from sklearn.neighbors import KNeighborsClassifier

import numpy as np
import util

def knnClassify(trainData, trainLabel, testData):
	knnClf = KNeighborsClassifier()
	knnClf.fit(trainData, np.ravel(trainLabel))
	testLabel = knnClf.predict(testData)
	util.saveResult(testLabel, './result/sklearn_knn_result.csv')
	return testLabel

if __name__ == "__main__":
	trainData, trainLabel = util.loadTrainData()
	testData = util.loadTestData()

	knnClassify(trainData, trainLabel, testData)
	print 'knnClassify is finished!'
示例#2
0
from sklearn.ensemble import RandomForestClassifier

# Visualisation
import matplotlib.pyplot as plt  # plot the data
import seaborn as sns  # data visualisation

sns.set(color_codes=True)
#% matplotlib inline

import util

# In[54]:

x_raw, y_raw = util.loadTrainData()
x_test = util.loadTestData()

# In[55]:

table = {
    "Class_1": 1,
    "Class_2": 2,
    "Class_3": 3,
    "Class_4": 4,
    "Class_5": 5,
    "Class_6": 6,
    "Class_7": 7,
    "Class_8": 8,
    "Class_9": 9
}
y_temp = []
示例#3
0
    userNDCGs = []
    for user in users:
        recommendations = rec.makeRecomendations(user, k)
        recItems = recommendations['items'].tolist()
        actualItems = data[data['visitorid'] == user].itemid.tolist()
        hits = set(recItems) & set(actualItems)
        positions = []
        for hit in hits:
            positions.append(recItems.index(hit))
        userNDCG = 0
        for pos in positions:
            userNDCG += 1/(log(pos+2))
        userNDCGs.append(userNDCG)
    return statistics.mean(userNDCGs)

# "Main"
if __name__ == "__main__":
    recomender = Recomender('model-450.meta') #TODO: insert model path
    data = loadTestData()
    while True:
        k = input("Please enter k value (or quit to exit): ")
        if str(k).lower() == "quit":
            break
        try:
            k = int(k)
        except:
            print("Please enter an integer")
            continue
        print('Top-k Hit Ratio:', hitRatio(recomender, data[0], int(k)))
        print('nDCG:', nDCG(recomender, data[0], int(k)))
def evaluate_lenet5(learning_rate=0.1, n_epoches=200, 
	    nkerns=[20, 50], batch_size=500):
	# load data from dataset
	logging.info('... loading data')
	trainData, trainLabel = util.load_total_data()
	testData = util.loadTestData()
	trainData = util.upToInt(trainData)

	train_set_x = theano.shared(np.asarray(trainData,
		dtype = theano.config.floatX),
		borrow = True)

	train_set_y = theano.shared(np.asarray(trainLabel,
		dtype = theano.config.floatX),
		borrow = True)

	test_set_x = theano.shared(np.asarray(testData,
		dtype = theano.config.floatX),
		borrow = True)

	train_set_y = T.cast(train_set_y, 'int32')
	n_train_batches = train_set_x.get_value(borrow=True).shape[0]
	n_valid_batches = train_set_x.get_value(borrow=True).shape[0]
	n_test_batches = test_set_x.get_value(borrow=True).shape[0]

	n_train_batches /= batch_size
	n_valid_batches /= batch_size
	n_test_batches /= batch_size

	rng = np.random.RandomState(23455)

	# allocate symbolic variables for the data
	index = T.lscalar() # index to a [mini]batch

	# start-snippet-1
	x = T.matrix('x')
	y = T.ivector('y')

	logging.info('... building the model')
	layer0_input = x.reshape((batch_size, 1, 28, 28))

	# Construct the first convolutional pooling layer:
    # filtering reduces the image size to (28-5+1 , 28-5+1) = (24, 24)
    # maxpooling reduces this further to (24/2, 24/2) = (12, 12)
    # 4D output tensor is thus of shape (batch_size, nkerns[0], 12, 12)
	layer0 = LeNetConvPoolLayer(
		rng,
		input=layer0_input,
		image_shape=(batch_size, 1, 28, 28),
		filter_shape=(nkerns[0], 1, 5, 5),
		poolsize=(2, 2)
	)

    # Construct the second convolutional pooling layer
    # filtering reduces the image size to (12-5+1, 12-5+1) = (8, 8)
    # maxpooling reduces this further to (8/2, 8/2) = (4, 4)
    # 4D output tensor is thus of shape (batch_size, nkerns[1], 4, 4)
	layer1 = LeNetConvPoolLayer(
		rng,
		input=layer0.output,
		image_shape=(batch_size, nkerns[0], 12, 12),
		filter_shape=(nkerns[1], nkerns[0], 5, 5),
		poolsize=(2, 2)
	)

    # the HiddenLayer being fully-connected, it operates on 2D matrices of
    # shape (batch_size, num_pixels) (i.e matrix of rasterized images).
    # This will generate a matrix of shape (batch_size, nkerns[1] * 4 * 4),
    # or (500, 50 * 4 * 4) = (500, 800) with the default values.
	layer2_input = layer1.output.flatten(2)

    # construct a fully-connected sigmoidal layer
	layer2 = HiddenLayer(
		rng,
		input=layer2_input,
		n_in=nkerns[1] * 4 * 4,
		n_out=500,
		activation=T.tanh
	)

    # classify the values of the fully-connected sigmoidal layer
	layer3 = LogisticRegression(input=layer2.output, n_in=500, n_out=10)

    # the cost we minimize during training is the NLL of the model
	cost = layer3.negative_log_likelihood(y)

    # create a function to compute the mistakes that are made by the model
	validate_model = theano.function(
		[index],
		layer3.errors(y),
		givens={
			x: train_set_x[index * batch_size: (index + 1) * batch_size],
			y: train_set_y[index * batch_size: (index + 1) * batch_size],
		}
	)

	# create a list of all model parameters to be fit by gradient descent
	params = layer3.params + layer2.params + layer1.params + layer0.params

    # create a list of gradients for all model parameters
	grads = T.grad(cost, params)

    # train_model is a function that updates the model parameters by
    # SGD Since this model has many parameters, it would be tedious to
    # manually create an update rule for each model parameter. We thus
    # create the updates list by automatically looping over all
    # (params[i], grads[i]) pairs.
	updates = [
		(param_i, param_i - learning_rate * grad_i)
		for param_i, grad_i in zip(params, grads)
	]

	train_model = theano.function(
		[index],
		cost,
		updates=updates,
		givens={
			x: train_set_x[index * batch_size: (index + 1) * batch_size],
			y: train_set_y[index * batch_size: (index + 1) * batch_size]
		}
	)

	validation_model = theano.function(
		[index],
		layer3.errors(y),
		givens={
			x: train_set_x[index * batch_size: (index + 1) * batch_size],
			y: train_set_y[index * batch_size: (index + 1) * batch_size]
		}
	)

	logging.info('... training')
	patience = 10000
	patience_increase = 2
	improvement_threshold = 0.995

	validation_frequency = min(n_train_batches, patience / 2)

	best_validation_loss = np.inf
	best_iter = 0
	test_score = 0.
	start_time = time.clock()

	epoch = 0
	done_looping = False

	while (epoch < n_epoches) and (not done_looping):
		epoch = epoch + 1
		for minibatch_index in xrange(n_train_batches):
			iter = (epoch - 1) * n_train_batches + minibatch_index

			if iter % 100 == 0:
				logging.info('training @ iter = %d' % (iter))
			cost_ij = train_model(minibatch_index)

			if (iter + 1) % validation_frequency == 0:
				# compute zero-one loss on validation set
				validation_losses = [validation_model(i) for i
						in xrange(n_valid_batches)]
				this_validation_loss = np.mean(validation_losses)
				print('epoch %i, minibatch %i/%i, validation error %f %%' %
					(epoch, minibatch_index + 1, n_train_batches,
						this_validation_loss * 100.))

				if (this_validation_loss * 100.) < 0.001:
					done_looping = True
					break

	end_time = time.clock()
	logging.info('The code for file ' +
						os.path.split(__file__)[1] +
							' ran for %.2fm' % ((end_time - start_time) / 60.))

	# make a prediction and save file
	# make a prediction
	predict_model = theano.function(
		inputs=[index],
		outputs= layer3.predict(),
		givens={
			x: test_set_x[index * batch_size: (index + 1) * batch_size]
		}
	)

	# save the result file
	testLabel = np.array([])
	for test_index in range(n_test_batches):
		tempLabel = predict_model(test_index)
		testLabel = np.hstack((testLabel, tempLabel))
	util.saveResult(testLabel, './result/cnn_result.csv')