def reconstruct (W , Y , mu = None ) : if mu is None : return np . dot (Y ,W.T) return np . dot (Y , W .T) + mu # read images [X , y] = read_images ('D:\homework and assignments\computer vision\face and gender recognition\images') # perform a full pca [D , W , mu ] = pca ( asRowMatrix (X ) , y)
import sys # append tinyfacerec to module search path sys.path.append("..") # import numpy and matplotlib colormaps import numpy as np # import tinyfacerec modules from tinyfacerec.util import read_images from tinyfacerec.model import FisherfacesModel if __name__ == '__main__': if len(sys.argv) != 2: print "USAGE: example_model_fisherfaces.py </path/to/images>" sys.exit() # read images [X,y] = read_images(sys.argv[1], sz=[92, 112]) # compute the eigenfaces model model = FisherfacesModel(X[1:], y[1:]) # get a prediction for the first observation print "expected =", y[0], "/", "predicted =", model.predict(X[0])
sys.path.append("..") # import numpy and matplotlib colormaps import numpy as np # import tinyfacerec modules from tinyfacerec.subspace import pca from tinyfacerec.util import normalize, asRowMatrix, read_images from tinyfacerec.visual import subplot if __name__ == '__main__': if len(sys.argv) != 2: print "USAGE: example_eigenfaces.py </path/to/images>" sys.exit() # read images [X, y] = read_images(sys.argv[1]) # perform a full pca [D, W, mu] = pca(asRowMatrix(X), y) import matplotlib.cm as cm # turn the first (at most) 16 eigenvectors into grayscale # images (note: eigenvectors are stored by column!) E = [] for i in xrange(min(len(X), 16)): e = W[:, i].reshape(X[0].shape) E.append(normalize(e, 0, 255)) # plot them and store the plot to "python_eigenfaces.pdf" subplot(title="Eigenfaces AT&T Facedatabase", images=E,
import sys # append tinyfacerec to module search path sys.path.append("..") # import numpy and matplotlib colormaps import numpy as np # import tinyfacerec modules from tinyfacerec.util import read_images from tinyfacerec.model import EigenfacesModel # read images [X,y] = read_images("/home/philipp/facerec/data/yalefaces_recognition") # compute the eigenfaces model model = EigenfacesModel(X[1:], y[1:]) # get a prediction for the first observation print "expected =", y[0], "/", "predicted =", model.predict(X[0])
s, img = cam.read() if s: # frame captured without any errors print "capture done!!" #cam.release() else: print "Not successful!!" #Convert to gray scale gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) #-------------------------------------------------------- # read images [X,y] = read_images(imagePath) # Create the haar cascade faceCascade = cv2.CascadeClassifier(cascPath) #-------------------------------------------------------- # compute the eigenfaces model #model = EigenfacesModel(X, y) #makes an instance of EigenfacesModel class #-------------------------------------------------------- # For face recognition we will the the LBPH Face Recognizer recognizer = cv2.createLBPHFaceRecognizer() #Better results in different lighting conditions #recognizer = cv2.createEigenFaceRecognizer()
import sys # append tinyfacerec to module search path sys.path.append("..") # import numpy and matplotlib colormaps import numpy as np # import tinyfacerec modules from tinyfacerec.subspace import pca from tinyfacerec.util import normalize, asRowMatrix, read_images from tinyfacerec.visual import subplot # read images [X,y] = read_images('att_faces') # perform a full pca [D, W, mu] = pca(asRowMatrix(X[1:]), y) import matplotlib.cm as cm # turn the first (at most) 16 eigenvectors into grayscale # images (note: eigenvectors are stored by column!) E = [] for i in range(min(len(X), 16)): e = W[:,i].reshape(X[0].shape) E.append(normalize(e,0,255)) # plot them and store the plot to "python_eigenfaces.pdf" subplot(title="Eigenfaces AT&T Facedatabase", images=E, rows=4, cols=4, sptitle="Eigenface", colormap=cm.gray, filename="python_pca_eigenfaces.pdf") from tinyfacerec.subspace import project, reconstruct # reconstruction steps steps=[i for i in range(10, min(len(X), 400), 20)] E = []
import sys # import numpy and matplotlib colormaps import numpy as np # import tinyfacerec modules from tinyfacerec.subspace import pca from tinyfacerec.util import normalize, asRowMatrix, read_images from tinyfacerec.visual import subplot # set numpy array print option np.set_printoptions(threshold=1000000) # read images [X, y] = read_images('../att_faces') # perform a full pca [D, W, mu] = pca(asRowMatrix(X), y) print() print(D) print() print(len(W)) import matplotlib.cm as cm # turn the first (at most) 16 eigenvectors into grayscale # images (note: eigenvectors are stored by column!) E = [] for i in range(min(len(X), 10)): e = W[:, i].reshape(X[0].shape) E.append(normalize(e, 0, 255))
sys.path.append("..") # import numpy and matplotlib colormaps import numpy as np # import tinyfacerec modules from tinyfacerec.subspace import pca from tinyfacerec.util import normalize, asRowMatrix, read_images from tinyfacerec.visual import subplot if __name__ == '__main__': if len(sys.argv) != 2: print "USAGE: example_eigenfaces.py </path/to/images>" sys.exit() # read images [X,y] = read_images(sys.argv[1]) # perform a full pca [D, W, mu] = pca(asRowMatrix(X), y) import matplotlib.cm as cm # turn the first (at most) 16 eigenvectors into grayscale # images (note: eigenvectors are stored by column!) E = [] for i in xrange(min(len(X), 16)): e = W[:,i].reshape(X[0].shape) E.append(normalize(e,0,255)) # plot them and store the plot to "python_eigenfaces.pdf" subplot(title="Eigenfaces AT&T Facedatabase", images=E, rows=4, cols=4, sptitle="Eigenface", colormap=cm.jet, filename="python_pca_eigenfaces.png")
sys.path.append("..") # import numpy and matplotlib colormaps import numpy as np # import tinyfacerec modules from tinyfacerec.subspace import fisherfaces from tinyfacerec.util import normalize, asRowMatrix, read_images from tinyfacerec.visual import subplot if __name__ == '__main__': if len(sys.argv) != 2: print "USAGE: example_fisherfaces.py </path/to/images>" sys.exit() # read images [X,y] = read_images(sys.argv[1]) # perform a full pca [D, W, mu] = fisherfaces(asRowMatrix(X), y) #import colormaps import matplotlib.cm as cm # turn the first (at most) 16 eigenvectors into grayscale # images (note: eigenvectors are stored by column!) E = [] for i in xrange(min(W.shape[1], 16)): e = W[:,i].reshape(X[0].shape) E.append(normalize(e,0,255)) # plot them and store the plot to "python_fisherfaces_fisherfaces.pdf" subplot(title="Fisherfaces AT&T Facedatabase", images=E, rows=4, cols=4, sptitle="Fisherface", colormap=cm.jet, filename="python_fisherfaces_fisherfaces.png") from tinyfacerec.subspace import project, reconstruct
import sys import os import numpy as np # append tinyfacerec to module search path sys.path.append("..") from tinyfacerec.subspace import pca from tinyfacerec.util import normalize, asRowMatrix, read_images from tinyfacerec.visual import subplot [X,y] = read_images("/home/priyanka/Desktop/CV/scripts/att_faces") [D, W, mu] = pca(asRowMatrix(X), y) import matplotlib.cm as cm # turn the first (at most) 16 eigenvectors into grayscale # images (note: eigenvectors are stored by column!) E = [] for i in range(min(len(X), 16)): e = W[:,i].reshape(X[0].shape) E.append(normalize(e,0,255)) # plot them and store the plot to "python_eigenfaces.pdf" subplot(title="Eigenfaces AT&T Facedatabase", images=E, rows=4, cols=4, sptitle="Eigenface", colormap=cm.jet, filename="python_pca_eigenfaces.pdf") from tinyfacerec.subspace import project, reconstruct # reconstruction steps steps=[i for i in range(10, min(len(X), 320), 20)] E = []
import sys # append tinyfacerec to module search path sys.path.append("..") # import numpy and matplotlib colormaps import numpy as np # import tinyfacerec modules from tinyfacerec.subspace import pca from tinyfacerec.util import normalize, asRowMatrix, read_images from tinyfacerec.visual import subplot # read images [X,y] = read_images("/home/philipp/facerec/data/at") # perform a full pca [D, W, mu] = pca(asRowMatrix(X), y) import matplotlib.cm as cm # turn the first (at most) 16 eigenvectors into grayscale # images (note: eigenvectors are stored by column!) E = [] for i in xrange(min(len(X), 16)): e = W[:,i].reshape(X[0].shape) E.append(normalize(e,0,255)) # plot them and store the plot to "python_eigenfaces.pdf" subplot(title="Eigenfaces AT&T Facedatabase", images=E, rows=4, cols=4, sptitle="Eigenface", colormap=cm.jet, filename="python_pca_eigenfaces.pdf") from tinyfacerec.subspace import project, reconstruct # reconstruction steps steps=[i for i in xrange(10, min(len(X), 320), 20)] E = []
from pylab import * from PIL import Image from io import StringIO # append tinyfacerec to module search path sys . path . append ("..") # import tinyfacerec modules from tinyfacerec . util import read_images from tinyfacerec . model import EigenfacesModel from scripts . data_spilt import data_spilts # read images data_spilts(train=5) [X,y] = read_images ("/home/priyanka/Desktop/scripts/Test") [A,a] = read_images ("/home/priyanka/Desktop/scripts/Train") model = EigenfacesModel (X[0:] , y [0:]) correct=0 incorrect=0 for i in range(size(a)): if a[i] ==model . predict (A[i]): correct+=1 else: incorrect+=1 print("Correct = ",correct) print("Incorrect = ",incorrect) Accuracy=(size(a)-incorrect)*100/size(a)
import sys # append tinyfacerec to module search path sys.path.append("..") # import numpy and matplotlib colormaps import numpy as np # import tinyfacerec modules from tinyfacerec.util import read_images from tinyfacerec.model import EigenfacesModel # read images [X,y] = read_images('training') [A,b] = read_images('test') # compute the eigenfaces model model = EigenfacesModel(X[:], y[:]) # get a prediction for the first observation c=[] num_correct=0 for i in range(120): if i%3==0: a=int(i/3) print ("expected =", y[(a)*7]) print("/", "predicted =", model.predict(A[i])) c.append(model.predict(A[i])) if c[i]==b[i]: num_correct+=1 num_test = float(len(b[:])) accuracy = float(num_correct)/ num_test
#Cgray = CropFace(img, eye_left=(252,364), eye_right=(420,366), offset_pct=(0.3,0.3), dest_sz=(200,200)) #gray = cv2.normalize(gray,gray,0,255) #gray = Image.fromarray(gray) #-------------------------------------------------------- # Create the haar cascade faceCascade = cv2.CascadeClassifier(cascPath) #if len(sys.argv) != 3: # print "USAGE: example_model_eigenfaces.py </path/to/images>" # sys.exit() # read images [X,y] = read_images(imagePath) #argv[1]:path to the images #-------------------------------------------------------- # compute the eigenfaces model #model = EigenfacesModel(X, y) #makes an instance of EigenfacesModel class #-------------------------------------------------------- # For face recognition we will the the LBPH Face Recognizer recognizer = cv2.createLBPHFaceRecognizer() #Better results in different lighting conditions #recognizer = cv2.createEigenFaceRecognizer() # Perform the tranining recognizer.train(X, np.array(y))