示例#1
0
    def _build_tail(self, inputs, is_training=False):
        if not self._use_tail:
            return inputs

        if self._architecture == "resnet_v1_101":
            train_batch_norm = is_training and self._config.get("train_batch_norm")
            with self._enter_variable_scope():
                weight_decay = self._config.get("arg_scope", {}).get("weight_decay", 0)
                with tf.variable_scope(self._architecture, reuse=True):
                    resnet_arg_scope = resnet_utils.resnet_arg_scope(
                        batch_norm_epsilon=1e-5, batch_norm_scale=True, weight_decay=weight_decay
                    )
                    with slim.arg_scope(resnet_arg_scope):
                        with slim.arg_scope([slim.batch_norm], is_training=train_batch_norm):
                            blocks = [
                                resnet_utils.Block(
                                    "block4",
                                    resnet_v1.bottleneck,
                                    [{"depth": 2048, "depth_bottleneck": 512, "stride": 1}] * 3,
                                )
                            ]
                            proposal_classifier_features = resnet_utils.stack_blocks_dense(inputs, blocks)
        else:
            proposal_classifier_features = inputs

        return proposal_classifier_features
示例#2
0
 def _resnet_plain(self, inputs, blocks, output_stride=None, scope=None):
     """A plain ResNet without extra layers before or after the ResNet blocks."""
     with variable_scope.variable_scope(scope, values=[inputs]):
         with arg_scope([layers.conv2d], outputs_collections='end_points'):
             net = resnet_utils.stack_blocks_dense(inputs, blocks,
                                                   output_stride)
             end_points = utils.convert_collection_to_dict('end_points')
             return net, end_points
示例#3
0
    def testAtrousValuesBottleneck(self):
        """Verify the values of dense feature extraction by atrous convolution.

    Make sure that dense feature extraction by stack_blocks_dense() followed by
    subsampling gives identical results to feature extraction at the nominal
    network output stride using the simple self._stack_blocks_nondense() above.
    """
        block = resnet_v1.resnet_v1_block
        blocks = [
            block('block1', base_depth=1, num_units=2, stride=2),
            block('block2', base_depth=2, num_units=2, stride=2),
            block('block3', base_depth=4, num_units=2, stride=2),
            block('block4', base_depth=8, num_units=2, stride=1),
        ]
        nominal_stride = 8

        # Test both odd and even input dimensions.
        height = 30
        width = 31
        with arg_scope(resnet_utils.resnet_arg_scope()):
            with arg_scope([layers.batch_norm], is_training=False):
                for output_stride in [1, 2, 4, 8, None]:
                    with ops.Graph().as_default():
                        with self.cached_session() as sess:
                            random_seed.set_random_seed(0)
                            inputs = create_input(1, height, width, 3)
                            # Dense feature extraction followed by subsampling.
                            output = resnet_utils.stack_blocks_dense(
                                inputs, blocks, output_stride)
                            if output_stride is None:
                                factor = 1
                            else:
                                factor = nominal_stride // output_stride

                            output = resnet_utils.subsample(output, factor)
                            # Make the two networks use the same weights.
                            variable_scope.get_variable_scope(
                            ).reuse_variables()
                            # Feature extraction at the nominal network rate.
                            expected = self._stack_blocks_nondense(
                                inputs, blocks)
                            sess.run(variables.global_variables_initializer())
                            output, expected = sess.run([output, expected])
                            self.assertAllClose(output,
                                                expected,
                                                atol=1e-4,
                                                rtol=1e-4)
示例#4
0
    def _build_tail(self, inputs, is_training=False):
        if not self._use_tail:
            return inputs

        if self._architecture == 'resnet_v1_101':
            train_batch_norm = (
                is_training and self._config.get('train_batch_norm')
            )
            with self._enter_variable_scope():
                weight_decay = (
                    self._config.get('arg_scope', {}).get('weight_decay', 0)
                )
                with tf.variable_scope(self._architecture, reuse=True):
                    resnet_arg_scope = resnet_utils.resnet_arg_scope(
                            batch_norm_epsilon=1e-5,
                            batch_norm_scale=True,
                            weight_decay=weight_decay
                        )
                    with slim.arg_scope(resnet_arg_scope):
                        with slim.arg_scope(
                            [slim.batch_norm], is_training=train_batch_norm
                        ):
                            blocks = [
                                resnet_utils.Block(
                                    'block4',
                                    resnet_v1.bottleneck,
                                    [{
                                        'depth': 2048,
                                        'depth_bottleneck': 512,
                                        'stride': 1
                                    }] * 3
                                )
                            ]
                            proposal_classifier_features = (
                                resnet_utils.stack_blocks_dense(inputs, blocks)
                            )
        else:
            proposal_classifier_features = inputs

        return proposal_classifier_features
示例#5
0
def resnet_v2(inputs,
              blocks,
              num_classes=None,
              is_training=True,
              global_pool=True,
              output_stride=None,
              include_root_block=True,
              reuse=None,
              scope=None):
    """Generator for v2 (preactivation) ResNet models.

  This function generates a family of ResNet v2 models. See the resnet_v2_*()
  methods for specific model instantiations, obtained by selecting different
  block instantiations that produce ResNets of various depths.

  Training for image classification on Imagenet is usually done with [224, 224]
  inputs, resulting in [7, 7] feature maps at the output of the last ResNet
  block for the ResNets defined in [1] that have nominal stride equal to 32.
  However, for dense prediction tasks we advise that one uses inputs with
  spatial dimensions that are multiples of 32 plus 1, e.g., [321, 321]. In
  this case the feature maps at the ResNet output will have spatial shape
  [(height - 1) / output_stride + 1, (width - 1) / output_stride + 1]
  and corners exactly aligned with the input image corners, which greatly
  facilitates alignment of the features to the image. Using as input [225, 225]
  images results in [8, 8] feature maps at the output of the last ResNet block.

  For dense prediction tasks, the ResNet needs to run in fully-convolutional
  (FCN) mode and global_pool needs to be set to False. The ResNets in [1, 2] all
  have nominal stride equal to 32 and a good choice in FCN mode is to use
  output_stride=16 in order to increase the density of the computed features at
  small computational and memory overhead, cf. http://arxiv.org/abs/1606.00915.

  Args:
    inputs: A tensor of size [batch, height_in, width_in, channels].
    blocks: A list of length equal to the number of ResNet blocks. Each element
      is a resnet_utils.Block object describing the units in the block.
    num_classes: Number of predicted classes for classification tasks. If None
      we return the features before the logit layer.
    is_training: whether batch_norm layers are in training mode.
    global_pool: If True, we perform global average pooling before computing the
      logits. Set to True for image classification, False for dense prediction.
    output_stride: If None, then the output will be computed at the nominal
      network stride. If output_stride is not None, it specifies the requested
      ratio of input to output spatial resolution.
    include_root_block: If True, include the initial convolution followed by
      max-pooling, if False excludes it. If excluded, `inputs` should be the
      results of an activation-less convolution.
    reuse: whether or not the network and its variables should be reused. To be
      able to reuse 'scope' must be given.
    scope: Optional variable_scope.


  Returns:
    net: A rank-4 tensor of size [batch, height_out, width_out, channels_out].
      If global_pool is False, then height_out and width_out are reduced by a
      factor of output_stride compared to the respective height_in and width_in,
      else both height_out and width_out equal one. If num_classes is None, then
      net is the output of the last ResNet block, potentially after global
      average pooling. If num_classes is not None, net contains the pre-softmax
      activations.
    end_points: A dictionary from components of the network to the corresponding
      activation.

  Raises:
    ValueError: If the target output_stride is not valid.
  """
    with variable_scope.variable_scope(scope,
                                       'resnet_v2', [inputs],
                                       reuse=reuse) as sc:
        end_points_collection = sc.original_name_scope + '_end_points'
        with arg_scope(
            [layers_lib.conv2d, bottleneck, resnet_utils.stack_blocks_dense],
                outputs_collections=end_points_collection):
            with arg_scope([layers.batch_norm], is_training=is_training):
                net = inputs
                if include_root_block:
                    if output_stride is not None:
                        if output_stride % 4 != 0:
                            raise ValueError(
                                'The output_stride needs to be a multiple of 4.'
                            )
                        output_stride /= 4
                    # We do not include batch normalization or activation functions in
                    # conv1 because the first ResNet unit will perform these. Cf.
                    # Appendix of [2].
                    with arg_scope([layers_lib.conv2d],
                                   activation_fn=None,
                                   normalizer_fn=None):
                        net = resnet_utils.conv2d_same(net,
                                                       64,
                                                       7,
                                                       stride=2,
                                                       scope='conv1')
                    net = layers.max_pool2d(net, [3, 3],
                                            stride=2,
                                            scope='pool1')
                net = resnet_utils.stack_blocks_dense(net, blocks,
                                                      output_stride)
                # This is needed because the pre-activation variant does not have batch
                # normalization or activation functions in the residual unit output. See
                # Appendix of [2].
                net = layers.batch_norm(net,
                                        activation_fn=nn_ops.relu,
                                        scope='postnorm')
                if global_pool:
                    # Global average pooling.
                    net = math_ops.reduce_mean(net, [1, 2],
                                               name='pool5',
                                               keepdims=True)
                if num_classes is not None:
                    net = layers_lib.conv2d(net,
                                            num_classes, [1, 1],
                                            activation_fn=None,
                                            normalizer_fn=None,
                                            scope='logits')
                # Convert end_points_collection into a dictionary of end_points.
                end_points = utils.convert_collection_to_dict(
                    end_points_collection)
                if num_classes is not None:
                    end_points['predictions'] = layers.softmax(
                        net, scope='predictions')
                return net, end_points