skewness = skewness is None
            skewness = 0. if skewness is None else skewness
            tailweight = tf.convert_to_tensor(value=tailweight,
                                              name="tailweight",
                                              dtype=dtype)
            skewness = tf.convert_to_tensor(value=skewness,
                                            name="skewness",
                                            dtype=dtype)

            batch_shape = distribution_util.get_broadcast_shape(
                loc, scale, tailweight, skewness)

            # Recall, with Z a random variable,
            #   Y := loc + C * F(Z),
            #   F(Z) := Sinh( (Arcsinh(Z) + skewness) * tailweight )
            #   F_0(Z) := Sinh( Arcsinh(Z) * tailweight )
            #   C := 2 * scale / F_0(2)
            if distribution is None:
                distribution = normal.Normal(loc=tf.zeros([], dtype=dtype),
                                             scale=tf.ones([], dtype=dtype),
                                             allow_nan_stats=allow_nan_stats)
            else:
                asserts = distribution_util.maybe_check_scalar_distribution(
                    distribution, dtype, validate_args)
                if asserts:
                    loc = distribution_util.with_dependencies(asserts, loc)

            # Make the SAS bijector, 'F'.
            f = sinh_arcsinh_bijector.SinhArcsinh(skewness=skewness,
                                                  tailweight=tailweight)
            if has_default_skewness:
                f_noskew = f
            else:
                f_noskew = sinh_arcsinh_bijector.SinhArcsinh(
                    skewness=skewness.dtype.as_numpy_dtype(0.),
                    tailweight=tailweight)

            # Make the AffineScalar bijector, Z --> loc + scale * Z (2 / F_0(2))
            c = 2 * scale / f_noskew.forward(
                tf.convert_to_tensor(value=2, dtype=dtype))
            affine = affine_scalar_bijector.AffineScalar(
                shift=loc, scale=c, validate_args=validate_args)

            bijector = chain_bijector.Chain([affine, f])

            super(SinhArcsinh, self).__init__(distribution=distribution,
                                              bijector=bijector,
                                              batch_shape=batch_shape,
                                              validate_args=validate_args,
                                              name=name)
        self._parameters = parameters
        self._loc = loc
        self._scale = scale
        self._tailweight = tailweight
        self._skewness = skewness
示例#2
0
  def __init__(self,
               loc=None,
               scale_diag=None,
               scale_identity_multiplier=None,
               skewness=None,
               tailweight=None,
               distribution=None,
               validate_args=False,
               allow_nan_stats=True,
               name="MultivariateNormalLinearOperator"):
    """Construct VectorSinhArcsinhDiag distribution on `R^k`.

    The arguments `scale_diag` and `scale_identity_multiplier` combine to
    define the diagonal `scale` referred to in this class docstring:

    ```none
    scale = diag(scale_diag + scale_identity_multiplier * ones(k))
    ```

    The `batch_shape` is the broadcast shape between `loc` and `scale`
    arguments.

    The `event_shape` is given by last dimension of the matrix implied by
    `scale`. The last dimension of `loc` (if provided) must broadcast with this

    Additional leading dimensions (if any) will index batches.

    Args:
      loc: Floating-point `Tensor`. If this is set to `None`, `loc` is
        implicitly `0`. When specified, may have shape `[B1, ..., Bb, k]` where
        `b >= 0` and `k` is the event size.
      scale_diag: Non-zero, floating-point `Tensor` representing a diagonal
        matrix added to `scale`. May have shape `[B1, ..., Bb, k]`, `b >= 0`,
        and characterizes `b`-batches of `k x k` diagonal matrices added to
        `scale`. When both `scale_identity_multiplier` and `scale_diag` are
        `None` then `scale` is the `Identity`.
      scale_identity_multiplier: Non-zero, floating-point `Tensor` representing
        a scale-identity-matrix added to `scale`. May have shape
        `[B1, ..., Bb]`, `b >= 0`, and characterizes `b`-batches of scale
        `k x k` identity matrices added to `scale`. When both
        `scale_identity_multiplier` and `scale_diag` are `None` then `scale`
        is the `Identity`.
      skewness:  Skewness parameter.  floating-point `Tensor` with shape
        broadcastable with `event_shape`.
      tailweight:  Tailweight parameter.  floating-point `Tensor` with shape
        broadcastable with `event_shape`.
      distribution: `tf.Distribution`-like instance. Distribution from which `k`
        iid samples are used as input to transformation `F`.  Default is
        `tfd.Normal(loc=0., scale=1.)`.
        Must be a scalar-batch, scalar-event distribution.  Typically
        `distribution.reparameterization_type = FULLY_REPARAMETERIZED` or it is
        a function of non-trainable parameters. WARNING: If you backprop through
        a VectorSinhArcsinhDiag sample and `distribution` is not
        `FULLY_REPARAMETERIZED` yet is a function of trainable variables, then
        the gradient will be incorrect!
      validate_args: Python `bool`, default `False`. When `True` distribution
        parameters are checked for validity despite possibly degrading runtime
        performance. When `False` invalid inputs may silently render incorrect
        outputs.
      allow_nan_stats: Python `bool`, default `True`. When `True`,
        statistics (e.g., mean, mode, variance) use the value "`NaN`" to
        indicate the result is undefined. When `False`, an exception is raised
        if one or more of the statistic's batch members are undefined.
      name: Python `str` name prefixed to Ops created by this class.

    Raises:
      ValueError: if at most `scale_identity_multiplier` is specified.
    """
    parameters = dict(locals())

    with tf.name_scope(
        name,
        values=[
            loc, scale_diag, scale_identity_multiplier, skewness, tailweight
        ]) as name:
      dtype = dtype_util.common_dtype(
          [loc, scale_diag, scale_identity_multiplier, skewness, tailweight],
          tf.float32)
      loc = loc if loc is None else tf.convert_to_tensor(
          value=loc, name="loc", dtype=dtype)
      tailweight = 1. if tailweight is None else tailweight
      has_default_skewness = skewness is None
      skewness = 0. if skewness is None else skewness

      # Recall, with Z a random variable,
      #   Y := loc + C * F(Z),
      #   F(Z) := Sinh( (Arcsinh(Z) + skewness) * tailweight )
      #   F_0(Z) := Sinh( Arcsinh(Z) * tailweight )
      #   C := 2 * scale / F_0(2)

      # Construct shapes and 'scale' out of the scale_* and loc kwargs.
      # scale_linop is only an intermediary to:
      #  1. get shapes from looking at loc and the two scale args.
      #  2. combine scale_diag with scale_identity_multiplier, which gives us
      #     'scale', which in turn gives us 'C'.
      scale_linop = distribution_util.make_diag_scale(
          loc=loc,
          scale_diag=scale_diag,
          scale_identity_multiplier=scale_identity_multiplier,
          validate_args=False,
          assert_positive=False,
          dtype=dtype)
      batch_shape, event_shape = distribution_util.shapes_from_loc_and_scale(
          loc, scale_linop)
      # scale_linop.diag_part() is efficient since it is a diag type linop.
      scale_diag_part = scale_linop.diag_part()
      dtype = scale_diag_part.dtype

      if distribution is None:
        distribution = normal.Normal(
            loc=tf.zeros([], dtype=dtype),
            scale=tf.ones([], dtype=dtype),
            allow_nan_stats=allow_nan_stats)
      else:
        asserts = distribution_util.maybe_check_scalar_distribution(
            distribution, dtype, validate_args)
        if asserts:
          scale_diag_part = distribution_util.with_dependencies(
              asserts, scale_diag_part)

      # Make the SAS bijector, 'F'.
      skewness = tf.convert_to_tensor(
          value=skewness, dtype=dtype, name="skewness")
      tailweight = tf.convert_to_tensor(
          value=tailweight, dtype=dtype, name="tailweight")
      f = sinh_arcsinh_bijector.SinhArcsinh(
          skewness=skewness, tailweight=tailweight)
      if has_default_skewness:
        f_noskew = f
      else:
        f_noskew = sinh_arcsinh_bijector.SinhArcsinh(
            skewness=skewness.dtype.as_numpy_dtype(0.),
            tailweight=tailweight)

      # Make the Affine bijector, Z --> loc + C * Z.
      c = 2 * scale_diag_part / f_noskew.forward(
          tf.convert_to_tensor(value=2, dtype=dtype))
      affine = affine_bijector.Affine(
          shift=loc, scale_diag=c, validate_args=validate_args)

      bijector = chain_bijector.Chain([affine, f])

      super(VectorSinhArcsinhDiag, self).__init__(
          distribution=distribution,
          bijector=bijector,
          batch_shape=batch_shape,
          event_shape=event_shape,
          validate_args=validate_args,
          name=name)
    self._parameters = parameters
    self._loc = loc
    self._scale = scale_linop
    self._tailweight = tailweight
    self._skewness = skewness
示例#3
0
  def __init__(self,
               loc,
               scale,
               skewness=None,
               tailweight=None,
               distribution=None,
               validate_args=False,
               allow_nan_stats=True,
               name='SinhArcsinh'):
    """Construct SinhArcsinh distribution on `(-inf, inf)`.

    Arguments `(loc, scale, skewness, tailweight)` must have broadcastable shape
    (indexing batch dimensions).  They must all have the same `dtype`.

    Args:
      loc: Floating-point `Tensor`.
      scale:  `Tensor` of same `dtype` as `loc`.
      skewness:  Skewness parameter.  Default is `0.0` (no skew).
      tailweight:  Tailweight parameter. Default is `1.0` (unchanged tailweight)
      distribution: `tf.Distribution`-like instance. Distribution that is
        transformed to produce this distribution.
        Must have a batch shape to which the shapes of `loc`, `scale`,
        `skewness`, and `tailweight` all broadcast. Default is
        `tfd.Normal(batch_shape, 1.)`, where `batch_shape` is the broadcasted
        shape of the parameters. Typically
        `distribution.reparameterization_type = FULLY_REPARAMETERIZED` or it is
        a function of non-trainable parameters. WARNING: If you backprop through
        a `SinhArcsinh` sample and `distribution` is not
        `FULLY_REPARAMETERIZED` yet is a function of trainable variables, then
        the gradient will be incorrect!
      validate_args: Python `bool`, default `False`. When `True` distribution
        parameters are checked for validity despite possibly degrading runtime
        performance. When `False` invalid inputs may silently render incorrect
        outputs.
      allow_nan_stats: Python `bool`, default `True`. When `True`,
        statistics (e.g., mean, mode, variance) use the value "`NaN`" to
        indicate the result is undefined. When `False`, an exception is raised
        if one or more of the statistic's batch members are undefined.
      name: Python `str` name prefixed to Ops created by this class.
    """
    parameters = dict(locals())

    with tf.name_scope(name) as name:
      dtype = dtype_util.common_dtype([loc, scale, skewness, tailweight],
                                      tf.float32)
      self._loc = tensor_util.convert_nonref_to_tensor(
          loc, name='loc', dtype=dtype)
      self._scale = tensor_util.convert_nonref_to_tensor(
          scale, name='scale', dtype=dtype)
      tailweight = 1. if tailweight is None else tailweight
      has_default_skewness = skewness is None
      skewness = 0. if has_default_skewness else skewness
      self._tailweight = tensor_util.convert_nonref_to_tensor(
          tailweight, name='tailweight', dtype=dtype)
      self._skewness = tensor_util.convert_nonref_to_tensor(
          skewness, name='skewness', dtype=dtype)

      # Recall, with Z a random variable,
      #   Y := loc + scale * F(Z),
      #   F(Z) := Sinh( (Arcsinh(Z) + skewness) * tailweight ) * C
      #   C := 2 / F_0(2)
      #   F_0(Z) := Sinh( Arcsinh(Z) * tailweight )
      if distribution is None:
        batch_shape = functools.reduce(
            ps.broadcast_shape,
            [ps.shape(x)
             for x in (self._skewness, self._tailweight,
                       self._loc, self._scale)])

        distribution = normal.Normal(
            loc=tf.zeros(batch_shape, dtype=dtype),
            scale=tf.ones([], dtype=dtype),
            allow_nan_stats=allow_nan_stats,
            validate_args=validate_args)

      # Make the SAS bijector, 'F'.
      f = sinh_arcsinh_bijector.SinhArcsinh(
          skewness=self._skewness, tailweight=self._tailweight,
          validate_args=validate_args)

      # Make the AffineScalar bijector, Z --> loc + scale * Z (2 / F_0(2))
      affine = shift_bijector.Shift(shift=self._loc)(
          scale_bijector.Scale(scale=self._scale))
      bijector = chain_bijector.Chain([affine, f])

      super(SinhArcsinh, self).__init__(
          distribution=distribution,
          bijector=bijector,
          validate_args=validate_args,
          name=name)
      self._parameters = parameters