def g_force(self, o):
	r = self.pos - o.pos
	if mag2(r) > 0:
		return -norm(self.pos - o.pos) * g * self.mass * o.mass / mag2(self.pos - o.pos)
	return vector()
def kinetic_energy(self):
	return 0.5 * self.mass * mag2(self.v())
示例#3
0
def Simulation():

    config.Atoms = []  # spheres
    p = []  # momentums (vectors)
    apos = []  # positions (vectors)
    ampl = 0  #амплитуда движения
    period = 5
    k = 1.4E-23  # Boltzmann constant
    R = 8.3
    dt = 1E-5
    time = 0

    def checkCollisions(Natoms, Ratom):
        hitlist = []
        r2 = 2 * Ratom
        for i in range(Natoms):
            for j in range(i):
                dr = apos[i] - apos[j]
                if dr.mag < r2:
                    hitlist.append([i, j])
        return hitlist

    def speed(time, piston_mode, period, ampl, temp):
        if (piston_mode == 0):
            return 0
        if (piston_mode == 1):
            return ampl / 10 * 3 * sin(time / period * 2 * pi) * sqrt(
                3 * config.mass * k * temp) / (5 * config.mass) / period * 100
        if (piston_mode == 2):
            if (time % period < period // 2):
                return 1.5 * ampl / 10 * sqrt(3 * config.mass * k * temp) / (
                    5 * config.mass) / period * 100
            else:
                return -1.5 * ampl / 10 * sqrt(3 * config.mass * k * temp) / (
                    5 * config.mass) / period * 100
        if (piston_mode == 3):
            if (time % period < period // 5):
                return 5 * ampl / 10 * sqrt(3 * config.mass * k * temp) / (
                    5 * config.mass) / period * 100
            else:
                return -5 / 4 * ampl / 10 * sqrt(
                    3 * config.mass * k * temp) / (5 *
                                                   config.mass) / period * 100
        if (piston_mode == 4):
            if (time % period < 4 * period // 5):
                return 5 / 4 * ampl / 10 * sqrt(3 * config.mass * k * temp) / (
                    5 * config.mass) / period * 100
            else:
                return -5 * ampl / 10 * sqrt(3 * config.mass * k * temp) / (
                    5 * config.mass) / period * 100

    width, height = config.w.win.GetSize()

    offset = config.w.dheight
    deltav = 100  # histogram bar width

    disp = display(
        window=config.w,
        x=offset,
        y=offset,
        forward=vector(0, -0.05, -1),
        range=1,  # userspin = False,
        width=width / 3,
        height=height)

    g1 = gdisplay(window=config.w,
                  x=width / 3 + 2 * offset,
                  y=2 * offset,
                  background=color.white,
                  xtitle='t',
                  ytitle='v',
                  foreground=color.black,
                  width=width / 3,
                  height=height / 2 - 2 * offset)

    g2 = gdisplay(window=config.w,
                  x=width / 3 + 2 * offset,
                  y=height / 2 + offset,
                  background=color.white,
                  foreground=color.black,
                  width=width / 3,
                  height=height / 2 - 2 * offset)

    # adding empty dots to draw axis
    graph_average_speed = gcurve(gdisplay=g1, color=color.white)
    graph_average_speed.plot(pos=(3000, 1500))
    graph_temp = gcurve(gdisplay=g2, color=color.white)
    graph_temp.plot(pos=(3000, config.Natoms * deltav / 1000))

    speed_text = wx.StaticText(config.w.panel,
                               pos=(width / 3 + 2 * offset, offset),
                               label="Средняя скорость")
    graph_text = wx.StaticText(config.w.panel,
                               pos=(width / 3 + 2 * offset, height / 2),
                               label="")

    L = 1  # container is a cube L on a side
    d = L / 2 + config.Ratom  # half of cylinder's height
    topborder = d
    gray = color.gray(0.7)  # color of edges of container

    # cylinder drawing
    cylindertop = cylinder(pos=(0, d - 0.001, 0), axis=(0, 0.005, 0), radius=d)
    ringtop = ring(pos=(0, d, 0), axis=(0, -d, 0), radius=d, thickness=0.005)
    ringbottom = ring(pos=(0, -d, 0),
                      axis=(0, -d, 0),
                      radius=d,
                      thickness=0.005)
    body = cylinder(pos=(0, -d, 0), axis=(0, 2 * d, 0), radius=d, opacity=0.2)

    # body_tmp = cylinder(pos = (0, d, 0), axis = (0, 2 * d, 0), radius = d + 0.1, color = (0, 0, 0))
    # ceil = box(pos = (0, d, 0), length = 5, height = 0.005, width = 5, color = (0, 0, 0))
    # floor = box(pos = (0, -d, 0), length = 100, height = 0.005, width = 100, color = (0, 0, 0))
    # left = box(pos = (d + 0.005, 0, 0), axis = (0, 1, 0), length = 100, height = 0.005, width = 100, color = (0, 0, 0))
    # right = box(pos = (-d - 0.005, 0, 0), axis = (0, 1, 0), length = 100, height = 0.005, width = 100, color = (0, 0, 0))

    # uniform particle distribution
    for i in range(config.Natoms):
        qq = 2 * pi * random.random()

        x = sqrt(random.random()) * L * cos(qq) / 2
        y = L * random.random() - L / 2
        z = sqrt(random.random()) * L * sin(qq) / 2

        if i == 0:
            # particle with a trace
            config.Atoms.append(
                sphere(pos=vector(x, y, z),
                       radius=config.Ratom,
                       color=color.cyan,
                       make_trail=False,
                       retain=100,
                       trail_radius=0.3 * config.Ratom))
        else:
            config.Atoms.append(
                sphere(pos=vector(x, y, z), radius=config.Ratom, color=gray))

        apos.append(vector(x, y, z))

    # waiting to start, adjusting everything according to changing variables
    """WAITING TO START"""
    last_Natoms = config.Natoms
    last_Ratom = config.Ratom
    while config.start == 0:
        if config.menu_switch == 0:
            disp.delete()
            g1.display.delete()
            g2.display.delete()

            graph_text.Destroy()
            speed_text.Destroy()
            return

        if config.Natoms > last_Natoms:
            for i in range(config.Natoms - last_Natoms):
                qq = 2 * pi * random.random()
                x = sqrt(random.random()) * L * cos(qq) / 2
                y = L * random.random() - L / 2
                z = sqrt(random.random()) * L * sin(qq) / 2

                if last_Natoms == 0:
                    # particle with a trace
                    config.Atoms.append(
                        sphere(pos=vector(x, y, z),
                               radius=config.Ratom,
                               color=color.cyan,
                               make_trail=False,
                               retain=100,
                               trail_radius=0.3 * config.Ratom))
                else:
                    config.Atoms.append(
                        sphere(pos=vector(x, y, z),
                               radius=config.Ratom,
                               color=gray))
                apos.append(vector(x, y, z))
            last_Natoms = config.Natoms

        elif config.Natoms < last_Natoms:
            for i in range(last_Natoms - config.Natoms):
                config.Atoms.pop().visible = False
                apos.pop()
            last_Natoms = config.Natoms

        if last_Ratom != config.Ratom:
            for i in range(last_Natoms):
                config.Atoms[i].radius = config.Ratom
            last_Ratom = config.Ratom

        if config.model == 0:
            if config.piston_mode >= 1:
                graph_text.SetLabel("Температура")
            else:
                graph_text.SetLabel("Распределение скоростей частиц")
        sleep(0.1)

    # freezed all variables, ready to start
    last_T = config.T
    last_ampl = config.ampl
    last_period = config.period
    last_piston_mode = config.piston_mode
    last_model = config.model

    pavg = sqrt(3 * config.mass * k *
                last_T)  # average kinetic energy p**2/(2config.mass) = (3/2)kT

    for i in range(last_Natoms):
        theta = pi * random.random()
        phi = 2 * pi * random.random()

        px = pavg * sin(theta) * cos(phi)
        py = pavg * sin(theta) * sin(phi)
        pz = pavg * cos(theta)

        p.append(vector(px, py, pz))

    if last_model == 1:
        disp.delete()
        unavail = wx.StaticText(
            config.w.panel,
            style=wx.ALIGN_CENTRE_HORIZONTAL,
            label="Отображение модели недоступно в режиме статистики",
            pos=(offset, height / 2 - offset))
        unavail.Wrap(width / 3)
        last_period = last_period / 10
        last_piston_mode += 1
        graph_text.SetLabel("Температура")
    """ DRAW GRAPHS """

    g1.display.delete()
    g2.display.delete()

    if last_piston_mode == 0:
        g1 = gdisplay(window=config.w,
                      x=width / 3 + 2 * offset,
                      y=2 * offset,
                      background=color.white,
                      xtitle='t',
                      ytitle='v',
                      foreground=color.black,
                      width=width / 3,
                      height=height / 2 - 2 * offset,
                      ymin=0.7 * pavg / config.mass,
                      ymax=1.3 * pavg / config.mass)

        g2 = gdisplay(window=config.w,
                      x=width / 3 + 2 * offset,
                      y=height / 2 + offset,
                      background=color.white,
                      foreground=color.black,
                      xtitle='v',
                      ytitle='Frequency',
                      width=width / 3,
                      height=height / 2 - 2 * offset,
                      xmax=3000 / 300 * last_T,
                      ymax=last_Natoms * deltav / 1000)

    else:
        g1 = gdisplay(window=config.w,
                      x=width / 3 + 2 * offset,
                      y=2 * offset,
                      background=color.white,
                      xtitle='t',
                      ytitle='v',
                      foreground=color.black,
                      width=width / 3,
                      height=height / 2 - 2 * offset)

        g2 = gdisplay(window=config.w,
                      x=width / 3 + 2 * offset,
                      y=height / 2 + offset,
                      background=color.white,
                      xtitle='t',
                      ytitle='T',
                      foreground=color.black,
                      width=width / 3,
                      height=height / 2 - 2 * offset)

    graph_average_speed = gcurve(gdisplay=g1, color=color.black)

    if last_piston_mode:
        graph_temp = gcurve(gdisplay=g2, color=color.black)
    else:
        theory_speed = gcurve(gdisplay=g2, color=color.black)
        dv = 10
        for v in range(0, int(3000 / 300 * last_T), dv):
            theory_speed.plot(pos=(v, (deltav / dv) * last_Natoms * 4 * pi *
                                   ((config.mass /
                                     (2 * pi * k * last_T))**1.5) *
                                   exp(-0.5 * config.mass * (v**2) /
                                       (k * last_T)) * (v**2) * dv))

        hist_speed = ghistogram(gdisplay=g2,
                                bins=arange(0, int(3000 / 300 * last_T), 100),
                                color=color.red,
                                accumulate=True,
                                average=True)

        speed_data = []  # histogram data
        for i in range(last_Natoms):
            speed_data.append(pavg / config.mass)
            # speed_data.append(0)
    """ MAIN CYCLE """
    while config.start:

        while config.pause:
            sleep(0.1)

        rate(100)

        sp = speed(time, last_piston_mode, last_period, last_ampl, 300)
        cylindertop.pos.y -= sp * dt
        time += 1

        for i in range(last_Natoms):
            config.Atoms[i].pos = apos[i] = apos[i] + (p[i] / config.mass) * dt

            if last_piston_mode == 0:
                speed_data[i] = mag(p[i]) / config.mass

        total_momentum = 0
        v_sum = 0
        for i in range(last_Natoms):
            total_momentum += mag2(p[i])
            v_sum += sqrt(mag2(p[i])) / config.mass

        graph_average_speed.plot(pos=(time, v_sum / last_Natoms))

        if last_piston_mode:
            graph_temp.plot(pos=(time, total_momentum / (3 * k * config.mass) /
                                 last_Natoms))
        else:
            hist_speed.plot(data=speed_data)

        hitlist = checkCollisions(last_Natoms, last_Ratom)

        for ij in hitlist:

            i = ij[0]
            j = ij[1]
            ptot = p[i] + p[j]
            posi = apos[i]
            posj = apos[j]
            vi = p[i] / config.mass
            vj = p[j] / config.mass
            vrel = vj - vi
            a = vrel.mag2
            if a == 0:  # exactly same velocities
                continue
            rrel = posi - posj
            if rrel.mag > config.Ratom:  # one atom went all the way through another
                continue

            # theta is the angle between vrel and rrel:
            dx = dot(rrel, norm(vrel))  # rrel.mag*cos(theta)
            dy = cross(rrel, norm(vrel)).mag  # rrel.mag*sin(theta)
            # alpha is the angle of the triangle composed of rrel, path of atom j, and a line
            #   from the center of atom i to the center of atom j where atome j hits atom i:
            alpha = asin(dy / (2 * config.Ratom))
            d = (2 * config.Ratom) * cos(
                alpha
            ) - dx  # distance traveled into the atom from first contact
            deltat = d / vrel.mag  # time spent moving from first contact to position inside atom

            posi = posi - vi * deltat  # back up to contact configuration
            posj = posj - vj * deltat
            mtot = 2 * config.mass
            pcmi = p[
                i] - ptot * config.mass / mtot  # transform momenta to cm frame
            pcmj = p[j] - ptot * config.mass / mtot
            rrel = norm(rrel)
            pcmi = pcmi - 2 * pcmi.dot(rrel) * rrel  # bounce in cm frame
            pcmj = pcmj - 2 * pcmj.dot(rrel) * rrel
            p[i] = pcmi + ptot * config.mass / mtot  # transform momenta back to lab frame
            p[j] = pcmj + ptot * config.mass / mtot
            apos[i] = posi + (
                p[i] / config.mass) * deltat  # move forward deltat in time
            apos[j] = posj + (p[j] / config.mass) * deltat

        # collisions with walls
        for i in range(last_Natoms):

            # проекция радиус-вектора на плоскость
            loc = vector(apos[i])
            loc.y = 0

            # вылет за боковую стенку (цилиндр радиуса L / 2 + config.Ratom)
            if (mag(loc) > L / 2 + 0.01 - last_Ratom +
                    sqrt(p[i].x**2 + p[i].z**2) / config.mass * dt):

                # проекция импульса на плоскость
                proj_p = vector(p[i])
                proj_p.y = 0

                loc = norm(loc)
                # скалярное произведение нормированного радиус-вектора на импульс (все в проекции на плоскость)
                dotlp = dot(loc, proj_p)

                if dotlp > 0:
                    p[i] -= 2 * dotlp * loc
                # dotlp < 0 - атом улетает от стенки
                # dotlp = 0 - атом летит вдоль стенки

            loc = apos[i]

            # вылет за торцы
            if loc.y + p[i].y / config.mass * dt < -L / 2 - 0.01 + last_Ratom:
                p[i].y = abs(p[i].y)

            if loc.y + p[
                    i].y / config.mass * dt > cylindertop.pos.y - last_Ratom:
                v_otn = p[i].y / config.mass + sp
                if v_otn > 0:
                    p[i].y = (-v_otn - sp) * config.mass

        # type here

    if last_model == 0:
        disp.delete()
    else:
        unavail.Destroy()

    g1.display.delete()
    g2.display.delete()

    graph_text.Destroy()
    speed_text.Destroy()