def config_initialization(): # image shape and feature layers shape inference image_shape = (FLAGS.train_image_height, FLAGS.train_image_width) if not FLAGS.dataset_dir: raise ValueError('You must supply the dataset directory with --dataset_dir') tf.logging.set_verbosity(tf.logging.DEBUG) util.init_logger(log_file = 'log_train_seglink_%d_%d.log'%image_shape, log_path = FLAGS.train_dir, stdout = False, mode = 'a') config.init_config(image_shape, batch_size = FLAGS.batch_size, weight_decay = FLAGS.weight_decay, num_gpus = FLAGS.num_gpus, train_with_ignored = FLAGS.train_with_ignored, seg_loc_loss_weight = FLAGS.seg_loc_loss_weight, link_cls_loss_weight = FLAGS.link_cls_loss_weight, ) batch_size = config.batch_size batch_size_per_gpu = config.batch_size_per_gpu tf.summary.scalar('batch_size', batch_size) tf.summary.scalar('batch_size_per_gpu', batch_size_per_gpu) util.proc.set_proc_name(FLAGS.model_name + '_' + FLAGS.dataset_name) dataset = dataset_factory.get_dataset(FLAGS.dataset_name, FLAGS.dataset_split_name, FLAGS.dataset_dir) config.print_config(FLAGS, dataset) return dataset
def get_cfg(args, fixed_args): # Parse any additional args parser = argparse.ArgumentParser() parser.add_argument( '--recover-stack-vars', help='Flag to enable stack variable recovery', default=False, action='store_true') parser.add_argument( "--std-defs", action='append', type=str, default=[], help="std_defs file: definitions and calling conventions of imported functions and data") extra_args = parser.parse_args(fixed_args) if extra_args.recover_stack_vars: RECOVER_OPTS['stack_vars'] = True # Setup logger util.init_logger(args.log_file) # Load the binary in binja bv = util.load_binary(args.binary) # Once for good measure. bv.add_analysis_option("linearsweep") bv.update_analysis_and_wait() # Twice for good luck! bv.add_analysis_option("linearsweep") bv.update_analysis_and_wait() # Collect all paths to defs files log.debug('Parsing definitions files') def_paths = set(map(os.path.abspath, extra_args.std_defs)) def_paths.add(os.path.join(DISASS_DIR, 'defs', '{}.txt'.format(args.os))) # default defs file # Parse all of the defs files for fpath in def_paths: if os.path.isfile(fpath): parse_defs_file(bv, fpath) else: log.warn('%s is not a file', fpath) # Recover module log.debug('Starting analysis') pb_mod = recover_cfg(bv, args) # Save cfg log.debug('Saving to file: %s', args.output) with open(args.output, 'wb') as f: f.write(pb_mod.SerializeToString()) return 0
def user_menu(session, directory): """ Show the menu in the first tmux window. Retrieve the information about the devices to use for the analysis and the folder containig the apps to analyze.""" devices = {} uManagers = [] logger = util.init_logger(config.configFile, 'Manager') logger.info('BareDroid init') devices = initDevice(logger) windows = divide_et_impera(devices, session) #watch log and errors logFolder = os.path.join(os.getcwd(),\ util.read_config(config.configFile, 'Log', 'folder')) windows[1].list_panes()[0].send_keys('tail -F %smanager.log'%logFolder) windows[1].list_panes()[1].send_keys('tail -F %smanager_error.log'%logFolder) ans=True while ans: print '-----------------' print (""" 1) List devices 2) Start Analysis 3) Stop Analysis 4) Select Devices q) Quit m) Menu """) print '' ans=raw_input(">> ") if ans=="1": listDevices(config.deviceInfoFile, logger) elif ans=="2": folder = createFolder(logger) #initialize uManagers = initAnalysis(directory,\ int(util.read_config(config.configFile,'Analysis', 'apps')),\ logger, devices) #start startAnalysis(uManagers, folder, windows, logger) elif ans=="3": stopAnalysis(uManagers) elif ans=="4": #TODO select devices print 'TODO' elif ans=='m' or ans == 'M': print '' elif ans=='q' or ans == 'Q': check(directory, logger) logger.info('exit') #print print_on_window(windows[0], '\nExit') quit() elif ans !="": print("\n Not valid, try again...") ans = True else: print("\n Not valid, try again...") ans = True
def convert(): timestr = time.strftime("%Y-%m-%d-%H-%M-%S", time.localtime()) log_path = os.path.join(config.RAW_RESOURCE_PATH, "log", "%s.log" % timestr) util.init_logger(log_path, "debug") startTime = time.time() logging.info( "start convert, rawResoucePath=%s, binResoucePath=%s, target=%s", config.RAW_RESOURCE_PATH, config.BIN_RESOURCE_PATH, config.TARGET, ) if config.CONVERT_FONT: convert_font() # gen.generate_resource("font") if config.CONVERT_MUSIC: convert_music() # gen.generate_resource("music") if config.CONVERT_STRINGS: convert_strings() gen.generate_resource("string") if config.CONVERT_COLORS: convert_colors() gen.generate_resource("color") if config.CONVERT_SPRITE: convert_sprite() convert_patch_sprite() gen.generate_resource("sprite") gen.generate_resource("patch_sprite") if config.CONVERT_UI: convert_ui() gen.generate_ui() gen.generate_ui_command() if config.CONVERT_SCENE: convert_scene() gen.generate_resource("scene") endTime = time.time() logging.info("convert end, used:%f seconds", endTime - startTime)
def main(): "Entry point for the CLI DBus interface." args = docopt(__doc__, version="0.2") util.init_logger(args["--log"], args["-v"], args["--quiet"]) dbus = BlockifyDBus() if args["toggle"]: dbus.playpause() elif args["next"]: dbus.next() elif args["prev"]: dbus.prev() elif args["play"]: dbus.play() elif args["stop"]: dbus.stop() if args["openuri"]: dbus.open_uri(args["<uri>"]) elif args["seek"]: dbus.seek(args["<secs>"]) elif args["setpos"]: dbus.set_pos(args["<pos>"]) if args["title"]: print dbus.get_song_title() elif args["artist"]: print dbus.get_song_artist() elif args["status"]: print dbus.get_song_status() elif args["all"]: dbus.print_info() elif args["get"]: length = dbus.get_song_length() m, s = divmod(length, 60) if args["length"]: print "{}m{}s ({})".format(m, s, length) else: rating = dbus.get_property("Metadata")["xesam:autoRating"] artist = dbus.get_song_artist() title = dbus.get_song_title() album = dbus.get_song_album() state = dbus.get_song_status() print "{} - {} ({}), {}m{}s, {} ({})".format(artist, title, album, m, s, rating, state)
def main(): "Entry point for the CLI-version of Blockify." # Log level to fall back to if we get no user input level = 2 try: args = docopt(__doc__, version=VERSION) # if args["-v"] == 0: args["-v"] = level util.init_logger(args["--log"], args["-v"], args["--quiet"]) except NameError: util.init_logger(logpath=None, loglevel=level, quiet=False) log.error("Please install docopt to use the CLI.") blocklist = Blocklist(util.get_configdir()) blockify = Blockify(blocklist) blockify.start()
def __init__(self, device): self._device = device self._shell = adb.AndroidDebugBridge(self.getDeviceId()) self._dict = {} #each device has its own list of apps to test (reason: different device) self._process = None self._pid = 999999 label = 'Manager.Update - ' + self.getDeviceId() self._logger = util.init_logger(config.configFile, label) self._queue = Queue() # used to share message (for now only exit)
def main(_): util.init_logger() dump_path = util.io.get_absolute_path('~/temp/no-use/seglink/') dataset = config_initialization() batch_queue = create_dataset_batch_queue(dataset) batch_size = config.batch_size summary_op = tf.summary.merge_all() with tf.Session() as sess: tf.train.start_queue_runners(sess) b_image, b_seg_label, b_seg_offsets, b_link_label = batch_queue.dequeue() batch_idx = 0; while True: #batch_idx < 50: image_data_batch, seg_label_data_batch, seg_offsets_data_batch, link_label_data_batch = \ sess.run([b_image, b_seg_label, b_seg_offsets, b_link_label]) for image_idx in xrange(batch_size): image_data = image_data_batch[image_idx, ...] seg_label_data = seg_label_data_batch[image_idx, ...] seg_offsets_data = seg_offsets_data_batch[image_idx, ...] link_label_data = link_label_data_batch[image_idx, ...] image_data = image_data + [123, 117, 104] image_data = np.asarray(image_data, dtype = np.uint8) # decode the encoded ground truth back to bboxes bboxes = seglink.seglink_to_bbox(seg_scores = seg_label_data, link_scores = link_label_data, seg_offsets_pred = seg_offsets_data) # draw bboxes on the image for bbox_idx in xrange(len(bboxes)): bbox = bboxes[bbox_idx, :] draw_bbox(image_data, bbox) image_path = util.io.join_path(dump_path, '%d_%d.jpg'%(batch_idx, image_idx)) util.plt.imwrite(image_path, image_data) print 'Make sure that the text on the image are correctly bounded\ with oriented boxes:', image_path batch_idx += 1
def main(): ''' main function ''' init_options() init_logger() # 忽略Broken Pipe信号 signal.signal(signal.SIGPIPE, signal.SIG_IGN); # 处理kill信号 signal.signal(signal.SIGINT, handle_signal_kill) signal.signal(signal.SIGQUIT, handle_signal_kill) signal.signal(signal.SIGTERM, handle_signal_kill) signal.signal(signal.SIGHUP, handle_signal_kill) g_logger.info('START TORNADO SERVER ...') for key, option in options.iteritems(): g_logger.info('Options: (%s, %s)', key, option.value()) try: if sys.version_info[:3] >= (2, 5, 2): #pycurl minimum supported version is 7.18.2 AsyncHTTPClient.configure("tornado.curl_httpclient.CurlAsyncHTTPClient") pass HTTPServer.instance().start() tornado.ioloop.IOLoop.instance().start() HTTPServer.instance().stop() tornado.ioloop.IOLoop.instance().close(all_fds=True) g_logger.info('STOP TORNADO SERVER ...') except socket.error as e: g_logger.warning('Socket Error: %s', e, exc_info=True) except KeyboardInterrupt as e: g_logger.warning('Gently Quit') except Exception as e: g_logger.error('UnCaught Exception: %s', e, exc_info=True)
self._exception_caught.connect(show_exception_box) def exception_hook(self, exc_type, exc_value, exc_traceback): if issubclass(exc_type, KeyboardInterrupt): # ignore keyboard interrupt to support console applications sys.__excepthook__(exc_type, exc_value, exc_traceback) else: log_msg = '\n'.join([ ''.join(traceback.format_tb(exc_traceback)), '{0}: {1}'.format(exc_type.__name__, exc_value) ]) # trigger message box show self._exception_caught.emit(log_msg) sys._excepthook(exc_type, exc_value, exc_traceback) if __name__ == '__main__': if len(sys.argv) == 2 and sys.argv[1] == "--linux-recorder": from linux_keystroke_recorder import linux_keystroke_recorder linux_keystroke_recorder() else: appctxt = ApplicationContext() # 1. Instantiate ApplicationContext init_logger() qt_exception_hook = UncaughtHook() window = MainWindow(appctxt) window.show() exit_code = appctxt.app.exec_() # 2. Invoke appctxt.app.exec_() sys.exit(exit_code)
def main(): p4a = os.environ.get('PYTHON_SERVICE_ARGUMENT', '') global _LOGGER if len(p4a): args = json.loads(p4a) # hostlisten # portlisten # hostconnect # portconnect # connect_retry # connect_secs # db_fname else: parser = argparse.ArgumentParser(prog=__prog__) parser.add_argument('--portlisten', type=int, help='port number', required=False, default=11001) parser.add_argument('--hostlisten', required=False, default="0.0.0.0") parser.add_argument('--ab_portconnect', type=int, help='port number', required=False, default=9004) parser.add_argument('--ab_hostconnect', required=False, default="127.0.0.1") parser.add_argument('--ab_portlisten', type=int, help='port number', required=False, default=9003) parser.add_argument('--ab_hostlisten', required=False, default="0.0.0.0") parser.add_argument('--connect_retry', type=int, help='connect retry', required=False, default=10) parser.add_argument('--connect_secs', type=int, help='connect secs', required=False, default=5) parser.add_argument('--db_fname', required=False, help='DB file path', default=join(dirname(__file__), '..', 'maindb.db')) parser.add_argument('--verbose', required=False, default="INFO") argall = parser.parse_known_args() args = dict(vars(argall[0])) args['undo_info'] = dict() args['notify_screen_on'] = -1 args['notify_every_ms'] = -1 import sys sys.argv[1:] = argall[1] args['android'] = len(p4a) _LOGGER = init_logger(__name__, get_verbosity(args['verbose'])) _LOGGER.info(f"Server: p4a = {p4a}") _LOGGER.debug(f"Server: test debug {args}") loop = asyncio.get_event_loop() dms = DeviceManagerService(loop=loop, **args) try: loop.run_until_complete(dms.start()) loop.run_forever() except Exception: _LOGGER.error(f'DMS error {traceback.format_exc()}') finally: try: loop.run_until_complete(dms.stop()) _LOGGER.info("Server: Closing loop") loop.close() except Exception: _LOGGER.error("Server: " + traceback.format_exc())
# @notice we don't use HOME env. variable ( os.path.expanduser("~") or os.getenv('HOME') ) since when this script gets called with 'sudo' # it may, depending on the system security policy, give us home directory of the original caller, which is in most cases not what we want. # For example HOME env. variable (~) is set to target's user in Debian 8 # ('sudo' acts as 'sudo -H') but is preserved in Ubuntu 16 ('sudo' acts as # 'sudo -E') HOME_DIR = pwd.getpwuid(os.getuid()).pw_dir TMP_DIR = os.path.join(HOME_DIR, 'tmp') KEYSTORE_DIR = os.path.join(HOME_DIR, '.keytalk/keystore') CONFIG_FILE_PATH = '/etc/keytalk/apache.ini' KTCLIENT_APP_PATH = '/usr/local/bin/keytalk/ktclient' LOG_FILE_PATH = os.path.join(TMP_DIR, 'ktapachecertrenewal.log') CRON_LOG_FILE_PATH = os.path.join(TMP_DIR, 'cron.ktapachecertrenewal.log') KTCLIENT_LOG_PATH = os.path.join(HOME_DIR, '.keytalk/ktclient.log') Logger = util.init_logger('keytalk', LOG_FILE_PATH, "KeyTalk Apache certificate renewal", "DEBUG", "INFO") # Globals error_messages = [] warning_messages = [] all_error_messages = [] all_warning_messages = [] force_arg = '--force' def shellquoted_site(site): newdict = {} for key, val in site.iteritems(): if isinstance(val, basestring): newdict[key] = pipes.quote(val)
for attack_class, attack_params in attack_param_grid.items(): logger.debug("Starting attack images with {}".format( attack_class.__name__)) attack = attack_class(model, sess) if not os.path.exists(attack_params['adv_dir']): os.mkdir(attack_params['adv_dir']) attack.generate(x, **attack_params) if __name__ == '__main__': tf.set_random_seed(2019) logger = init_logger("adversarials-2dadelta") parser = argparse.ArgumentParser() # Common parameters parser.add_argument('--train-dir', default=DEFAULT_TRAIN_DIR) parser.add_argument('--val-dir', default=DEFAULT_VAL_DIR) parser.add_argument('--test-dir', default=DEFAULT_TEST_DIR) parser.add_argument('--checkpoint-path', default=DEFAULT_CHECKPOINT_PATH) # Train parameters parser.add_argument('--num-epochs', default=DEFAULT_NUM_EPOCHS) parser.add_argument('--train-batch-size', default=DEFAULT_TRAIN_BATCH_SIZE) parser.add_argument('--initial-learning-rate', default=DEFAULT_INITIAL_LEARNING_RATE) parser.add_argument('--learning-rage-decay',
def init(): """ Program entry, a simple command line interface""" parser = argparse.ArgumentParser() parser.add_argument('--target', required=True, type=str, choices=['ais', 'cgi'], help='targeting system') parser.add_argument('--proxy', type=int, help='local proxy port') parser.add_argument('--crawler', type=str, default='crawler.txt', help='crawler api list') parser.add_argument('--ais', type=str, default='ais.json', help='ais account in json format') parser.add_argument('--log_dir', type=str, default=os.path.join(os.curdir, 'logs'), help='directory to save logs') parser.add_argument('--log_name', type=str, default='visa_fetcher', help='name of log file') parser.add_argument('--debug', action='store_true', default=False, help='log debug information') parser.add_argument('--noinit_lw', action='store_true', default=False, help='whether not to initiate the latest_written') args = parser.parse_args() if not os.path.exists(args.log_dir): os.mkdir(args.log_dir) G.assign('target_system', args.target) G.assign('session_file', f'{args.target}-session.json') G.assign('crawler_path', args.crawler) G.assign( 'proxies', { 'http': f'socks5h://127.0.0.1:{args.proxy}', 'https': f'socks5h://127.0.0.1:{args.proxy}', } if args.proxy is not None else None) G.assign('log_dir', args.log_dir) G.assign('log_name', f'{args.target}_{args.log_name}') if args.target.lower() == 'ais': with open(args.ais) as f: ais_accounts = json.load(f) for k, v in ais_accounts.items(): G.assign(k, v) if not args.noinit_lw: DB.VisaStatus.initiate_latest_written_sequential(args.target) global LOGGER global SESSION_CACHE LOGGER = util.init_logger(f'{args.target}_{args.log_name}', args.log_dir, args.debug) SESSION_CACHE = SessionCache() LOGGER.info('FETCHING TARGET: %s', args.target.upper())
if search_exception(i.body): logger.info("selected issues:" + i.title + ":" + i.html_url) # !!! important fp.write(repo.full_name + "," + i.html_url + "," + i.title + "\n") fp.flush() selected_no = selected_no + 1 # ilistdict[i.html_url] = repo.full_name else: logger.info("nonselected issues:" + i.title + ":" + i.html_url) if __name__ == "__main__": init_logger(__file__) from persontoken import MY_TOKENs tklen = len(MY_TOKENs) tk_i = 0 ss = SS(port=7890) android = False id = 12 while True: g = Github(MY_TOKENs[tk_i % tklen]) try: # get_top_java_repo(g, 6, only_android=False) if android: urls = util.read_csv('f-droid/f-droid-github-filter.csv')
def train(opt): SAVE_DIR = opt.save LATEST_MODEL = os.path.join(SAVE_DIR, "latest-model.pt") BEST_REWARD_MODEL = os.path.join(SAVE_DIR, "best-reward-model.pt") CONFIG_FILE = os.path.join(SAVE_DIR, "config.json") LOG_FILE = os.path.join(SAVE_DIR, "log.txt") global logger logger = util.init_logger(LOG_FILE) with open(CONFIG_FILE, "w") as f: json.dump(vars(opt), f) bertnlp.init() agent = dqn.EditorialAgent(layer_num=opt.nlayer, hidden_dim=opt.hdim) train_sents = load_file(opt.t) memory = dqn.Memory(buffer_size=int(opt.memory)) optimizer = torch.optim.Adam(agent.parameters(), lr=opt.lr) sentence_batcher = make_batcher(train_sents, 1) n_sentence_iter = 0 model_update_interval = 1000 max_avg_reward = -1 try: for epoch in range(int(opt.e)): try: cur_sentences = next(sentence_batcher) except StopIteration: n_sentence_iter += 1 logger.info("Corpus Iteration {}".format(n_sentence_iter)) sentence_batcher = make_batcher(train_sents, 1) cur_sentences = next(sentence_batcher) items, reports = generate_episode_items(bertnlp, agent, cur_sentences, min_cr=opt.min_cr, min_rr=opt.min_rr) [ memory.append(i) for i in chain.from_iterable(items) if not i.is_terminal ] if memory.size() < opt.batch: continue loss, reward = agent.replay(memory.sample(opt.batch)) loss_, reward_ = step(loss, reward, optimizer, agent) msg = "Report : Epoch={} Reward={:.3f} Loss={:.3f} Eps1={:.3f} Eps2={:.3f}\n".format( epoch, reward_, loss_, agent.epsilon, agent.selection_epsilon) msg += "=" * 70 + "\n\t" + "\n\t".join( [i.report() for i in reports[0]]) + "\n" + "=" * 70 logger.info(msg) if epoch != 0 and epoch % model_update_interval == 0: logger.info( "Update latest model@Iteration {}".format(n_sentence_iter)) save(agent, LATEST_MODEL) averaged_reward = memory.averaged_reward() if averaged_reward > max_avg_reward: max_avg_reward = averaged_reward save(agent, BEST_REWARD_MODEL) logger.info( "Update best reward model@Iteration{}(Averaged Reward={:.5f})" .format(n_sentence_iter, max_avg_reward)) if epoch != 0 and epoch % opt.decay_interval == 0: agent.apply_epsilon_decay() except KeyboardInterrupt: logger.info("Terminating process ... ") logger.info("done!")
def main(): "Entry point for the GUI-version of Blockify." # Edit this for less or more logging. Loglevel 0 is least verbose. util.init_logger(logpath=None, loglevel=2, quiet=False) BlockifyUI() gtk.main()
def main(): parser = argparse.ArgumentParser() parser.add_argument("-v", "--verbosity", action="count", help="increase output verbosity") parser.add_argument("-c", "--config", help="path to the yaml configuration file") parser.add_argument( "-f", "--file", nargs='?', const='-', help= "check a protected file, retrieve a license; don't give the path to an LCP protected epub file if -e is used." ) parser.add_argument( "-l", "--lcpl", nargs='?', const='-', help= "check an LCP license; don't give the path to an LCP license if -p is used" ) parser.add_argument( "-s", "--lsd", nargs='?', const='-', help= "launch lsd tests; don't give the path to an LCP license if -p or -l is used" ) args = parser.parse_args() # Initialize logger util.init_logger(args.verbosity) # Load the configuration file try: config = TestConfig(args.config) except FileNotFoundError as err: LOGGER.error(err) return 1 license_path = "" # Check a protected file, retrieve a license if args.file: # use the file argument value file_path = args.file lcpf_test_suite = LCPFTestSuite(config, file_path) if not lcpf_test_suite.run(): return 2 license_path = lcpf_test_suite.license_path # Check an LCP license if args.lcpl: # the lcpl argument value takes precedence over the preceding license_path value license_path = args.lcpl if args.lcpl != "-" else license_path lcpl_test_suite = LCPLTestSuite(config, license_path) if not lcpl_test_suite.run(): return 3 # Check a License Status Document # the lsd argument value takes precedence over the lcpl test return if args.lsd: license_path = args.lsd if args.lsd != "-" else license_path lsd_test_suite = LSDTestSuite(config, license_path) if not lsd_test_suite.run(): return 4 return 0
""" Tuning Regularization Hyperparameters for RNN-based Model """ import logging import logging.config import pandas as pd from constants import HParamKey, DATA_PATH, EncoderType # from constants import DefaultConfig as config from best_config import OptimalRNNConfig as config from supervisor import Supervisor import util # config logger logger = logging.getLogger('__main__') util.init_logger() # tuning sets dropout_sets = [0, 0.1, 0.2, 0.3] wdecay_sets = [0, 1e-7, 1e-5, 1e-3, 1e-1] # 20 pairs spv = Supervisor(config) spv.load_trained_emb() spv.load_data() spv.get_dataloader() record_save_path = util.get_results_folder( base_path='/scratch/xl2053/nlp/hw2_data/results_rnn/' ) # or base_path=DATA_PATH logger.info(
from commands.moderator import Moderator from commands.objects.state import ClientState from commands.objects.guildconfig import RoleConfig from util import Util, CustomHelp, init_logger from config.loader import cfg path = os.path.dirname(os.path.abspath(__file__)) # Bot definition client = Bot(command_prefix=cfg['prefix'], help_command=CustomHelp(), case_insensitive=True) # Get logger logger = init_logger(path) # Init slotlist buffer state = ClientState() # Get guild configs guildConfig = RoleConfig(os.path.join(path, 'config', 'guildConfig.yml')) guildConfig.load() # Add commands client.add_cog(User(client=client, state=state, guild_config=guildConfig)) client.add_cog(Moderator(client=client, state=state, guild_config=guildConfig)) client.add_cog(Admin(client=client, state=state, guild_config=guildConfig)) client.add_cog(Util(client=client, cfg=cfg, logger=logger))
# -*- coding: utf-8 -*- ######################################################################### # File Name: __init__.py # Author: xuyingquan # mail: yingquan.xu@shatacloud # Created Time: Sat May 7 10:33:08 CST 2016 ######################################################################### import util import pika import json import traceback import threading import time LOG = util.init_logger('messageclient', '/var/log/messageclient.log') from messageclient.rabbitmq_driver.rabbit_engine import PikaEngine, Target, Transport from messageclient.rabbitmq_driver.rabbit_engine import get_transport from messageclient.rabbitmq_driver.rabbit_message import Message from messageclient.rabbitmq_driver import Consumer, Publisher, RpcPublisher from messageclient.rabbitmq_driver import on_message_v1 message_handler = dict() # 消息处理函数(用户定义)字典 receive_response_flag = False # 消息响应结果处理标志 response_result_lock = threading.Lock() # 保护消息响应结果 __all__ = [ "Target", "Transport",
ft3d_dataset = ft3d_filenames(args.dataset_path) tf.logging.set_verbosity(tf.logging.ERROR) dispnet = DispNet(mode="traintest", ckpt_path=args.checkpoint_path, dataset=ft3d_dataset, batch_size=args.batch_size, is_corr=args.use_corr) ckpt = tf.train.latest_checkpoint(args.checkpoint_path) if not ckpt: if not os.path.exists(args.checkpoint_path): os.makedirs(args.checkpoint_path) model_name = "DispNet" if args.use_corr: model_name += "Corr1D" init_logger(args.checkpoint_path, name=model_name) writer = tf.summary.FileWriter(args.checkpoint_path) schedule_step = 50000 if args.weight_schedule is True: weights_schedule = [[0., 0., 0., 0., .2, 1.], [0., 0., 0., .2, 1., .5], [0., 0., .2, 1., .5, 0.], [0., .2, 1., .5, 0., 0.], [.2, 1., .5, 0., 0., 0.], [1., .5, 0., 0., 0., 0.], [1., 0., 0., 0., 0., 0.]] else: weights_schedule = [[1., 1., 1., 1., 1., 1.]] lr_schedule = [1e-4] * 5
def main(args): script_dir = Path.cwd() # args = util.get_config(default_file=script_dir / 'config.yaml') output_dir = script_dir / args.output_dir output_dir.mkdir(exist_ok=True) log_dir = util.init_logger(args.name, output_dir, 'logging.conf') logger = logging.getLogger() with open(log_dir / "args.yaml", "w") as yaml_file: # dump experiment config yaml.safe_dump(args, yaml_file) pymonitor = util.ProgressMonitor(logger) tbmonitor = util.TensorBoardMonitor(logger, log_dir) monitors = [pymonitor , tbmonitor] if args.device.type == 'cpu' or not t.cuda.is_available() or args.device.gpu == []: args.device.gpu = [] else: available_gpu = t.cuda.device_count() for dev_id in args.device.gpu: if dev_id >= available_gpu: logger.error('GPU device ID {0} requested, but only {1} devices available' .format(dev_id, available_gpu)) exit(1) # Set default device in case the first one on the list t.cuda.set_device(args.device.gpu[0]) # Enable the cudnn built-in auto-tuner to accelerating training, but it # will introduce some fluctuations in a narrow range. t.backends.cudnn.benchmark = True t.backends.cudnn.deterministic = False # Initialize data loader train_loader, val_loader, test_loader = util.load_data(args.dataloader) logger.info('Dataset `%s` size:' % args.dataloader.dataset + '\n Training Set = %d (%d)' % (len(train_loader.sampler), len(train_loader)) + '\n Validation Set = %d (%d)' % (len(val_loader.sampler), len(val_loader)) + '\n Test Set = %d (%d)' % (len(test_loader.sampler), len(test_loader))) # Define loss function (criterion) and optimizer criterion = t.nn.CrossEntropyLoss().to(args.device.type) # Create the model ( download ) model = create_model(args) # load activation each layer to initialize activation quantize scale act_init = process.get_initialization(test_loader, model, criterion, -2, monitors, args) # replace model modules_to_replace = quan.find_modules_to_quantize(model, [args.quan, act_init]) for name, module in model.named_modules(): print(name) model = quan.replace_module_by_names(model, modules_to_replace) logger.info('Inserted quantizers into the original model') # print new model # for name, module in model.named_modules(): # print(name, '\t', type(module)) # progressive quantization mode if args.quan.progress.mode is True: model, _, _= util.load_checkpoint(model, args.quan.progress.path, args.device.type, lean=args.resume.lean) progress_act_init = process.get_initialization(test_loader, model, criterion, -2, monitors, args) if args.quan.progress.init_restart else None model = quan.change_bit_width(model, [args.quan.progress, progress_act_init]) quan.check_changed_bit(model) # resume start_epoch = 0 if args.resume.path: model, start_epoch, _ = util.load_checkpoint( model, args.resume.path, args.device.type, lean=args.resume.lean) # data Parallel by new model if args.device.gpu and not args.dataloader.serialized: model = t.nn.DataParallel(model, device_ids=args.device.gpu) tbmonitor.writer.add_graph(model, input_to_model=train_loader.dataset[0][0].unsqueeze(0)) model.to(args.device.type) # optimizer = t.optim.Adam(model.parameters(), lr=args.optimizer.learning_rate) optimizer = t.optim.SGD(model.parameters(), lr=args.optimizer.learning_rate, momentum=args.optimizer.momentum, weight_decay=args.optimizer.weight_decay) lr_scheduler = util.lr_scheduler(optimizer, batch_size=train_loader.batch_size, num_samples=len(train_loader.sampler), **args.lr_scheduler) logger.info(('Optimizer: %s' % optimizer).replace('\n', '\n' + ' ' * 11)) logger.info('LR scheduler: %s\n' % lr_scheduler) print(f'**********train_loader_sampler : {len(train_loader.sampler)}') perf_scoreboard = process.PerformanceScoreboard(args.log.num_best_scores) if args.eval: process.validate(test_loader, model, criterion, -1, monitors, args) else: # training if args.resume.path or args.pre_trained: logger.info('>>>>>>>> Epoch -1 (pre-trained model evaluation)') top1, top5, _ = process.validate(val_loader, model, criterion, start_epoch - 1, monitors, args) perf_scoreboard.update(top1, top5, start_epoch - 1) for epoch in range(start_epoch, args.epochs): logger.info('>>>>>>>> Epoch %3d' % epoch) t_top1, t_top5, t_loss = process.train(train_loader, model, criterion, optimizer, lr_scheduler, epoch, monitors, args) v_top1, v_top5, v_loss = process.validate(val_loader, model, criterion, epoch, monitors, args) tbmonitor.writer.add_scalars('Train_vs_Validation/Loss', {'train': t_loss, 'val': v_loss}, epoch) tbmonitor.writer.add_scalars('Train_vs_Validation/Top1', {'train': t_top1, 'val': v_top1}, epoch) tbmonitor.writer.add_scalars('Train_vs_Validation/Top5', {'train': t_top5, 'val': v_top5}, epoch) perf_scoreboard.update(v_top1, v_top5, epoch) is_best = perf_scoreboard.is_best(epoch) util.save_checkpoint(epoch, args.arch, model, {'top1': v_top1, 'top5': v_top5}, is_best, args.name, log_dir, args.dataloader.serialized) logger.info('>>>>>>>> Epoch -1 (final model evaluation)') process.validate(test_loader, model, criterion, -1, monitors, args) if args.save_all is True: filename = 'raw_model.pth' filepath = os.path.join(output_dir, filename) tbmonitor.writer.close() # close the TensorBoard logger.info('Program completed successfully ... exiting ...') logger.info('If you have any questions or suggestions, please visit: github.com/zhutmost/lsq-net')
proc.kill() outs, errs = proc.communicate() outs = outs.decode() if outs != "" and not outs.isspace(): logger.debug(f"pom_convert-Out: {outs}") errs = errs.decode() if errs != "" and not errs.isspace(): logger.error(f"pom_convert-Err: {errs}") try: with open(json_path, 'r', encoding='utf-8') as f: result = json.load(f) return result except Exception: logger.error(f"pom_convert output is broken.") return dict() if __name__ == '__main__': util.init_logger(__file__) result = sim('testfiles/', 'testfiles/') result = sim( 'tmp/Jasig_CalendarPortlet_218edf8f6e55f41e1d6e54e9391affa390f83724', 'tmp/AAPS-Omnipod_AndroidAPS') print(result) # result = pom2json('pom_convert/pom.xml', 'pom_json.json') # print(result)
def __init__(self, logger_name='tank', replay_size=int(1e4), summary=True): self.logger = init_logger(logger_name) self.epsilon = 0.1 self.replay = Replay(replay_size) self.nn = NN(self.replay.sample_fn, summary)
# -*- coding: utf-8 -*- ######################################################################### # File Name: __init__.py # Author: xuyingquan # mail: yingquan.xu@shatacloud # Created Time: Sat May 7 10:33:08 CST 2016 ######################################################################### import util import pika import json import traceback import threading import time LOG = util.init_logger('messageclient', '/var/log/messageclient.log') from messageclient.rabbitmq_driver.rabbit_engine import PikaEngine, Target, Transport from messageclient.rabbitmq_driver.rabbit_engine import get_transport from messageclient.rabbitmq_driver.rabbit_message import Message from messageclient.rabbitmq_driver import Consumer, Publisher, RpcPublisher from messageclient.rabbitmq_driver import on_message_v1 message_handler = dict() # 消息处理函数(用户定义)字典 receive_response_flag = False # 消息响应结果处理标志 response_result_lock = threading.Lock() # 保护消息响应结果 __all__ = [ "Target", "Transport", "Message",
config.CATEGORY_URL_FILE_PATH + f for f in sorted(listdir(config.CATEGORY_URL_FILE_PATH)) ] url_list = [] # print(file_list) for file in file_list: with open(file, "r") as f: url_list = url_list + f.readlines() # print(len(url_list)) return file_list, url_list if __name__ == "__main__": parser = _build_parser() FLAGS = parser.parse_args() init_logger(logging._nameToLevel[FLAGS.log_level]) log_args(FLAGS) # Indeed Category URL들을 Crawling if FLAGS.data == config.CRAWLING_OBJECT_LIST[0]: CL.write_search_url_list(FLAGS.flush_num, FLAGS.max_sleep) # data를 Crawling elif FLAGS.data == config.CRAWLING_OBJECT_LIST[1]: file_list, url_list = read_url_list() EL.write_emp_detail(url_list, FLAGS.max_sleep) print(file_list) print("has been written")
def main(): script_dir = Path.cwd() args = util.get_config(default_file=script_dir / 'config.yaml') output_dir = script_dir / args.output_dir output_dir.mkdir(exist_ok=True) log_dir = util.init_logger(args.name, output_dir, 'logging.conf') logger = logging.getLogger() with open(log_dir / "args.yaml", "w") as yaml_file: # dump experiment config yaml.safe_dump(args, yaml_file) pymonitor = util.ProgressMonitor(logger) tbmonitor = util.TensorBoardMonitor(logger, log_dir) monitors = [pymonitor, tbmonitor] if args.device.type == 'cpu' or not t.cuda.is_available( ) or args.device.gpu == []: args.device.gpu = [] else: available_gpu = t.cuda.device_count() for dev_id in args.device.gpu: if dev_id >= available_gpu: logger.error( 'GPU device ID {0} requested, but only {1} devices available' .format(dev_id, available_gpu)) exit(1) # Set default device in case the first one on the list t.cuda.set_device(args.device.gpu[0]) # Enable the cudnn built-in auto-tuner to accelerating training, but it # will introduce some fluctuations in a narrow range. t.backends.cudnn.benchmark = True t.backends.cudnn.deterministic = False # Create the model model = create_model(args) start_epoch = 0 perf_scoreboard = process.PerformanceScoreboard(args.log.num_best_scores) if args.resume.path: model, start_epoch, _ = util.load_checkpoint(model, args.resume.path, args.device.type, lean=args.resume.lean) # Initialize data loader train_loader, val_loader, test_loader = util.load_data( args.dataloader.dataset, args.dataloader.path, args.batch_size, args.dataloader.workers, args.dataloader.val_split) logger.info('Dataset `%s` size:' % args.dataloader.dataset + '\n training = %d (%d)' % (len(train_loader.sampler), len(train_loader)) + '\n validation = %d (%d)' % (len(val_loader.sampler), len(val_loader)) + '\n test = %d (%d)' % (len(test_loader.sampler), len(test_loader))) # Define loss function (criterion) and optimizer criterion = t.nn.CrossEntropyLoss().to(args.device.type) # optimizer = t.optim.Adam(model.parameters(), lr=args.optimizer.learning_rate) optimizer = t.optim.SGD(model.parameters(), lr=args.optimizer.learning_rate, momentum=args.optimizer.momentum, weight_decay=args.optimizer.weight_decay) lr_scheduler = util.lr_scheduler(optimizer, batch_size=train_loader.batch_size, num_samples=len(train_loader.sampler), **args.lr_scheduler) logger.info(('Optimizer: %s' % optimizer).replace('\n', '\n' + ' ' * 11)) logger.info('LR scheduler: %s\n' % lr_scheduler) if args.eval: process.validate(test_loader, model, criterion, -1, monitors, args) else: # training if args.resume.path or args.pre_trained: logger.info('>>>>>>>> Epoch -1 (pre-trained model evaluation)') top1, top5, _ = process.validate(val_loader, model, criterion, start_epoch - 1, monitors, args) perf_scoreboard.update(top1, top5, start_epoch - 1) for epoch in range(start_epoch, args.epochs): logger.info('>>>>>>>> Epoch %3d' % epoch) t_top1, t_top5, t_loss = process.train(train_loader, model, criterion, optimizer, lr_scheduler, epoch, monitors, args) v_top1, v_top5, v_loss = process.validate(val_loader, model, criterion, epoch, monitors, args) tbmonitor.writer.add_scalars('Train_vs_Validation/Loss', { 'train': t_loss, 'val': v_loss }, epoch) tbmonitor.writer.add_scalars('Train_vs_Validation/Top1', { 'train': t_top1, 'val': v_top1 }, epoch) tbmonitor.writer.add_scalars('Train_vs_Validation/Top5', { 'train': t_top5, 'val': v_top5 }, epoch) perf_scoreboard.update(v_top1, v_top5, epoch) is_best = perf_scoreboard.is_best(epoch) util.save_checkpoint(epoch, args.arch, model, { 'top1': v_top1, 'top5': v_top5 }, is_best, args.name, log_dir) logger.info('>>>>>>>> Epoch -1 (final model evaluation)') process.validate(test_loader, model, criterion, -1, monitors, args) logger.info('Program completed successfully ... exiting ...') logger.info( 'If you have any questions or suggestions, please visit: github.com/zhutmost/lsq-net' )
import sys import traceback from datetime import datetime from os.path import basename, dirname, isfile, join, splitext from xml.dom import minidom from xml.etree import ElementTree from xml.etree.ElementTree import Element, SubElement from device.mantimermanager import ManTimerManager from dictionary import dictionary_parse, dictionary_write from util import b2s, bfromhex, init_logger, s2b, tohexs DEVICE_SAVE_FLAG_TABLE = 1 DEVICE_SAVE_FLAG_MAIN = 2 _LOGGER = init_logger(__name__, level=logging.DEBUG) if sys.version_info >= (3, 0): long = int class Device(object): epoch = datetime.utcfromtimestamp(0) GET_STATE_ACTION = '-999' def process_asynch_state_change(self, state): pass def connect_devices(self, device_map): pass
"started".format(event)) def connection_check_out_failed(self, event): self.logger.info("[pool {0.address}] connection check out " "failed, reason: {0.reason}".format(event)) def connection_checked_out(self, event): self.logger.info("[pool {0.address}][conn #{0.connection_id}] " "connection checked out of pool".format(event)) def connection_checked_in(self, event): self.logger.info("[pool {0.address}][conn #{0.connection_id}] " "connection checked into pool".format(event)) monitoring.register(ConnectionPoolListener(init_logger('tuixue_mongo_conn', './logs', True))) class VisaStatus: """ MongoDB operations for storing: 1. All fetched visa status by (visa_type, embassy_code), *only successful fetching* 2. Overview of available appointment date of a given write date, *only successful fetching* 3. Latest written time and data, *including failed one* The successfully fetched visa status will be stored in Mongo collection `'visa_status'` and the latest written time will be stored in Mongo collection `'latest_written'`. The schema of documents for `'visa_status'` is as follow: ```python {
import os from aiogram import Bot, Dispatcher from aiogram.types import Message, CallbackQuery, InlineKeyboardMarkup, InlineKeyboardButton from aiogram.utils import executor from aiogram.utils.exceptions import MessageToDeleteNotFound import util logger = util.init_logger(__name__) API_TOKEN = os.environ.get('API_TOKEN') WEBHOOK_HOST = os.environ.get('WEBHOOK_HOST', '') WEBHOOK_PATH = '/' + API_TOKEN WEBHOOK_URL = WEBHOOK_HOST + API_TOKEN LOCAL_MODE = bool(int(os.environ.get('LOCAL_MODE', '0'))) CONNECTION_TYPE = os.environ.get('CONNECTION_TYPE', None) if not CONNECTION_TYPE: CONNECTION_TYPE = 'polling' if LOCAL_MODE else 'webhook' PROXY = os.environ.get('PROXY', 'socks5://127.0.0.1:9150') bot = Bot(API_TOKEN, proxy=PROXY) if LOCAL_MODE else Bot(API_TOKEN) dispatcher = Dispatcher(bot) async def send_start_message(user_id): await bot.send_message(user_id, util.get_time_welcome(), reply_markup=InlineKeyboardMarkup().add( InlineKeyboardButton(
'--do_continue', action='store_true', help='Dictates whether to load optim dict, scheduler dict, epoch_i') args = parser.parse_args() assert args.save_path is not None # Make dirs if args.load_path is not None: os.makedirs(os.path.dirname(args.load_path), exist_ok=True) os.makedirs(os.path.dirname(args.save_path), exist_ok=True) if args.log_path is not None: os.makedirs(os.path.dirname(args.log_path), exist_ok=True) DO_LOAD = args.load_path is not None and os.path.exists(args.load_path) # Start logging util.init_logger(args.log_path) info(args) # Make dataloaders trainset, testset = get_datasets(args.train, args.test) trainloader = DataLoader(trainset, batch_size=args.train_bs, shuffle=True) testloader = DataLoader(testset, batch_size=args.test_bs) # Build model master_net = network.Net(arch=[int(x) for x in args.arch.split()]) if DO_LOAD: dump = torch.load(args.load_path) epoch_i = dump['epoch_i'] if args.do_continue else 0 master_net.load_state_dict(dump['state_dict']) info('Loaded from %s' % args.load_path) else:
ft3d_dataset = ft3d_filenames(args.dataset_path) tf.logging.set_verbosity(tf.logging.ERROR) dispnet = DispNet(mode="test", ckpt_path=args.checkpoint_path, dataset=ft3d_dataset, input_size=INPUT_SIZE, batch_size=args.batch_size, is_corr=args.use_corr) ckpt = tf.train.latest_checkpoint(args.checkpoint_path) if not ckpt: logging.error("no checkpoint in provided path found!") sys.exit() init_logger(args.checkpoint_path) log_step = args.log_step if args.n_steps is None: N_test = len(ft3d_dataset["TEST"]) else: N_test = args.n_steps gpu_options = tf.GPUOptions(allow_growth=True) with tf.Session(graph=dispnet.graph, config=tf.ConfigProto(gpu_options=gpu_options)) as sess: sess.run(dispnet.init) logging.debug("initialized") coord = tf.train.Coordinator() threads = tf.train.start_queue_runners(sess=sess, coord=coord) logging.debug("queue runners started") try:
def main(args): logger = init_logger(args.run_name) # Datasets img_height, img_width, _ = InceptionV3.SHAPE def prep_func(f, x, y): x = read_image(x) x = decode_png(x) x = resize(x, img_height, img_width) return f, x, y trn_ds = make_dataset(args.train_dir, args.batch_size, prep_func, shuffle=True, repeat=True, add_filenames=True) val_ds = make_dataset(args.train_dir, args.batch_size, prep_func, shuffle=False, repeat=False, add_filenames=True) tst_ds = make_dataset(args.train_dir, args.batch_size, prep_func, shuffle=False, repeat=False, add_filenames=True) num_classes = len(trn_ds.labels_map) it = tf.data.Iterator.from_structure( trn_ds.dataset.output_types, trn_ds.dataset.output_shapes) num_trn_batches = int(math.ceil(float(trn_ds.size) / args.batch_size)) num_val_batches = int(math.ceil(float(val_ds.size) / args.batch_size)) num_tst_batches = int(math.ceil(float(tst_ds.size) / args.batch_size)) trn_init_op = it.make_initializer(trn_ds.dataset) val_init_op = it.make_initializer(val_ds.dataset) tst_init_op = it.make_initializer(tst_ds.dataset) # Filename, input image and corrsponding one hot encoded label f, x, y = it.get_next() sess = tf.Session() # Model and logits is_training = tf.placeholder(dtype=tf.bool) model = InceptionV3(nb_classes=num_classes, is_training=is_training) logits = model.get_logits(x) attacks_ord = { 'inf': np.inf, '1': 1, '2': 2 } # FGM attack attack_params = { 'eps': args.eps, 'clip_min': 0.0, 'clip_max': 1.0, 'ord': attacks_ord[args.ord], } attack = FastGradientMethod(model, sess) # Learning rate with exponential decay global_step = tf.Variable(0, trainable=False) global_step_update_op = tf.assign(global_step, tf.add(global_step, 1)) lr = tf.train.exponential_decay( args.initial_lr, global_step, args.lr_decay_steps, args.lr_decay_factor, staircase=True) cross_entropy = CrossEntropy(model, attack=attack, smoothing=args.label_smth, attack_params=attack_params, adv_coeff=args.adv_coeff) loss = cross_entropy.fprop(x, y) # Gradients clipping opt = tf.train.RMSPropOptimizer(learning_rate=lr, decay=args.opt_decay, epsilon=1.0) gvs = opt.compute_gradients(loss) clip_min, clip_max = -args.grad_clip, args.grad_clip capped_gvs = [] for g, v in gvs: capped_g = tf.clip_by_value(g, clip_min, clip_max) \ if g is not None else tf.zeros_like(v) capped_gvs.append((capped_g, v)) train_op = opt.apply_gradients(capped_gvs) saver = tf.train.Saver() global_init_op = tf.global_variables_initializer() if args.load_model and args.restore_path: saver.restore(sess, args.restore_path) logger.info("Model restored from: ".format(args.restore_path)) with sess.as_default(): sess.run(global_init_op) best_val_acc = -1 for epoch in range(args.num_epochs): logger.info("Epoch: {:04d}/{:04d}".format(epoch + 1, args.num_epochs)) sess.run(trn_init_op) for batch in range(num_trn_batches): loss_np, lr_np, _ = sess.run([loss, lr, train_op], feed_dict={is_training: True}) logger.info("Batch: {:04d}/{:04d}, loss: {:.05f}, lr: {:.05f}" .format(batch + 1, num_trn_batches, loss_np, lr_np)) logger.info("Epoch completed...") sess.run(global_step_update_op) val_acc = eval_acc(sess, logits, y, num_val_batches, is_training, val_init_op) logger.info("Validation set accuracy: {:.05f}".format(val_acc)) if best_val_acc < val_acc: output_path = saver.save(sess, args.model_path) logger.info("Model was successfully saved: {}".format(output_path)) best_val_acc = val_acc pass tst_acc = eval_acc(sess, logits, y, num_tst_batches, is_training, tst_init_op) logger.info("Test set accuracy: {:.05f}".format(tst_acc))
http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from util import init_logger, conf, MQTTClient, handle_sigterm, delay_start from smart_meter import Discovery import signal if __name__ == '__main__': signal.signal(signal.SIGTERM, handle_sigterm) signal.signal(signal.SIGINT, handle_sigterm) if conf.StartDelay.enabled: delay_start(conf.StartDelay.min, conf.StartDelay.max) init_logger(conf.Logger.level) try: device_pool = dict() mqtt_client = MQTTClient() discovery = Discovery(mqtt_client=mqtt_client) mqtt_client.on_connect = discovery.schedule_refresh mqtt_client.on_message = discovery.schedule_refresh discovery.start() mqtt_client.start() finally: pass
def init(): """ Entrance of CLI""" parser = argparse.ArgumentParser(description='Asynchronous Topcoder Data Collector command line tool.') parser.add_argument( '--with-registrant', action='store_true', dest='with_registrant', default=False, # Temporary setting help='Whether fetch registrant details or not.' ) parser.add_argument( '--status', dest='status', default=Status.ALL, type=Status, help='The status of challenges for fetching.' ) parser.add_argument( '-s', '--since', dest='since', default=(datetime.now(timezone.utc) - timedelta(days=1)).strftime('%Y-%m-%d'), type=lambda since: replace_datetime_tail(datetime.fromisoformat(since), 'min'), help='Specify the earliest of end date in UTC of a challenge.', ) parser.add_argument( '-t', '--to', dest='to', default=datetime.now(timezone.utc).strftime('%Y-%m-%d'), type=lambda to: replace_datetime_tail(datetime.fromisoformat(to), 'max'), help='Specify the latest of start date int UTC of a challenge.', ) parser.add_argument( '--output-dir', dest='output_dir', default=Path(os.path.join(os.curdir, 'data')), type=Path, help='Directory for storoage of the fetch data. Create one if not exist', ) parser.add_argument( '--log-dir', dest='log_dir', default=Path(os.path.join(os.curdir, 'logs')), type=Path, help='Directory for stroage of logs. Create one if not exist', ) parser.add_argument( '--debug', action='store_true', default=False, help='Whether to log debug level message.' ) args = parser.parse_args() if args.since > args.to: print('since value should not be greatter than to value.') exit(1) if not args.output_dir.is_dir(): os.mkdir(args.output_dir) if not args.log_dir.is_dir(): os.mkdir(args.log_dir) logger = init_logger(args.log_dir, 'fetch', args.debug) asyncio.run(Fetcher(args.status, args.since, args.to, args.with_registrant, args.output_dir, logger).fetch())
from kivy.metrics import dp from kivy.properties import BooleanProperty, ListProperty, ObjectProperty from kivy.uix.boxlayout import BoxLayout from kivy.uix.colorpicker import ColorPicker from kivy.uix.screenmanager import Screen from kivy.utils import get_color_from_hex from kivymd.uix.button import MDFlatButton, MDRaisedButton from kivymd.uix.dialog import MDDialog from kivymd.uix.list import TwoLineListItem from kivymd.uix.tab import MDTabsBase from util import init_logger from util.timer import Timer from .mdcardpost import ICON_TRASH, SwipeToDeleteItem _LOGGER = init_logger(__name__) Builder.load_string(''' <FormatterItem>: height: dp(56) font_style: "H6" secondary_font_style: "H5" <ViewWidget>: name: 'view_edit' BoxLayout: orientation: 'vertical' height: self.minimum_height MDToolbar: id: id_toolbar pos_hint: {'top': 1}
if f'{visa_type}-{location}' not in G.CD_LIST: return self.logger.warning( f"mark {visa_type} {location} unavailable for {cd.seconds}s") with G.LOCK: self.session_avail[visa_type][location] = datetime.now() + cd if __name__ == "__main__": # Manual testing from pprint import pprint test_log = 'test_session_log' G.assign('log_name', test_log) util.init_logger(test_log, './logs', debug=True) for sys in ('cgi', 'ais'): G.assign('target_system', sys) G.assign('session_file', f'test_{sys}_session.json') sc = SessionCache() if sys == 'cgi': sess = sc.get_session('F', '金边') print(sess) new_sess = Session(session='new_sess_{}'.format(''.join( random.choices(string.ascii_lowercase, k=16))), sys='cgi') sc.replace_session('F', '金边', sess, new_sess) pprint(sc.session['F']['金边']) elif sys == 'ais': sess = sc.get_session('F', 'en-gb')
if args.modelnet_subset: assert args.data.endswith('.lmdb') if args.combine_train_val: assert args.data.endswith('.lmdb') if args.rgb: assert args.data.endswith('.lmdb') if args.force_res: assert args.data.endswith('.lmdb') logname = 'logging.log' if args.skip_train: logname = 'logging_eval.log' if args.nolog: logname = '' logger = util.init_logger(args.logdir, fname=logname) def load_model(classes): model = models.resnet_mvgcnn( args.depth, pretrained=args.pretrained, num_classes=len(classes), gconv_channels=args.gconv_channels, view_dropout=args.view_dropout, n_group_elements=args.n_group_elements, n_homogeneous=args.n_homogeneous, bn_after_gconv=args.bn_after_gconv, gconv_activation=ACTIVATIONS[args.gconv_activation], gconv_support=args.gconv_support, viewpool=args.viewpool,
Tuning Dimensional Hyperparameters for RNN-based Model Notice: for tuning training-related hyperparameters only. Models that depends on different DataLoaders not applicable. """ import time import logging import logging.config from constants import HParamKey from constants import DefaultConfig as config from supervisor import Supervisor import util # config logger logger = logging.getLogger('__main__') util.init_logger(logfile='demo-{}.log'.format(int(time.time()))) # init supervisor spv = Supervisor(config) # get DataLoader for supervisor spv.load_data() spv.get_dataloader() result_folder = util.get_results_folder() logger.info( "Output directory (loss history, accuracy history, checkpoints): {}". format(result_folder)) # ============ RNN demo =========== # new parameters conf_update = {