示例#1
0
def original_solution():
    """runtime on mbp is 51ms"""
    # generate all possible 16 digit strings that have 6-10 as external nodes, and start with 6
    # so, that's 6 + {all permutations of 7-10} on the outside, and all permutations of 1-5 on the inside
    # filter down to the ones that are magic, choose the max.
    best = 0
    for outside in permutations([7,8,9,10]):
        for inside in permutations([1,2,3,4,5]):
            l = (6,) + outside + inside
            if is_magic(l):
                i = int(''.join(map(str, structure(l))))
                print "magic: %d" % i
                if best < i: 
                    best = i
                
    return best
    def test_point_pattern(self):
        """
        This test checks that the code can compute an observed mean
         nearest neighbor distance and then use Monte Carlo simulation to
         generate some number of permutations.  A permutation is the mean
         nearest neighbor distance computed using a random realization of
         the point process.
        """
        random.seed()  # Reset the random number generator using system time
        # I do not know where you have moved avarege_nearest_neighbor_distance, so update the point_pattern module
        observed_avg = analytics.average_nearest_neighbor_distance(self.points)
        self.assertAlmostEqual(0.027, observed_avg, 3)

        # Again, update the point_pattern module name for where you have placed the point_pattern module
        # Also update the create_random function name for whatever you named the function to generate
        #  random points
        rand_points = utils.generate_random_points(100)
        self.assertEqual(100, len(rand_points))

        # As above, update the module and function name.
        permutations = utils.permutations(99)
        self.assertEqual(len(permutations), 99)
        self.assertNotEqual(permutations[0], permutations[1])

        # As above, update the module and function name.
        lower, upper = utils.crit_tations(permutations)
        self.assertTrue(lower > 0.03)
        self.assertTrue(upper < 0.07)
        self.assertTrue(observed_avg < lower or observed_avg > upper)

        # As above, update the module and function name.
        significant = utils.check_yer_sig(lower, upper, observed_avg)
        self.assertTrue(significant)
示例#3
0
def original_solution():
    """runtime is 323ms on mbp"""
    poly = [tri, square, penta, hexa, hepta, octa]
    
    polys = map(get, poly)
    answers = set()
    for p in utils.permutations(polys):
        candidates = []
        # Do the first and last one (special because of wraparound, no tuples)
        for p_last in p[-1]:
             candidates.extend([(p_i, p_last) for p_i in p[0] if match(p_last, p_i)])
        
        # Do the middle ones (not special)
        for i in range(1, 4):
            candidates = update_candidates(candidates, p[i])
        
        # Do the second-to-last one (special because have to check both ends)
        final = []
        for c in candidates:
            final.extend([insert(c, p_i) for p_i in p[4] if match(c[-2], p_i) and match(p_i, c[-1])])
        
        # Did we get anything?
        if len(final):
            print final, sum(final[0])
            return sum(final[0])
    
    return -1
示例#4
0
def genKey(key, keyGenType, itr):
    if keyGenType == 'manual':
        cipherWord = input("Enter an incorrect word from the plain text: ").upper()
        plainWord = input("Enter the correct word: ").upper()
        if len(cipherWord) != len(plainWord):
            print("Length of words must match! Key failed to update.")
            return key
        elif not (cipherWord.isalpha() and plainWord.isalpha()):
            print("Numbers can not be entered! Key failed to update.")
        else:
            cipherWordArray = []
            cipherWordArray[:0] = cipherWord
            plainWordArray = []
            plainWordArray[:0] = plainWord
            inverseKey = dict(zip(key.values(), key.keys()))
            for i in range(0, len(cipherWordArray)):
                if cipherWordArray[i] != plainWordArray[i]:
                    key[inverseKey[cipherWordArray[i]]] = plainWordArray[i]
                    key[inverseKey[plainWordArray[i]]] = cipherWordArray[i]
            print("Key updated! Try substitution cipher again.")
    elif keyGenType == 'auto':
        global PERMS
        if PERMS is None or itr == 0:
            PERMS = utils.permutations(key.values(), n=20, unique=True)
        key = dict(zip(key.keys(), PERMS[itr]))

    return key
示例#5
0
def original_solution():
    """runtime on mbp is 51ms"""
    # generate all possible 16 digit strings that have 6-10 as external nodes, and start with 6
    # so, that's 6 + {all permutations of 7-10} on the outside, and all permutations of 1-5 on the inside
    # filter down to the ones that are magic, choose the max.
    best = 0
    for outside in permutations([7, 8, 9, 10]):
        for inside in permutations([1, 2, 3, 4, 5]):
            l = (6, ) + outside + inside
            if is_magic(l):
                i = int(''.join(map(str, structure(l))))
                print "magic: %d" % i
                if best < i:
                    best = i

    return best
示例#6
0
def original_solution():
    """runtime is 323ms on mbp"""
    poly = [tri, square, penta, hexa, hepta, octa]

    polys = map(get, poly)
    answers = set()
    for p in utils.permutations(polys):
        candidates = []
        # Do the first and last one (special because of wraparound, no tuples)
        for p_last in p[-1]:
            candidates.extend([(p_i, p_last) for p_i in p[0]
                               if match(p_last, p_i)])

        # Do the middle ones (not special)
        for i in range(1, 4):
            candidates = update_candidates(candidates, p[i])

        # Do the second-to-last one (special because have to check both ends)
        final = []
        for c in candidates:
            final.extend([
                insert(c, p_i) for p_i in p[4]
                if match(c[-2], p_i) and match(p_i, c[-1])
            ])

        # Did we get anything?
        if len(final):
            print final, sum(final[0])
            return sum(final[0])

    return -1
示例#7
0
def gather(A, part):
    if len(part) == N:
        return
    m = index(part)
    pi = expand(part)
    for i in xrange(N):
        for j in xrange(i + 1, N):
            for k in xrange(j + 1, N):
                for ii, jj, kk in permutations([i, j, k]):
                    pic = list(pi)
                    pic[i], pic[j], pic[k] = pic[ii], pic[jj], pic[kk]
                    A[m, index(contract(pic))] += 1. / nways_to_choose_swap
示例#8
0
def pandigital_products():
    pan_prods = []

    for _perm in utils.permutations(1, 9):
        perm = ''.join([str(p) for p in _perm])

        for i in range(1, 4):
            x = int(perm[:i])
            for j in range(i + 1, 7):
                y = int(perm[i:j])
                z = int(perm[j:])

                if x * y == z and z not in pan_prods:
                    print('{} * {} = {}'.format(x, y, z))
                    pan_prods.append(z)

    return sum(pan_prods)
示例#9
0
def original_solution():
    """ original_solution took 584.394 ms
              584.394 ms (write is_int inline instead of as a function call)
              741.234 ms (build a table of funcs instead of eval inline)
            13419.094 ms (intuition: solution won't have a 0 in it (useless!))
            20296.724 ms (intuition: solution needs to have 1 in it)
            50730.742 ms (save list of all operator combos instead of dynamic generation)
            51467.405 ms (format instead of 3 string replaces)
            53080.543 ms (essential set of combos)
            91008.076 ms (initial)
        The answer (original) is: 1258
    """
    # all possible combinations of operators
    olist = [p for p in product(['+', '-', '*', '/'], repeat=3)]
    # all possible parenthesizations
    combos = [
        '(a %c (b %c c)) %c d', '((a %c b) %c c) %c d', 'a %c (b %c (c %c d))',
        'a %c ((b %c c) %c d)', '(a %c b) %c (c %c d)'
    ]
    # all possible functions
    funcs = [
        eval('lambda a,b,c,d : %s' % (c % o)) for c in combos for o in olist
    ]

    m, answer = 0, ''
    for numbers in combinations(xrange(1, 10), 4):
        if not 1 in numbers:
            continue  # intuition about requirements for solution
        outcomes = set()
        for a, b, c, d in permutations(numbers):
            for f in funcs:
                try:
                    n = f(a, b, c, d)
                    if 0 < n and int(n) == n:
                        outcomes.add(n)
                except ZeroDivisionError:
                    pass
        lcr = largest_continuous_range(
            sorted(outcomes))  #lcr = largest_continuous_range_new(outcomes)
        if m < lcr:
            m, answer = lcr, ''.join(map(str, numbers))
            print 'new max: %d from %s' % (m, answer)
    return answer
示例#10
0
def main():
    """Solves this problem

    Permutes a list of string digits.  
    Returns the indexed the millionth value.

    Quite positive this could be dynamically calculated, 
    but the number of permutations is only 10! (factorial) 
    which is ~3.6 million, so not that bad

    Returns:
        Integer: Solution to this problem
    """

    digits = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9']

    perms = permutations(digits)

    return perms[1000000 - 1]
示例#11
0
    def list_equivalent_trees(self):
        """ 
            Returns a list of all strings (subject to our assumptions)
            equivalent to a given tree 

            INPUT: 
                self     -- any rooted tree
            OUTPUT:  
                treelist -- a list of all the 'legal' tree strings
                            that produce the same tree.

            The list of equivalent trees is obtained by taking all
            permutations of the (non-leaf) subtrees.
            This routine is used to test equality of trees.
        """
        nleaves,subtrees=self._parse_subtrees()
        if len(subtrees)==0: return [self]
        for i in range(len(subtrees)): subtrees[i]=str(subtrees[i])
        treelist = [RootedTree('{'+_powerString('T',nleaves,powchar='^')+
                    ''.join(sts)+'}') for sts in permutations(subtrees)]
        return treelist
示例#12
0
    def all_equivalent_trees(self):
        """ 
            Returns a list of all strings (subject to our assumptions)
            equivalent to a given tree 

            INPUT: 
                self     -- any rooted tree
            OUTPUT:  
                treelist -- a list of all the 'legal' tree strings
                            that produce the same tree.

            The list of equivalent trees is obtained by taking all
            permutations of the (non-leaf) subtrees.
            This routine is used to test equality of trees.
        """
        nleaves,subtrees=self.parse_subtrees()
        if len(subtrees)==0: return [self]
        for i in range(len(subtrees)): subtrees[i]=str(subtrees[i])
        treelist = [RootedTree('{'+powerString('T',nleaves,powchar='^')+
                    ''.join(sts)+'}') for sts in permutations(subtrees)]
        return treelist
示例#13
0
def original_solution():
    """ original_solution took 584.394 ms
              584.394 ms (write is_int inline instead of as a function call)
              741.234 ms (build a table of funcs instead of eval inline)
            13419.094 ms (intuition: solution won't have a 0 in it (useless!))
            20296.724 ms (intuition: solution needs to have 1 in it)
            50730.742 ms (save list of all operator combos instead of dynamic generation)
            51467.405 ms (format instead of 3 string replaces)
            53080.543 ms (essential set of combos)
            91008.076 ms (initial)
        The answer (original) is: 1258
    """
    # all possible combinations of operators
    olist = [p for p in product(['+', '-', '*', '/'], repeat=3)] 
    # all possible parenthesizations
    combos = ['(a %c (b %c c)) %c d', '((a %c b) %c c) %c d', 'a %c (b %c (c %c d))', 'a %c ((b %c c) %c d)', '(a %c b) %c (c %c d)']
    # all possible functions
    funcs = [eval('lambda a,b,c,d : %s' % (c % o)) for c in combos for o in olist]  
    
    m, answer = 0, ''
    for numbers in combinations(xrange(1, 10), 4):
        if not 1 in numbers: continue # intuition about requirements for solution
        outcomes = set()
        for a,b,c,d in permutations(numbers):
            for f in funcs:
                try:
                    n = f(a,b,c,d)
                    if 0 < n and int(n) == n:
                        outcomes.add(n)
                except ZeroDivisionError:
                    pass
        lcr = largest_continuous_range(sorted(outcomes)) #lcr = largest_continuous_range_new(outcomes)
        if m < lcr:
            m, answer = lcr, ''.join(map(str, numbers))
            print 'new max: %d from %s' % (m, answer)
    return answer
示例#14
0
 def test_check_significant(self):
     observed_avg = utils.average_nearest_neighbor_distance(self.points)
     lower, upper = analytics.compute_critical(utils.permutations(99))
     significant = analytics.check_significant(lower, upper, observed_avg)
     self.assertTrue(significant)
示例#15
0
 def generate_realizations(self, k):
     return utils.permutations(k)
示例#16
0
 def create_k_patterns(self, k):
     return utils.permutations(k)
示例#17
0
def multi_divedable_pandigitals():
    start_permutation = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
    for p in utils.permutations(start_permutation):
        if multi_div_test(p):
            yield utils.to_int(p)
    print p
示例#18
0
 def generate_realizations(self, k):
     return utils.permutations(k)
示例#19
0
from utils import permutations

print("".join(map(str, list(permutations(list(range(10))))[999999])))
示例#20
0
from utils import permutations

lexiographic_permutations = sorted(permutations(list(range(10))))

print(lexiographic_permutations[1000000 - 1])
示例#21
0
	def create_k_patterns(self, k):
		return utils.permutations(k)
示例#22
0
 def test_compute_critical(self):
     observed_avg = utils.average_nearest_neighbor_distance(self.points)
     lower, upper = analytics.compute_critical(utils.permutations(99))
     self.assertTrue(lower > 0.03)
     self.assertTrue(upper < 0.07)
     self.assertTrue(observed_avg < lower or observed_avg > upper)
示例#23
0
    def train(self,
              train_data,
              valid_data,
              configs,
              save=True,
              path='saved_models/default',
              verbose=False):

        best_architectures = utils.permutations(
            num_new_items=self.search_size[0])
        for i in range(1, self.num_layers):
            if len(best_architectures
                   ) * self.search_size[i] > configs.agent.num_models:
                break
            else:
                best_architectures = utils.permutations(
                    num_new_items=self.search_size[i],
                    inputs=best_architectures)

        start_num_layers = len(best_architectures[0])

        for num_layers in range(start_num_layers, self.num_layers + 1):

            # Prepare samples

            if verbose:
                print('Sampling {}-layer samples.'.format(num_layers))

            samples_path = os.path.join(path,
                                        '{}-layer-samples'.format(num_layers))
            if os.path.isdir(samples_path):
                samples, accs = self._load_samples(samples_path)

            else:
                samples = best_architectures
                accs = []

                for sample in samples:
                    layers = [self.search_space[ID] for ID in sample]
                    model = self.build_model(layers,
                                             self.architecture[:num_layers],
                                             self.task_info)
                    accuracy = model.train(
                        train_data=train_data,
                        valid_data=valid_data,
                        num_epochs=configs.model.num_epochs,
                        learning_rate=configs.model.learning_rate,
                        save_history=False,
                        verbose=False)
                    accs.append(accuracy)

                if save:
                    self._save_samples(samples, accs, samples_path)

            # Train accuracy predictor

            if verbose:
                print('Training predictor for {}-layer models.'.format(
                    num_layers))

            self.predictor.update(
                samples=samples,
                accuracies=accs,
                num_epochs=configs.predictor.num_epochs,
                learning_rate=configs.predictor.learning_rate)

            # Mutate next layer

            if num_layers + 1 < self.num_layers:
                if verbose:
                    print('Mutating {}-layer samples.'.format(num_layers))

                best_architectures = utils.permutations(
                    num_new_items=self.search_size[num_layers],
                    inputs=best_architectures)
                accs = self.predictor.predict(
                    best_architectures).detach().cpu().numpy()
                accs_order = accs.argsort()[::-1]

                best_architectures = np.array(best_architectures)
                best_architectures = best_architectures[
                    accs_order][:configs.agent.num_candidate_models]
                accs = accs[accs_order][:configs.agent.num_candidate_models]

                model_sizes = []
                for architecture in best_architectures:
                    layers = [self.search_space[ID] for ID in architecture]
                    model_sizes.append(
                        utils.estimate_model_size(
                            layers=layers,
                            num_tasks=self.task_info.num_tasks,
                            architecture=self.architecture[:num_layers + 1],
                            num_channels=self.task_info.num_channels))

                objectives = [(acc, -model_size)
                              for (acc, model_size) in zip(accs, model_sizes)]
                _, idx = utils.pareto_front(objectives,
                                            num=configs.agent.num_models)
                best_architectures = best_architectures[idx].tolist()

        if save:
            if verbose:
                print('Training final models.')

            architectures = []
            accs = []
            model_sizes = []

            for architecture in best_architectures:
                layers = [self.search_space[ID] for ID in architecture]
                model = self.build_model(layers, self.architecture,
                                         self.task_info)
                accuracy = model.train(
                    train_data=train_data,
                    valid_data=valid_data,
                    num_epochs=configs.model.num_epochs,
                    learning_rate=configs.model.learning_rate,
                    save_history=False,
                    verbose=False)

                architectures.append(layers)
                accs.append(accuracy)
                model_sizes.append(model.size)

            self.save(architectures, accs, model_sizes,
                      os.path.join(path, 'final'))
示例#24
0
 def test_permutations(self):
     permutations = utils.permutations(99)
     self.assertEqual(len(permutations), 99)
     self.assertNotEqual(permutations[0], permutations[1])