示例#1
0
def _mean_squared_loss(
    labels,
    logits,
    weights=None,
    reduction=tf.compat.v1.losses.Reduction.SUM_BY_NONZERO_WEIGHTS,
    name=None):
  """Computes the mean squared loss for a list.

  Given the labels of graded relevance l_i and the logits s_i, we calculate
  the squared error for each ith position and aggregate the per position
  losses.

  Args:
    labels: A `Tensor` of the same shape as `logits` representing graded
      relevance.
    logits: A `Tensor` with shape [batch_size, list_size]. Each value is the
      ranking score of the corresponding item.
    weights: A scalar, a `Tensor` with shape [batch_size, 1] for list-wise
      weights, or a `Tensor` with shape [batch_size, list_size] for item-wise
      weights.
    reduction: One of `tf.losses.Reduction` except `NONE`. Describes how to
      reduce training loss over batch.
    name: A string used as the name for this loss.

  Returns:
    An op for the mean squared error as a loss.
  """
  loss = losses_impl.MeanSquaredLoss(name)
  with tf.compat.v1.name_scope(loss.name, 'mean_squared_loss',
                               (labels, logits, weights)):
    return loss.compute(labels, logits, weights, reduction)
示例#2
0
    def test_mean_squared_loss_with_invalid_labels(self):
        with tf.Graph().as_default():
            scores = [[1., 3., 2.]]
            labels = [[0., -1., 1.]]
            reduction = tf.compat.v1.losses.Reduction.SUM_BY_NONZERO_WEIGHTS

            with self.cached_session():
                loss_fn = losses_impl.MeanSquaredLoss(name=None)
                self.assertAlmostEqual(loss_fn.compute(labels, scores, None,
                                                       reduction).eval(),
                                       (1. + 1.) / 2,
                                       places=5)
示例#3
0
    def __init__(self,
                 reduction=tf.losses.Reduction.AUTO,
                 name=None,
                 ragged=False):
        """Mean squared loss.

    Args:
      reduction: (Optional) The `tf.keras.losses.Reduction` to use (see
        `tf.keras.losses.Loss`).
      name: (Optional) The name for the op.
      ragged: (Optional) If True, this loss will accept ragged tensors. If
        False, this loss will accept dense tensors.
    """
        super().__init__(reduction, name, ragged)
        self._loss = losses_impl.MeanSquaredLoss(
            name='{}_impl'.format(name) if name else None, ragged=ragged)
示例#4
0
 def test_mean_squared_loss(self):
     with tf.Graph().as_default():
         scores = [[0.2, 0.5, 0.3], [0.2, 0.3, 0.5], [0.2, 0.3, 0.5]]
         labels = [[0., 0., 1.], [0., 0., 2.], [0., 0., 0.]]
         weights = [[2.], [1.], [1.]]
         reduction = tf.compat.v1.losses.Reduction.SUM_BY_NONZERO_WEIGHTS
         with self.cached_session():
             loss_fn = losses_impl.MeanSquaredLoss(name=None)
             self.assertAlmostEqual(
                 loss_fn.compute(labels, scores, None, reduction).eval(),
                 (_mean_squared_error(labels[0], scores[0]) +
                  _mean_squared_error(labels[1], scores[1]) +
                  _mean_squared_error(labels[2], scores[2])) / 9.,
                 places=5)
             self.assertAlmostEqual(
                 loss_fn.compute(labels, scores, weights, reduction).eval(),
                 (_mean_squared_error(labels[0], scores[0]) * 2.0 +
                  _mean_squared_error(labels[1], scores[1]) +
                  _mean_squared_error(labels[2], scores[2])) / 9.,
                 places=5)
示例#5
0
文件: losses.py 项目: chiqunz/ranking
 def __init__(self, reduction=tf.losses.Reduction.AUTO, name=None):
     super(MeanSquaredLoss, self).__init__(reduction, name)
     self._loss = losses_impl.MeanSquaredLoss(name='{}_impl'.format(name))
示例#6
0
def make_loss_metric_fn(loss_key,
                        weights_feature_name=None,
                        lambda_weight=None,
                        name=None):
  """Factory method to create a metric based on a loss.

  Args:
    loss_key: A key in `RankingLossKey`.
    weights_feature_name: A `string` specifying the name of the weights feature
      in `features` dict.
    lambda_weight: A `_LambdaWeight` object.
    name: A `string` used as the name for this metric.

  Returns:
    A metric fn with the following Args:
    * `labels`: A `Tensor` of the same shape as `predictions` representing
    graded relevance.
    * `predictions`: A `Tensor` with shape [batch_size, list_size]. Each value
    is the ranking score of the corresponding example.
    * `features`: A dict of `Tensor`s that contains all features.
  """

  metric_dict = {
      RankingLossKey.PAIRWISE_HINGE_LOSS:
          losses_impl.PairwiseHingeLoss(name, lambda_weight=lambda_weight),
      RankingLossKey.PAIRWISE_LOGISTIC_LOSS:
          losses_impl.PairwiseLogisticLoss(name, lambda_weight=lambda_weight),
      RankingLossKey.PAIRWISE_SOFT_ZERO_ONE_LOSS:
          losses_impl.PairwiseSoftZeroOneLoss(
              name, lambda_weight=lambda_weight),
      RankingLossKey.SOFTMAX_LOSS:
          losses_impl.SoftmaxLoss(name, lambda_weight=lambda_weight),
      RankingLossKey.SIGMOID_CROSS_ENTROPY_LOSS:
          losses_impl.SigmoidCrossEntropyLoss(name),
      RankingLossKey.MEAN_SQUARED_LOSS:
          losses_impl.MeanSquaredLoss(name),
      RankingLossKey.LIST_MLE_LOSS:
          losses_impl.ListMLELoss(name, lambda_weight=lambda_weight),
      RankingLossKey.APPROX_NDCG_LOSS:
          losses_impl.ApproxNDCGLoss(name),
      RankingLossKey.APPROX_MRR_LOSS:
          losses_impl.ApproxMRRLoss(name),
      RankingLossKey.GUMBEL_APPROX_NDCG_LOSS: losses_impl.ApproxNDCGLoss(name),
  }

  def _get_weights(features):
    """Get weights tensor from features and reshape it to 2-D if necessary."""
    weights = None
    if weights_feature_name:
      weights = tf.convert_to_tensor(value=features[weights_feature_name])
      # Convert weights to a 2-D Tensor.
      weights = utils.reshape_to_2d(weights)
    return weights

  def metric_fn(labels, predictions, features):
    """Defines the metric fn."""
    weights = _get_weights(features)
    loss = metric_dict.get(loss_key, None)
    if loss is None:
      raise ValueError('loss_key {} not supported.'.format(loss_key))
    return loss.eval_metric(labels, predictions, weights)

  return metric_fn