示例#1
0
 def test_learning_curve_poly(self):
     highest_degree = 8
     X_poly = map_poly_features(self.X, highest_degree)
     X_poly, mu, sigma = feature_normalization(X_poly)
     Xval_poly = map_poly_features(self.Xval, highest_degree)
     Xval_poly = (Xval_poly - mu) / sigma
     lamda = 0.0
     
     error_train, error_val = learning_curve(X_poly, self.y, Xval_poly, self.yval, lamda)
     plt.xlabel('Number of Training Examples')
     plt.ylabel("Error")
     plt.plot( range(1,self.m+1), error_train)
     plt.plot( range(1,self.m+1), error_val)
     plt.show()
示例#2
0
    def test_learning_curve_poly(self):
        highest_degree = 8
        X_poly = map_poly_features(self.X, highest_degree)
        X_poly, mu, sigma = feature_normalization(X_poly)
        Xval_poly = map_poly_features(self.Xval, highest_degree)
        Xval_poly = (Xval_poly - mu) / sigma
        lamda = 0.0

        error_train, error_val = learning_curve(X_poly, self.y, Xval_poly,
                                                self.yval, lamda)
        plt.xlabel('Number of Training Examples')
        plt.ylabel("Error")
        plt.plot(range(1, self.m + 1), error_train)
        plt.plot(range(1, self.m + 1), error_val)
        plt.show()
示例#3
0
 def test_validation_curve_poly(self):
     highest_degree = 8
     X_poly = map_poly_features(self.X, highest_degree)
     X_poly, mu, sigma = feature_normalization(X_poly)
     Xval_poly = map_poly_features(self.Xval, highest_degree)
     Xval_poly = (Xval_poly - mu) / sigma
     lamdas = np.array([0,0.001,0.003,0.01,0.03,0.1,0.3,1,3,10])
     
     error_train, error_val = validation_curve(X_poly, self.y, Xval_poly, self.yval, lamdas)
     plt.xlabel('lamda')
     plt.ylabel("Error")
     plt.plot( lamdas, error_train, label='Train')
     plt.plot( lamdas, error_val, label='Validation')
     plt.legend()
     plt.show()
示例#4
0
    def test_validation_curve_poly(self):
        highest_degree = 8
        X_poly = map_poly_features(self.X, highest_degree)
        X_poly, mu, sigma = feature_normalization(X_poly)
        Xval_poly = map_poly_features(self.Xval, highest_degree)
        Xval_poly = (Xval_poly - mu) / sigma
        lamdas = np.array([0, 0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1, 3, 10])

        error_train, error_val = validation_curve(X_poly, self.y, Xval_poly,
                                                  self.yval, lamdas)
        plt.xlabel('lamda')
        plt.ylabel("Error")
        plt.plot(lamdas, error_train, label='Train')
        plt.plot(lamdas, error_val, label='Validation')
        plt.legend()
        plt.show()
示例#5
0
 def test_linear_regression_poly(self):
     highest_degree = 8
     X_poly = map_poly_features(self.X, highest_degree)
     X_poly, mu, sigma = feature_normalization(X_poly)
     
     initial_theta = np.ones(highest_degree+1)
     lamda = 0.0
     theta = train_linear_reg(initial_theta, X_poly, self.y, lamda)
     hypo = predictions(theta, X_poly)
     
     # now scatter the data and plot the hypothesis
     df = pd.DataFrame(np.hstack(( self.X, hypo.reshape(self.y.shape), self.y )), columns=['X','hypo','y'])
     df = df.sort('X')
     plt.xlabel("Change in water level (x)")
     plt.ylabel("Water flowing out of the dam (y)")
     plt.scatter( df['X'], df['y'], marker='x', c='r', s=30, linewidth=2 )
     plt.plot( df['X'], df['hypo'], linestyle='--', linewidth=3 )
     plt.show()
示例#6
0
    def test_linear_regression_poly(self):
        highest_degree = 8
        X_poly = map_poly_features(self.X, highest_degree)
        X_poly, mu, sigma = feature_normalization(X_poly)

        initial_theta = np.ones(highest_degree + 1)
        lamda = 0.0
        theta = train_linear_reg(initial_theta, X_poly, self.y, lamda)
        hypo = predictions(theta, X_poly)

        # now scatter the data and plot the hypothesis
        df = pd.DataFrame(np.hstack(
            (self.X, hypo.reshape(self.y.shape), self.y)),
                          columns=['X', 'hypo', 'y'])
        df = df.sort('X')
        plt.xlabel("Change in water level (x)")
        plt.ylabel("Water flowing out of the dam (y)")
        plt.scatter(df['X'], df['y'], marker='x', c='r', s=30, linewidth=2)
        plt.plot(df['X'], df['hypo'], linestyle='--', linewidth=3)
        plt.show()